Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Sorting Lower Bound

© 2015 Goodrich and Tamassia

Sorting Lower Bound

1

Comparison-Based Sorting

Many sorting algorithms are comparison based.

- They sort by making comparisons between pairs of objects
- Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x₁, x₂, ..., x_n.

Counting Comparisons

Let us just count comparisons then.

 Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Decision Tree Height

- The height of the decision tree is a lower bound on the running time
 Every input permutation must lead to a separate leaf output
- If not, some input ...4...5... would have same output ordering as ... 5...4..., which would be wrong
- Since there are $n!=1\cdot 2 \cdot ... \cdot n$ leaves, the height is at least log (n!)

The Lower Bound

 Any comparison-based sorting algorithms takes at least log (n!) time
 Therefore, any such algorithm takes time at least

$$\log(n!) \ge \log\left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log(n/2).$$

• That is, any comparison-based sorting algorithm must run in $\Omega(n \log n)$ time.