
Algorithms in the Real World Notes by Felix Wu
Lecture ��� �Pattern Matching �� c����� Felix Wu and Guy Blelloch

� Longest Common Subsequence �LCS�

� Global sequence alignment

� Recursive algorithm

� Memoizing

� Dynamic programming

� Space e�ciency

� Gap models

� Local alignment

� Multiple alignment

� Biological applications

� Longest Common Subsequence

De�nition� A subsequence is any subset of the elements of a sequence that maintains the
same relative order	 If A is a subsequence of B
 this is denoted by A � B	

For example
 if A � a�a�a�a�a�
 the sequence A� � a�a�a� is a subsequence of A since the
elements appear in order
 while the sequence A�� � a�a�a� is not a subsequence of A since
the elements a� and a� are reversed	

The Longest Common Subsequence �LCS� of two sequences A and B is a sequence C
such that C � A
 C � B
 and jCj is maximized	

Example�

A � abacdac� B � cadcddc� C � acdc

�abacdac

� �� �

cad�cddc

In this example
 C is a LCS of A and B since it is a subsequence of both and there are
no subsequences of length 
	

Applications�

� The UNIX diff command works by �nding the LCS of two �les
 where each line is
treated as a character	 It then prints out lines which are not in the LCS
 indicating
insertions
 deletions
 and changes	

���



� For screens A and B
 we can de�ne the edit distance of A and B
 D�A�B� � jAj �
jBj � �jLCS�A�B�j	 The edit distance gives the number of characters in either screen
which are not in the LCS
 and hence measures the number of commands needed to
change the screen from A to B	 Maximizing the LCS minimizes the edit distance	

� Global Sequence Alignment

The global sequence alignment problem is a generalization of LCS� instead of only noticing
whether characters are the same or di�erent
 we have an arbitrary cost function which de�nes
the relationship between characters	 �In what follows
 we will be maximizing �costs�� hence

the cost function is really a measure of similarity	�

Let c�a� b� be a cost function
 giving a value for any pair a and b of alphabet symbols

including the blank character � �	 We can formally de�ne an alignment of A and B as a
pair of sequences A� and B � which are just A and B with added blanks
 and for which
jA�j � jB�j � l	 The value of an alignment is given by

V �A�� B�� �
lX

i��

c�A��i�� B��i���

Our goal then is to �nd an optimal alignment
 i	e	 one whose value is a maximum	
Note that if we de�ne costs so that c�x� y� � � if x � y
 and � otherwise
 we get LCS as

a special case	

Example�

A � abacdac
 B � cadcddc

A� � �abacdac A�� � aba�cdac

� �� � � �� �

B� � cad�cddc B�� � �cadcddc

Both of these alignments have the same value when we use the LCS cost function
 but for
the following cost function �which treats b�s and c�s as being similar�
 �A��� B��� has a higher
value	

a b c d
a � � � � �
b � � � � �
c � � � � �
d � � � � �

� � � � ��

Notice the negative cost of two blanks	 This is necessary to prevent unnecessary padding
of sequences with extra blanks	

���



��� Cost Functions for Protein Matching

With proteins
 we have an alphabet of �� amino acids
 and hence a cost matrix with ���
entries	 �We assume the matrix is symmetric
 since we have no reason to order the proteins
we are comparing	� There are a number of possible cost functions�

� Identity� We could use the LCS cost function and view amino acids as just being the
same or di�erent	

� Genetic code� We can assign costs which are inversely related to the minimum
number of DNA changes required to convert a DNA triple for one amino acid into a
DNA triple for the other	

� Chemical similarity� We can take into account the relative sizes
 shapes
 and charges
of di�erent amino acids	

� Experimental� We could use standard matrices �e	g	 Dayhoft
 Blosum� which are
based on observed properties of amino acids and�or their observed relative e�ect on
tertiary structure	

In practice the cost function of choice is application speci�c and a topic of hot debate	

� Sequence Alignment Algorithms

��� Recursive Algorithm

A recursive solution to the sequence alignment problem takes the last character of each
sequence and tries all three possible alignments� either the characters are aligned together

the �rst character is aligned with a blank
 or the second character is aligned with a blank	
Taking the maximum over all three choices gives a solution	 ML�style code for this would
look like the following�

OptAlgn����� � C������

OptAlgn���A�a� � C���a� � OptAlgn���A��

OptAlgn�B�b��� � C�b��� � OptAlgn�B����

OptAlgn�B�b�A�a� � max�C�b�a� � OptAlgn�B�A��

C�b��� � OptAlgn�B�A�a��

C���a� � OptAlgn�B�b�A���

For the special case of LCS
 all costs involving a blank are �
 and we know that it is
always to our advantage to align characters if they match	 Hence
 we get the following code�

LCS���A�a� � 	�

LCS�B�b��� � 	�

LCS�B�x�A�x� � 
 � LCS�B�A��

LCS�B�b�A�a� � max�LCS�B�A�a�� LCS�B�b�A���

���



A naive implementation of this recursive solution has an exponential running time
 since
each call spawns three recursive calls over which we take the maximum	 This is easily
recti�ed by memoizing
 however	

