
Algorithms in the Real World Notes by Helen J� Wang
Lecture ��� �Indexing and Searching �� c����� Helen J� Wang and Guy Blelloch

� Pattern Matching �continued�

�� Ukkonen�s Algorithm for more e	cient dynamic programming

� Introduction to Indexing and Searching

� Inverted 
le indexing

�� Compressing the posting lists

�� Representing and accessing the lexicon

� Pattern Matching �continued�

So far we have discussed algorithms that take at least O�nm� time for two sequences of
length n and m� In an application such as diff this can be prohibitively expensive� If we
had two 
les of ���� ��� lines each� the algorithm would require ���� string compares� which
would take hours� However� diff can actually run much faster than this when the 
les to
be compared are similar �i�e�� the typical situation in which they both come from the same
source and just involve minor changes��

We will now consider an algorithm for editdistance which takes O�min�n�m�D� time�
where D is the edit distance between the two strings� The runtime is therefore output
dependent� This algorithm can also be used for the longest common subsequence and a
variant is used in the diff program�

��� Ukkonen�s Algorithm

Consider the minimum edit distance problem�

Di� � i

D�j � j

Dij �

�
Di���j�� ai � bi
� �min�Di�j���Di���j� otherwise

���

This problem can be viewed as a weighted directed graph laid over the n�m matrix of
Di�j � It can then be solved by 
nding a shortest path in the graph from D��� to Dn�m� This
graph has a unit weight edge between neighbors in the same row or column� These edges
represent an insertion or deletion�the ��min�Di�j���Di���j� case in Equation �� The graph
also has zero weight diagonal edges from Di���j�� to Di�j whenever ai � bi�representing the
ai � bi case in Equation �� Figure ����a� shows an example of such a graph� In this graph

���



the length of a path represents the cost of those set of modi
cations� Therefore the shortest
path from D��� to Dn�m gives the set of changes for the minimum edit distance� Note that we
don�t actually have to construct the graph since we can determine the edges from a location
i� j simply by looking at ai� ai��� bj and bj���

1

_ a t c a

_

t

a

t

a

1 1 1 1

1

1

1

1

0

0

0

00

1

1

1
1

1 1 1 1

1

1 2

2 2

3

3

1

_ a t c a

_

t

a

t

a

1 2
1

2
1

4

2

3

5

2 1 2
6

2
7

8

9
2

0

�a� Graph �b� Shortest Path

Figure ���� Graph representation of the minimum edit distance problem for the strings atca
and tata� In the right 
gure the circled values specify the distances and the uncircled values
specify the visiting order for Dijkstra�s algorithm� The shaded path represents the shortest
path�

To 
nd the shortest path we can use a standard algorithm such as Dijkstra�s algorithm
�Figure ����b� gives an example�� Since all the fringe nodes in the algorithm will have one
of two priorities �the distance to the current vertex� or one more� the algorithm can be
optimized to run in constant time for each visited vertex� If we searched the whole graph
the running time would therefore be O�nm�� which is the same as our previous algorithms
for edit distance� As we will show� however� we can get much better bounds on the number
of vertices visited when the edit distance is small�

Theorem � Dij � jj � ij

Proof� All edges in the graph have weight � � and all horizontal and vertical edges have
weight �� Since jj � ij is the minimum distance in edges from the diagonal� and the path
starts on the diagonal �at ����� any path to location �i� j� must cross at least jj�ij horizontal
and vertical edges� The weight of the path must therefore be at least jj � ij� �

Given that Dijkstra�s algorithm visits vertices in the order of their distance Dij� this
theorem implies that the algorithm will only search vertices that are within Dnm of the
diagonal �see Figure ����� This leads to a running time of

���



T � O�Dnm min�n�m��

Dnm

0’s

0’s
Dnm

Figure ���� Bounding visited vertices

In practice programs such as diff do not use Dijkstra�s algorithm but instead they use
a method in which they try increasingly large bands around the diagonal of the matrix �see
Figure ����� On each iteration the width of the band is doubled and the algorithm only 
lls
in the entries in the band� This is continued while Dnm � w�� where w is the width of the
band� The code for 
lling each band is a simple nested loop�

The technique can be used in conjunction with our previous divideandconquer algorithm
to generate a spacee	cient version�

� Introduction to Indexing and Searching

Indexing addresses the issue of how information from a collection of documents should be
organized so that queries can be resolved e	ciently and relevant portions of the data ex
tracted quickly� We will cover a variety of indexing methods� To be as general as possible�
a document collection or document database can be treated as a set of separate documents�
each described by a set of representative terms� or simply terms �each term might have addi
tional information� such as its location within the document�� An index must be capable of
identifying all documents that contain combinations of speci
ed terms� or that are in some
other way judged to be relevant to the set of query terms� The process of identifying the
documents based on the terms is called a search or query of the index� Figure ��� illustrates
the de
nitions�

���



w = 31

w w

w

w

w=3 w=7

w = 15

Figure ���� Using increasingly wide bands�

Applications of indexing�

Indexing has been used for many years in a wide variety of applications� It has gained
particular recent interest in the area of web searching �e�g� AltaVista� Hotbot� Lycos� Excite�
����� Some applications include

� Web searches

� Library article and catalog searches

� Law� patent searches

� Information 
ltering� e�g� get interesting New York Time articles�

The goals of these applications�

� Speed � want minimal information retrieval latency

� Space � storing the document and indexing information with minimal space

� Accuracy � returns the �right� set of documents

� Updates � ability to modify index on the �y �only required by some applications�

���



"Document List"

"Document Collections"

Index Query

Figure ���� Overview of Indexing and Searching

The main approaches�

� Full text scanning �e�g� grep� egrep�

� Inverted 
le indexing �most web search engines�

� Signature 
les

� Vector space model

Types of queries�

� boolean �and� or� not�

� proximity �adjacent� within�

� key word set

� in relation to other documents �relevance feedback�

Allowing for�

� pre
x matches �AltaVista does this�

� wildcards

� edit distance bounds �egrep�

���



Techniques used across methods

� case folding� London � london

� stemming� compress � compression � compressed

�several o�theshelf English language stemmers are available�

� ignore stop words� to� the� it� be� or� ���
Problems arise when search on To be or not to be or the month of May

� Thesaurus� fast � rapid

�handbuilt clustering�

Granularity of Index

The Granularity of the index refers to the resolution to which term locations are recorded
within each document� This might be at the document level� at the sentence level or exact
locations� For proximity searches� the index must know exact �or near exact� locations�

� Inverted File Indexing

Inverted 
le indices are probably the most common method used for indexing documents�
Figure ��� shows the structure of an inverted 
le index� It consists 
rst of a lexicon with one
entry for every term that appears in any document� We will discuss later how the lexicon can
be organized� For each item in the lexicon the inverted 
le index has an inverted �le entry

�or posting list� that stores a list of pointers �also called postings� to all occurrences of the
term in the main text� Thus to 
nd the documents with a given term we need only look for
the term in the lexicon and then grab its posting list� Boolean queries involving more than
one term can be answered by taking the intersection �conjunction� or union �disjunction� of
the corresponding posting lists�

We will consider the following important issues in implementing inverted 
le indices�

� How to minimize the space taken by the posting lists�

� How to access the lexicon e	ciently and allow for pre
x and wildcard queries�

� How to take the union and intersection of posting lists e	ciently�

��� Inverted File Compression

The total size of the posting lists can be as large as the document data itself� In fact� if the
granularity of the posting lists is such that each pointer points to the exact location of the
term in the document� then we can in e�ect recreate the original documents from the lexicon
and posting lists �i�e�� it contains the same information�� By compressing the posting lists
we can both reduce the total storage required by the index� and at the same time potentially
reduce access time since fewer disk accesses will be required and�or the compressed lists can

���



Posting listsLexicon

Aard

Zulu

Document File

Figure ���� Structure of Inverted Index


t in faster memory� This has to be balanced with the fact that any compression of the
lists is going to require onthe�y uncompression� which might increase access times� In this
section we discuss compression techniques which are quite cheap to uncompress onthe�y�

The key to compression is the observation that each posting list is an ascending sequence
of integers �assume each document is indexed by an integer�� The list can therefore be
represented by a initial position followed by a list of gaps or deltas between adjacent locations�
For example�

original posting list� elephant� ��� �� ��� ��� ��� ��� ��� ���

posting list with deltas� elephant� ��� �� ��� �� �� ��� �� ��

The advantage of using the deltas is that they can usually be compressed much better
than indices themselves since their entropy is lower� To implement the compression on
the deltas we need some model describing the probabilities of the deltas� Based on these
probabilities we can use a standard Hu�man or Arithmetic coding to code the deltas in each
posting list� Models for the probabilities can be divided into global or local models �whether
the same probabilities are given to all lists or not� and into 
xed or dynamic �whether the
probabilities are 
xed independent of the data or whether they change based on the data��

An example of a 
xed model is the � code� Think of a code in terms of the implied
probability distribution P �c� � ��l�c�� This is the inverse of the de
nition of entropy� For

���



Decimal � Code

� �
� ���
� ���
� �����
� �����
� �����
� �����
� �������

Table ��� � coding for � through �

example� binary code gives a uniform distribution since all codes are the same length� while
the unary codes �� � �� � � ��� � � ���� � � ����� � � �� gives an exponential decay distribution
�p��� � ���� p��� � ���� p��� � ���� p��� � ����� � � ��� The � code is in between these two
extreme probability distributions� It represents the integer i as a unary code for ��b�log��i��c
followed by the binary code for i��blog��i�c� The unary part speci
es the location of the most
signi
cant nonzero bit of i� and then the binary part codes the remaining less signi
cant
bits� Figure ��� illustrates viewing the � codes as a pre
x tree� and Table �� shows the
codes for ��� The length of the � codes is

li � � � � log�i�

The implied probabilities are therefore

P �i� � ��l�i� � ���� log�i� �
�

�i�

This gives a reasonable model of the deltas in posting lists and for the TREC database
�discussed in the next class� gives a factor of � compression compared with binary codes �see
Table ���� By adjusting the code based on the length of the posting list �i�e� using a local
method�� the compression can be improved slightly� An example is the Bernoulli distribution
�see Table ����

In dynamic methods the probabilities are based on statistics from the actual deltas rather
than on a 
xed model such as the � code� As with the static models� these methods can
either be global or local� For a global method we simply measure the probability of every
delta and code based on these probabilities� For local methods we could separately measure
the probabilities for each posting list� but this would take too much space to store the
probabilities �we would have to store separate probabilities for every list�� A solution is to
batch the posting lists into groups based on their length� In particular create one batch for
each integer value of blog�length�c� In this way we only have log�n� sets of probabilities�
where n is the length of the longest posting list� Results comparing the methods are shown
in Table �� �fromManaging Gigabytes� by Witten� Mo�at� and Bell� Van Nostrand Reinhold�
������

���



8--15

10

0 1

0 1 0 1

0 1 0 1

0
1 0 1 0 1

1

2 3

4 5 6 7

Figure ���� � code

Method Bits�pointer

unary ����
binary ��
� ����
Bernoulli ����
dynamic global ����
batched dynamic local ����

Table ��� Compression of posting 
les for the TREC database using various techniques in
terms of average number of bits per pointer�

��� Representing and Accessing Lexicons

There are many ways to store the lexicon� Here we list some of them

� Sorted � just store the terms one after the other in a sorted array

� Tries � store terms as a trie data structure

� Btrees � well suited for disk storage

� Perfect hashing � assuming lexicon is 
xed� a perfect hash can be calculated

� Frontcoding � stores terms sorted but does not repeat front part of terms �see Ta
ble ���� Requires much less space than a simple sorted array�

���



Term Complete front coding Partial �in� front coding

�� jezebel �� �� ebel �� �� jezebel
�� jezer �� l� r �� l� r
�� jezerit �� �� it �� �� it
�� jeziah �� �� iah �� �� iah
�� jeziel �� �� el �� �� jeziel
�� jezliah �� �� liah �� �� liah
�� jezoar �� �� oar �� �� oar
�� jezrahiah �� �� rahiah �� �� rahiah
�� jezreel �� �� eel �� �� jezreel
���jezreelites �� �� ites �� �� ites
�� jibsam �� �� ibsam �� �� ibsam
�� jidlaph �� �� dlaph �� �� dlaph

Table ��� Front coding �the term before jezebel was jezaniah�� The pair of numbers represent
where a change starts and the number of new letters� In the �in� coding every �th term is
coded completely making it easier to search for terms�

Number Term

� abhor
� bear
� laaber
� labor
� laborator
� labour
� lavacaber
� slab

Table ��� Basic terms

When choosing among the methods one needs to consider both the space taken by the
data structure and the access time� Another consideration is whether the structure allows for
easy pre
x queries �e�g�� all terms that start with wux�� Of the above methods all except for
perfect hashing allow for easy pre
x searching since terms with the same pre
x will appear
adjacently in the structure�

Wildcard queries �e�g�� w�x� can be handled in two ways� One way is to use ngrams�
by which fragments of the terms are indexed �adding a level of indirection� as shown in
Table �� for the terms listed in Table ��� Another way is to use a rotated lexicon as shown
in Table ���

���



Digram Term numbers

�a �
�b �
�l ���������
�s �
aa �
ab ������������
bo �����
la �����������
or �����
ou �
ra �
ry �
r� ������ �������
sl �

Table ��� NGram

���



Rotated Form Address

�abhor �����
�bear �����
�laaber �����
�labor �����
�laborator �����
�labour �����
�lavacaber �����
�slab �����
aaber�l �����
abhor� �����
aber�la �����
abor�l �����
aborator�l �����
abour�l �����
aber�lavac �����
ab�sl �����
r�abho �����
r�bea �����
r�laabe �����
r�labo �����
r�laborato �����
r�labour �����
r�lavacabe �����
slab� �����

Table ��� Rotated lexicon

���


