# Generating Random and Pseudorandom Numbers

<u>Some slides from CS 15-853: Algorithms in the Real World,</u> <u>Carnegie Mellon University</u>

### Random Numbers in the Real World



https://fitforrandomness.files.wordpress.com/2010/11/dilbert-does-randomness.jpg

https://xkcd.com/221/

Random number sequence definitions

Each element is chosen independently from a probability distribution [Knuth].

Randomness of a sequence is the Kolmogorov complexity of the sequence (size of smallest Turing machine that generates the sequence) infinite sequence should require infinite size Turing machine.

### Environmental Sources of Randomness

Radioactive decay <a href="http://www.fourmilab.ch/hotbits/">http://www.fourmilab.ch/hotbits/</a>

Radio frequency noise <a href="http://www.random.org">http://www.random.org</a>

Noise generated by a resistor or diode.

- Canada <u>http://www.tundra.com/</u> (find the data encryption section, then look under RBG1210. My device is an NM810 which is 2?8? RBG1210s on a PC card)
- Colorado <u>http://www.comscire.com/</u>
- Holland <u>http://valley.interact.nl/av/com/orion/home.html</u>
- Sweden <u>http://www.protego.se</u>

Inter-keyboard timings (watch out for buffering)

Inter-interrupt timings (for some interrupts)

### Combining Sources of Randomness

Suppose  $r_1$ ,  $r_2$ , ...,  $r_k$  are random numbers from different sources. E.g.,

 $r_1$  = from JPEG file  $r_2$  = sample of hip-hop music on radio  $r_3$  = clock on computer

 $\mathsf{b} = \mathsf{r}_1 \oplus \mathsf{r}_2 \oplus \cdots \oplus \mathsf{r}_k$ 

If any one of  $r_1$ ,  $r_2$ , ...,  $r_k$  is truly random, then so is b.

**Skew Correction** 

Von Neumann's algorithm – converts biased random bits to unbiased random bits:

Collect two random bits.

Discard if they are identical.

Otherwise, use first bit.

Efficiency?

### Chi Square Test

Experiment with k outcomes, performed n times.  $p_1, ..., p_k$  denote probability of each outcome  $Y_1, ..., Y_k$  denote number of times each outcome occured

$$\chi^2 = \sum_{1 \le s \le k} \frac{(Y_s - np_s)^2}{np_s}$$

Large X<sup>2</sup> indicates deviance from random chance

## Analysis of random.org numbers

### John Walker's Ent program

Entropy = 7.999805 bits per character.

- Optimum compression would reduce the size of this 1048576 character file by 0 percent.
  - Chi square distribution for 1048576 samples is 283.61, and randomly would exceed this value 25.00 percent of the times.
  - Arithmetic mean value of data bytes is 127.46
    (127.5 = random).
  - Monte Carlo value for PI is 3.138961792 (error 0.08 percent).
  - Serial correlation coefficient is 0.000417

(totally uncorrelated = 0.0

## Analysis of JPEG file

Entropy = 7.980627 bits per character.

- Optimum compression would reduce the size of this 51768 character file by 0 percent.
- Chi square distribution for 51768 samples is 1542.26, and randomly would exceed this value 0.01 percent of the times.
  - Arithmetic mean value of data bytes is 125.93 (127.5 = random).
  - Monte Carlo value for Pi is 3.169834647 (error 0.90 percent).
  - Serial correlation coefficient is 0.004249
    - (totally uncorrelated = 0.0).

### Pseudorandom Number Generators

- A pseudorandom number generator (PRNG) is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers.
- The PRNG-generated sequence is not truly random, because it is completely determined by an initial value, called the PRNG's seed (which may include truly random values).
- Although sequences that are closer to truly random can be generated using hardware random number generators, pseudorandom number generators are important in practice for their speed and reproducibility.

### Pseudorandom Number Generators

- PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography.
- Cryptographic applications require the output not to be predictable from earlier outputs.

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin."

- John Von Neumann, 1951



### Simple Visual Test

- Create a visualization of the consecutive tuples of numbers it produces.
- Humans are really good at spotting patterns.



### Linear Congruential Generator (LCG)

$$x_0 = given, x_{n+1} = P_1 x_n + P_2 \pmod{N}$$
  $n = 0, 1, 2, ...$  (\*)

 $x_0$  = 79, N = 100, P<sub>1</sub> = 263, and P<sub>2</sub> = 71

 $x_1 = 79*263 + 71 \pmod{100} = 20848 \pmod{100} = 48,$   $x_2 = 48*263 + 71 \pmod{100} = 12695 \pmod{100} = 95,$   $x_3 = 95*263 + 71 \pmod{100} = 25056 \pmod{100} = 56,$  $x_4 = 56*263 + 71 \pmod{100} = 14799 \pmod{100} = 99,$ 

Sequence: 79, 48, 95, 56, 99, 8, 75, 96, 68, 36, 39, 28, 35, 76, 59, 88, 15, 16, 79, 48, 95

Park and Miller: P<sub>1</sub> = 16807, P<sub>2</sub> = 0, N= 2<sup>31</sup>-1 = 2147483647, x<sub>0</sub> = 1.

ANSI C rand():

 $P_1 = 1103515245$ ,  $P_2 = 12345$ ,  $N = 2^{31}$ ,  $x_0 = 12345$ 

### Example Comparison



Despite the fact that both relations pass the Chi-squared test, the first LCG is less random than the second, as the range of values it can produce by the order it produces them in is less evenly distributed.

 $\underline{\mathsf{Plot}\left(\mathsf{x}_{\underline{i}}, \mathsf{x}_{\underline{i+1}}\right)}$ 

 $P1=263,\,P2=71,\,N=100$ 





P1 = 16807, P2 = 0, N = 2147483647



1000 dots drawn, seed = 1

#### Park and Miller

 $(x_i, x_{i+1}), (x_i, x_{i+2}), (x_i, x_{i+2})$ 

#### P1 = 16807, P2 = 0, N = 2147483647



#### **100000** dots drawn, seed = 1

http://www.math.utah.edu/~alfeld/Random/Random.html

### Visual Test in 3D

- Three-dimensional plot of 100,000 values generated with IBM RANDU routine. Each point represents 3 consecutive pseudorandom values.
- It is clearly seen that the points fall in 15 twodimensional planes.



### Matsumoto's Marsenne Twister

Considered one of the best linear congruential generators.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

### Example Visual Test



<u>Cryptographically Strong Pseudorandom</u> <u>Number Generator</u>

Next-bit test: Given a sequence of bits  $x_1, x_2, ..., x_k$ , there is no polynomial time algorithm to generate  $x_{k+1}$ .

Yao [1982]: A sequence that passes the next-bit test passes all other polynomial-time statistical tests for randomness.

### Hash/Encryption Chains



(need a random seed  $x_0$  or key value)

### Some Encryption and Hash Functions

- SHA-1 Hash function <a href="https://en.wikipedia.org/wiki/SHA-1">https://en.wikipedia.org/wiki/SHA-1</a>
- MD5 Hash function <a href="https://en.wikipedia.org/wiki/MD5">https://en.wikipedia.org/wiki/MD5</a>
- Data Encryption Standard (DES) <u>https://en.wikipedia.org/wiki/Data\_Encryption\_Standard</u>
- Advanced Encryption Standard (AES) <u>https://en.wikipedia.org/wiki/Advanced\_Encryption\_Standard</u>

## BBS "secure" random bits

### BBS (Blum, Blum and Shub, 1984)

 Based on difficulty of factoring, or finding square roots modulo n = pq.

#### **Fixed**

- p and q are primes such that p = q = 3 (mod 4)
- n = pq (is called a Blum integer)

#### For a particular bit seq.

- Seed: random x relatively prime to n.
- Initial state:  $x_0 = x^2$

• **i**<sup>th</sup> **state**: 
$$x_i = (x_{i-1})^2$$

•  $i^{th}$  bit: Isb of  $x_i$ 

Note that:  $x_0 = x_i^{-2^i \mod \phi(n)} \pmod{n}$ Therefore knowing p and q allows us to find  $x_0$  from  $x_i$