��� Memoizing

If jAj � n and jBj � m
 note that there are only nm distinct calls we could make to OptAlgn	
By simply recording the results of these calls as we make them
 we get an O�nm� algorithm	
The code for LCS follows� �We assume the matrix M is initialized to INVALID	�

int LCS�int i� int j� �

if �M�i�j
 �� INVALID� return M�i�j
�

if �i �� 	 �� j �� 	� r � 	�

else if �A�i
 �� B�j
� r � 
 � LCS�i�
� j�
��

else r � max�LCS�i�
� j�� LCS�i� j�
���

return M�i�j
 � r�

�

��� Dynamic Programming

Instead of �lling in the matrix of values as they are computed
 we can �ll in the values row
by row	 This is the dynamic programming solution
 for which we have the following code�

for i � 
 to n

for j � 
 to m

if �A�i
 �� B�j
� M�i�j
 � 
 � M�i�
�j�

�

else M�i�j
 � max�M�i�
�j
� M�i�j�

��

For example
 with A � tcat and B � atcacac
 we get the following matrix�

a t c a c a c
� � � � � � � �

t � � � � � � � �
c � � � � � � � �
a � � � � � � � �
t � � � � � � � �

To actually �nd the optimal alignments
 we can think of each entry as having edges to
the neighboring entries from which it could have been calculated	 That is
 each entry can
have edges pointing to its upper
 left
 and upper left neighbors
 depending on whether it
could have been calculated by adding one to its diagonal neighbor and whether its value is
the same as either its upper or left neighbors	 A portion of the induced graph for the matrix
above looks like�

���



t c a c
t � � � � � � �
� � �

c � � � � � �

An optimal alignment is then a path from the lower right corner of the table to the upper
left	 In the matrix fragment above
 the two paths correspond to aligning the tc as tc or
as t c	 Finding all possible paths gives us all optimal alignments	 As with memoizing
 this
algorithm runs in O�nm� time	

��� Space E�ciency

Our time bound is essentially the best possible for the general case�
 but we would like to use
less space	 In particular
 notice that each row of the matrix depends only on the previous
row	 Hence
 by �lling in the matrix row�by�row and reusing the space for each row
 we could
compute the value of the optimal alignment using just O�m� space	 Without something
clever
 however
 this does not give us an actual alignment since we throw away the path as
we go �remember that we have to traverse backwards through the matrix to generate the
alignment path�	

�As an aside
 note that if we were to run this algorithm in parallel
 we would want to �ll
in the matrix diagonal by diagonal so that each entry would be independent of the others
currently being worked on	�

In order to actually generate an alignment using only O�m� space
 we use the following
divide�and�conquer algorithm�

�	 Calculate the entries of the matrix row�by�row
 discarding intermediate results
 until
we reach the middle row	

�	 Once we get to the middle row as we calculate each additional row
 we keep track
of where in the middle row each new entry came from	 �This is easily derived from
the corresponding information about the previous row	� If we have more than one
possibility
 we choose arbitrarily	 �Hence
 this algorithm will only output one solution	�

�	 When we reach the last row
 we will know which entry in the middle row the bottom
right corner came from �i�e� we will know the middle node along the solution path�	
Suppose that middle row entry is entry k	 Now we recursively solve the problem of
�nding the path from the bottom right to �n��� k� and from �n��� k� to the upper left	

It may seem that this algorithm is doing redundant work since it recursively resolves the
same solution over and over again	 Although this is indeed true note
 however
 that in the
recursion the algorithm only needs to recur on the upper left and bottom right quadrants	
Hence
 it is doing half as much work at each level of the recursion
 leading to a constant
factor increase in time
 not a log factor as one might suppose	 More formally
 the recurrence
we get is�

T �n�m� � T �n��� k� � T �n���m� k� �O�nm� � O�nm��

�We will describe a more e�cient method for small edit�distances in the next class�

���



Since we only keep track of an extra set of pointers one per column
 this algorithm uses
only O�m� space	 �A slight optimization is to orient our matrix so that m is the smaller of
the two dimensions	� The algorithm was invented in the context of �nding the longest com�
mon subsequence by Hirschberg ��A linear�space algorithm for computing maximal common
subsequences�
 Communications of the ACM
 ����������
 ���
� and generalized to align�
ment by Myers and Miller ��Optimal alignments in linear space�
 Computer Applications in
the Biosciences
 �������
 �����	

� Gap Models

For many applications
 consecutive indels �insertions or deletions
 also called gaps� really
need to be treated as a unit	 In other words
 a gap of � characters isn�t really twice as bad
as a gap of � character	 There are various ways of dealing with this problem
 depending on
what sort of gap model we want to allow	

In the most general case
 we can de�ne arbitrary costs xk for gaps of length k	 For this
we have the Waterman�Smith�Beyer algorithm�

S�� � �
Si� � xi

S�j � xj

Sij � max

���
��

Si���j�� � C�ai� bj�
maxk�Si�j�k � xk�
maxk�Si�k�j � xk�

This is similar to our previous algorithms
 except that for each entry
 instead of only
looking at gaps of length �
 which corresponds to looking at the left and upper neighbors in
the matrix
 we look at all possible gap lengths	 To calculate Sij this requires us to look at
the entire row i and column j generated so far	 Hence
 the running time of the algorithm is
O�nm��n�m�	 Furthermore
 since we need all previous rows
 we cannot make this algorithm
space e�cient	

In practice
 our gap models are likely to be relatively simple
 and for these simpler models

we can again achieve the time�space bounds we were able to get before	 For example
 with
an a�ne gap model
 we have xk � ���k	 �This is popular in computational biology
 where
something like xk � ��� � k��� is typical	� An algorithm due to Gotoh for the a�ne gap
model is as follows�

Eij � max

�
Ei���j � �
Si���j � �� �

E�j � ��

Fij � max

�
Fi�j�� � �
Si�j�� � � � �

Fi� � ��

Sij � max

���
��

Si���j�� � C�ai� bj�
Eij

Fij

S�j � � � �j
Si� � � � �i

The Eij matrix calculates optimal alignments in which the second sequence ends in
blanks
 the Fij matrix calculates optimal alignments in which the �rst sequence ends in

���



blanks
 and the Sij matrix calculates overall optimal alignments	 The basic idea is that
since each additional blank �after the �rst one� has the same cost
 we can essentially use the
same algorithm as before
 just using the E and F values to be sure we add in � when we
introduce the �rst blank in a gap	 This algorithm runs in O�nm� time and can be made
space e�cient as before	

The following is a summary of some di�erent gap models and the running times of their
associated algorithms	

Gap function form Running time

General O�nm� � n�m�
Linear �xk � � � �k� O�nm�
Logarithmic �xk � � � � log k� O�nm�
Concave downwards O�nm log n�
Piecewise linear
 l segments O�lnm�

� Local Alignment

Sometimes instead of aligning two entire sequences
 we want to align a smaller sequence at
multiple locations within a larger one	 For example
 to �nd areas of DNA which might have
similar functionality to some segment
 we can �nd the best matches to our segment within
the DNA	

Global alignment algorithms are easily converted into local ones by simply adding an
extra argument � to the max function computing the optimal alignment	 So
 for example

for the general gap model

Sij � max

�����
����

Si���j�� � C�ai� bj�
maxk�Si�j�k � xk�
maxk�Si�k�j � xk�
�

This has the e�ect of not penalizing an alignment for the large gaps at the ends of the
sequence	 For example
 with

C�a� b� �

�
� if a � b
���� if a �� b

and xk � ��� � k���
 we get the following alignment matrix	

a t c a c a c
� � � � � � � �

t � � � � � � � �
c � � � � ��� � � �
a � � � ��� � 
�� � ���
t � � � ��� 
�� ��� ��� 
��

���



In this case
 the best match aligns tca with tca �the one � in the matrix�	 In general

we might want to �nd multiple matches with high scores	 In this case we might pick out the
highest k entries from the matrix
 although we probably don�t want to include entries that
are just extensions of previous matches we have found	 In the above example we might not
want to pick the value ��� that follows �
 but instead pick the �	

� Multiple Alignment

Another problem is to align multiple sequences at once so as to maximize the number of pairs
of aligned symbols	 This is used to reconstruct a sequence from its overlapping fragments� the
overlaps will not be perfect because of imprecision in the sequencing of the fragments	 Alter�
natively
 we can also use multiple alignment with sequences from di�erent family members

in order to �nd genes shared by the family members	

Unfortunately
 multiple alignment is NP�hard	 Hence
 there are two types of algorithms�
those that take exponential time and those that are approximate	 In exponential time
 we
can extend our earlier dynamic programming algorithms to work in a p�dimensional matrix

where p is the number of sequences we are trying to align	 This takes O�np� time and space
and is impractical for p more than about �	

Alternatively
 we can extend the pairwise methods hierarchically to get an approximate
solution	 For this
 we do all pairwise comparisons
 cluster the results
 and then build an
alignment bottom�up from the cluster tree	

� Biological Applications

One of the most intensive uses of pattern matching is in database search engines used by
biologists to compare new sequences with databases of old ones	 These databases can have
as many as ���
���s of sequences with querying by web or email	 Such shared search engines
are useful because algorithms and data are updated more rapidly and more centrally
 and
considerable computing power can be brought to bear on the problem	 Both local and global
alignment algorithms are used	

On a smaller scale
 pattern matching is also used for genome sequencing	 This can be done
in one of two ways	 The �rst method involves sequencing the ��� bp �base pair� ends of the
fragments of a sequence
 which are then assembled using multiple alignment	 Alternatively

one piece can be fully sequenced
 and the rest of the sequence can be constructed outward
using single alignment	

���


