JOURNAL OF ALGORITHMS 21, 26—50 (1996)
ARTICLE NO. 0035

Determining the Evolutionary Tree Using Experiments

Sampath K. Kannan*

Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, Pennsylvania 19104

Eugene L. Lawler'

Department of Computer Science, University of California, Berkeley, Berkeley,
California 94720

and

Tandy J. Warnow*

Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, Pennsylvania 19104

Received November 4, 1991

DEDICATED IN FOND MEMORY TO EUGENE LAWLER BY HIS
COAUTHORS

Evolutionary trees, also known as phylogenetic trees, are rooted vertex-labeled
trees which describe the evolution of a species set S from a common ancestor. The
determination of evolutionary trees is a fundamental problem in computational
evolutionary biology, and has been studied in great depth. In this paper, we present
a new model of computation which assumes that it is possible to determine the true
evolutionary tree for each three species, perhaps through the use of Ahlquist—Sib-
ley experimental techniques. We present tight upper and lower bounds for con-
structing evolutionary trees using experiments. © 1996 Academic Press, Inc.

* Supported by NSF Grant CCR 91-08969.

TSupported in part by NSF Grant IRI 89-02813.

iSupported in part by NSF Grants IRl 89-02813 and CCR-9457800, and by the U.S.
Department of Energy under Contract DE-AC04-76DP00789.

26

0196-6774 /96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

DETERMINING EVOLUTIONARY TREES 27
1. MODEL OF COMPUTATION

An evolutionary tree for a species set S is a rooted tree in which the
leaves represent the species in §, and the internal nodes represent com-
mon ancestors. Determining evolutionary trees (also known in the biologi-
cal literature as phylogenetic trees or phylogenies) is a fundamental problem
in computational evolutionary biology, and one which has been studied in
depth by many authors (for an overview of the subject, see [7] or [4]). One
of the standard ways the input to the problem is given is as a distance
matrix [6, 14]. In this case, a matrix M is given such that M,; is the
observed distance between species s; and s;, computed in some manner
(such as by aligning and comparing DNA sequences for the species). The
objective is to construct (if possible) an edge weighted tree T with leaves
labeled by sy, s,,...,s,, S0 that the distance d”(i, j) between s; and s; is
exactly M;;. In such a case, the matrix M is said to be additive. Sometimes
the observed distance M;; is proportional to the time that has elapsed
when
the species s; and s; have diverged from a common ancestor; in this case,
the tree T can be rooted (at the common ancestor of all the species) so
that the distance from the root to each leaf is identical. Such a tree or
matrix is then called wultrametric. Note that every ultrametric matrix is by
definition additive. Constructing trees from additive matrices can be done
efficiently (see [2, 8, 9, 17, 18], for example); however, when the matrix is
not additive, then the objective is to find a tree minimizing some objective
criterion. Unfortunately, almost all optimization criteria result in NP-hard
problems, whether one wishes to construct additive or ultrametric trees [3].
One variation that can be solved in polynomial time for constructing
optimal ultrametric trees was found by Farach et al. [5].

Motivated by the importance of the problem, we want to determine
whether there is a larger class of distance matrices for which meaningful
evolutionary trees (which might not be constrained to be ultrametric, as in
the algorithm of [5]) could be found efficiently. We therefore define the
following class of distance matrices, which we call noisy-ultrametric. Let
lca,(a, b) denote the least common ancestor in T of nodes a and b. We
will say that a matrix M is noisy-ultrametric if there is a rooted tree T such
that for all a,b,c, M,, < miniM,., M, } if and only lca,(a, b) is below
lcay (b, c) = lcap(b, c) = Icar(a, ¢). Thus, the rooted topology of the sub-
tree on a, b, ¢ is as in Fig. 1. Note that a noisy-ultrametric matrix M may
not be additive, so that while the topology of the tree T may be deter-
mined uniquely by the matrix M, it may be impossible to weight the tree T
(or any tree) so that d’(i,j) = M;; for all i,j. Thus, every ultrametric
matrix is noisy-ultrametric, but a noisy-ultrametric matrix may not even be

28 KANNAN, LAWLER, AND WARNOW

a b c
Fic. 1. Type 1 Responses.

additive. However, if the matrix is also additive, then the (unweighted) tree
T determined by the noisy-ultrametricity rule can be edge-weighted so that
d’(i, j) = M;; as well.

In this paper, we will present algorithms to construct evolutionary trees
when it is possible to perform experiments (perhaps by examining a
noisy-ultrametric matrix) which can determine for any three species a, b,
and ¢ how they are related in the evolutionary tree. There are two possible
types of outcomes to the experiment:

1. The experiment determines that the phylogeny for the species set
{a, b, c} is given by the tree in Fig. 1. Note that this response implies that
species a and b are more closely related in time than are the other two
pairs. We represent this outcome using the notation ((a, b), ¢).

2. The experiment determines that the phylogeny for the species set
{a, b, c} is given by the tree in Fig. 2. This response implies that the least
common ancestor of each pair is the same. We represent this outcome
using the notation (a, b, ¢).

When the phylogeny for S is a rooted binary tree, then the experiment
will always return answers of the first type.

O

a b c
Fic. 2. Type 2 Responses.

DETERMINING EVOLUTIONARY TREES 29

As we have said, if the distance matrix is noisy-ultrametric, then these
experiments can be implemented naturally. Another way in which these
experiments can be implemented is through the use of Ahlquist and Sibley
experimental techniques [13]. In their method, double strands of DNA
from two species x and y are separated, then placed together and cooled,
so that their strands bind together. These are then heated, and the
temperature at which the strands separate is observed. The theory is that
the more closely related the two species are, the higher the temperature
must be to separate them. This technique allows one to determine any
specific entry of the distance matrix and in particular decide which pair of
species in a set of three species is most closely related.

It is important to note that our model does not require a distance matrix
in order to determine the phylogenetic tree for the species. Other algo-
rithms have been developed which achieve efficient running times when
the input to the problem is an additive distance matrix; however, these
algorithms explicitly exploit the numeric values of the distances between
species. Thus, while an experiment in our model could be implemented
through the use of a distance matrix, it is theoretically possible to deter-
mine the phylogeny on any three species without actually determining a
distance matrix which would apply to all the species at once, and in fact
without determining any absolute distances at all.

In Section 2, we present some preliminary material and definitions, as
well as presenting some lower bounds for constructing phylogenetic trees
from experiments. We then consider the problem of constructing binary
phylogenetic trees, so that the oracle is restricted to answering queries
with responses of type 1. We give three different algorithms to solve the
problem. In Section 3, we present the first algorithm, which has a running
time of O(n?) and performs at most 7 log, n experiments. In Section 4, we
present a second algorithm which runs in O(n log? n) and performs at
most nlog,,, n experiments. Finally, we present in Section 5 a third
algorithm which achieves an optimal running time of O(nlog n) at the
cost of increasing the number of experiments to 4nlog, n. All three
algorithms are interesting because in the practical application being con-
sidered, the experiments are likely to be far more expensive than the
computational costs. The choice between these algorithms depends on the
relative costs of experimentation and computation.

In Section 6, we present algorithms for constructing trees when we do
not presume the tree is binary. For the case of bounded degree trees, we
present an O(n?) algorithm which performs O(kn log n) experiments
where k is the bound on the degree; this algorithm is based upon the
O(n?) algorithm of Section 3. For the general case (where the tree has
unbounded degree), we present an O(n?) algorithm modeled after binary
insertion sort which performs O(n?) experiments. We also show that this is

30 KANNAN, LAWLER, AND WARNOW

optimal. In Section 7, we present an algorithm for a related graph-theo-
retic problem. Finally, we discuss related open problems in Section 8.

2. PRELIMINARIES

In this section, we formally define the phylogenetic tree inference
problem solved in this paper and state a few properties of an ultrametric in
the context of this problem. The problem of determining a phylogenetic
tree using experiments can be used to solve a purely graph-theoretic
problem and this reduction is also described in this section.

2.1. Ultrametric Inequality

A distance function d satisfies the ultrametric inequality if for any three
points i, j, k,
d;; < max(dy, dy;).

Thus, an ultrametric tree is an edge-weighted tree such that the distance
function on interleaf distances is ultrametric. Distances satisfying the
ultrametric inequality arise naturally in a number of other contexts as well:

() In a weighted spanning tree with the distance function d;
defined as the maximum weight of an edge along the path from i to j.

(i) In an edge-weighted graph, with d,; defined to be the maximum
weight of an (i, j) separating cut.

(iii) In a heap-ordered tree, with the weight of a node at least as
great as the weights of its children, with d,; defined to be the weight of the
least common ancestor of any two leaves i, j.

(iv) In a p-adic number system where the distance between i and j
is the distance given by the p-adic metric.

We will define a strict ultrametric to be an ultrametric d such that, for
any three indices i, j, k, the distances d;;, d;;, d;, are not all equal. Note
that a strict ultrametric leads to a binary evolutionary tree in our model.

The problem of determining a phylogenetic tree has two variations
depending on whether we are given ultrametric distances or just the ability
to perform experiments on triples of species to determine the closest pair
(such as when the input is a noisy ultrametric matrix). In the first case, we
require the output to be an edge-weighted tree, T, such that the given
distance between any two leaves i and j is the length of the path from i to
jin T. In the second case, even if actual distances are available, they may
not be additive. Thus finding an edge-weighted tree such that the path
distance in the tree is the same as the given distance for all interleaf pairs
may be impossible. Thus, in the second case, our goal is only to infer the

DETERMINING EVOLUTIONARY TREES 31

topology of the evolutionary tree. We state these two cases as the two
problems below, although all the algorithms we design work for both cases.
By designing algorithms in this way, we can handle small errors in the
values of interspecies distances even when these are given.

Problem la. Given the ability to find the distance between any two
species (assuming that the set of distances define an ultrametric), construct
an edge-weighted tree T such that for all pairs of species i and j, the
length of the path from i to j in T is equal to the specified distance
between i and j.

Algorithms to solve Problem 1a are given in Section 7. These algorithms
yield a constructive proof of the following fact.

Fact 1. Given any set of interspecies distances that are ultrametric, we
can always find a weighted phylogenetic tree realizing the specified dis-
tances.

Problem 1b. Given the ability to perform an experiment on any three
species to decide which two have the most recent common ancestor,
construct a tree T whose topology is consistent with all experiments
(assuming that there is such a tree).

The solution to Problem la can be used to solve the following graph-
theoretic problem.

Problem 2. Given a weighted complete graph G with weights (Wi,- on
edge (i, j)) satisfying the swrict ultrametric inequality, find a minimum
spanning tree in the graph in time O(n log n).

To solve this problem, we treat the vertices of the weighted complete
graph as species, an the weight of the edge between two vertices as the
distance between the two species. We then find a phylogenetic tree T
using the O(n log n) algorithm of Section 5. By Fact 1, this algorithm will
be able to find such a tree whenever the interspecies distances are
ultrametric. T will have edge weights such that the distance in the tree
between two leaves equals the weight of the edge between the two species
in the complete graph. Our algorithm is then as follows: Let x and y be
the left and right children of the root of 7. Let T, and 7, be the subtrees
of T rooted at x and y respectively and let S, and S, be the leaf-sets of
T, and T, respectively. Recursively, find minimum spanning trees 7,* and
Ty* in the subgraphs of G induced by S, and S, respectively. Connect T*
and 7;* by adding an edge between any two vertices v and w, with v € S,
and w € S,. Call the tree we create T*.

LEMMA 1. T* is a minimum spanning tree.

Proof. First note that every edge from a vertex in S, to a vertex in §,
has the same weight, and this weight is the largest of the edge weights.

32 KANNAN, LAWLER, AND WARNOW

Now suppose that the true minimum spanning tree includes two such
edges (x,, y;) and (x,, y,) where x,,x, €S, and y,,y, € S,. If all four
nodes x,, x,, y,, ¥, are distinct, then we have a 4-cycle x,, y,, y,, x,. Edges
(x4, y,) and (x,, y,) are of greater weight than (x,, x,) and (y,, y,). Hence,
any minimum spanning tree cannot contain both (x,, y;) and (x,, y,),
since any minimum spanning tree excludes a maximum weight edge from
each cycle in the graph. Thus, there is exactly one edge between 7* and
77 in any minimum spanning tree. (If x, = x, or y, = y,, a similar proof
goes through.) Using the inductive hypothesis that 7* and 77 are mini-
mum spanning trees for their vertex sets, we find that 7* is a minimum
spanning tree. |

2.2. Lower Bounds for Constructing Phylogenetic Trees

We will prove two lower bounds in this section; the first is the informa-
tion-theoretic lower bound, showing that even when the trees are con-
strained to be binary, we will require Q(n log n) experiments to find the
tree. The second lower bound applies when the trees can be general (i.e.,
of unrestricted degree). In this case, we require Q(n?) in a worst case.

2.2.1. The Information-Theoretic Lower Bound

We begin by showing that the number ¢, of distinct evolutionary trees
with n leaves is 2%("1°9™Since each experiment performed yields one of
three possible results, we get a lower bound on the number of experiments,
which is log,(#,). Thus the total number of experiments that need to be
done is Q(n log n).

To count the number of distinct evolutionary trees with n leaves, we set
up a recurrence relation, where ¢, is the number of evolutionary trees on
n leaves. Let 7 be an evolutionary tree with n leaves. We can create an
evolutionary tree with n + 1 leaves by adding another leaf in one of the
following two ways:

1. Choosing one of the edges of 7 to contain the parent vertex of
the new leaf, s, ;. This will require inserting a vertex into that edge, and
letting s,,, be a child of that vertex.

2. Creating a root r' for the new tree, and letting the two children of
r' be s,,, and r, the root of .

If we let ¢, denote the number of evolutionary trees with » leaves, then
since each way of inserting s,., into an n-leaf tree produces a distinct
(n + 1)-leaf tree, we have the recurrence relation: ¢,,, = 2n — 1)¢,, with

DETERMINING EVOLUTIONARY TREES 33

t, = 1. Thus,

(2n — 2)!

t =13(2n—3)=m

n

2.2.2. The Q(n?) Lower Bound
Culberson and Rudnicki [2] proved the following.

LEMMA 2. Every algorithm to construct trees using ultrametric distance
matrices must examine every entry of the distance matrix, in a worst case.

We can now prove the following theorem.

THEOREM 1. Every deterministic algorithm to construct phylogenetic trees
using oracle queries must perform Q(n?) queries in a worst case, if both types
of oracle responses are permitted.

Proof. An experiment on species a, b and ¢ could be implemented
using ultrametric distance matrices by performing five steps: look up three
entries in the distance matrix, and perform two comparisons. Suppose we
had an algorithm which performed at most g(n) oracle queries to con-
struct an evolutionary tree. We could modify it to produce an algorithm
which examined at most 3g(n) matrix entries to construct an unweighted
evolutionary tree from an ultrametric distance matrix. We can then deter-
mine the edge weights in the tree by looking at only »n additional matrix
entries. Thus, we could construct the edge-weighted tree, examining at
most 3g(n) + n matrix entries. Culberson and Rudnicki’s lower bound
then shows that g(n) € Q(n?). |

2.3. Terminology

We introduce some terminology here which will simplify our discussion
of the algorithms.

For binary trees, all of our algorithms work by inserting each successive
species into the tree formed by the previously inserted species. As the
enumeration of binary trees indicates, the (n + 1)th species, s, ; can be
inserted into the tree, 7,, formed by the first n species in one of 2n — 1
distinct ways. The parent p,., of s,., can be inserted into one of the
2n — 2 edges of T, or it can be made the root of 7, , with children s, ,
and the root of 7,. Note that these algorithms really decide where p, . ,
should be inserted. Whether s, ,, should be made a left or right child of
P, IS a choice that is entirely unconstrained. We will exploit this choice
later.

34 KANNAN, LAWLER, AND WARNOW

If we delete any internal node v from a binary tree T, we create three
subtrees: the left subtree, the right subtree, and the upper subtree. We will
refer to the first two subtrees as lower subtrees. If v is a node of the
evolutionary tree on species s;, s,,...,s,, we say that s; lies in a lower
subtree of v (or below v) if the leaf representing s, is in the subtree rooted
at v; otherwise, we say that s; lies in the upper subtree of v (or above v).
When we attempt to insert species s,, if v is the least common ancestor of
species s; and s;, then the experiment on s;, s;, and s, tells us which of the
three subtrees of 7' — {v} will contain the leaf for species s,. Since there is
a possibility that the parent p, of the new species s, has to be inserted
above the root of the subtree being considered, we always think of a
subtree as including a “‘dangling edge” up from its root.

3. AN O(n?) ALGORITHM

The basis of the algorithm is the following lemma.

LEMMA 3. In a tree T with n leaves there is an internal node, v, such that
each of the lower subtrees of T — {v} has at most n/2 leaves and the upper
subtree has less than n /2 leaves.

Proof. Walk down the tree from the root always walking to the child
with the greatest number of leaves in its subtree. The first node, v, all of
whose children have < n /2 leaves, is the required node. By construction v
has more than n /2 leaves in its subtree, and hence there are fewer than
n/2 leaves outside the subtree rooted at v. Also by construction none of
v’s children have more than n /2 leaves in their subtree. |

We will refer to this node v as a weight center of the tree. The algorithm
is modeled after binary insert sort. It starts off with the first two species in
a binary tree and successively inserts the ith species s; into the tree 7,_,
for the first i — 1 species.

We will now describe precisely how the ith stage is handled. Each
internal node v of T,_, is associated with a pair of species, v,, v,, with v,
occupying a leaf in the left subtree of v, and v, occupying a leaf in the
right subtree of v. The least common ancestor of v, and v, will therefore
be v. Each time we add a species s; to the tree we also add an internal
node, p, which is the parent of s,. We can then set the pair associated with
p in the obvious way. For example, if s; is the left child of p, then we will
choose s; as one member of the pair, and draw the other member for the
pair from one of the entries of the pair associated with the right child of p.
In this manner, each internal node will always have a pair of species
associated with it, whose least common ancestor is the node itself.

DETERMINING EVOLUTIONARY TREES 35

To place the species s; into the tree 7,_,, the algorithm locates the
weight center, v, of the tree and notes the pair of leaves (a, b) associated
with v. It then performs an experiment involving a, b, and s; in order to
determine in which of the three subtrees of 7._, — {v} s; should be placed.
Thus, we can reduce to a smaller tree, containing at most n/2 leaves.
(Note that if the tree to be worked on is the upper subtree, then the entire
subtree rooted at v can be replaced by the single node, v, making the
number of leaves at most n/2.) In each of these cases, it recursively works
within the smaller tree and places s, in the right place.

It is clear that inserting the ith species takes at most [log i] experiments
since each experiment performed eliminates half the species. Thus the
total number of experiments performed is asymptotically equal to »n log, 7.
Once we have narrowed down the number of nodes down to 1, there is
only one (2 X 1 — 1 = 1) possible edge (the dangling edge up from this
node) in which the parent of s, can be inserted, and thus we have
determined s,’s position. Finding the weight center in a binary tree with »
leaves can be done in O(n) steps. The algorithm that achieves this time
bound follows the constructive procedure given in Lemma 3.

In the binary insertion algorithm detailed above, consider the insertion
of species s;, ;. Finding the weight center of tree 7, takes ci steps, where ¢
is some constant, since 7; has i leaves. Subsequently, we find a weight
center of a tree with at most i /2 leaves and this takes ci /2 steps. Thus the
number of steps for finding the sequence the weight centers is bounded by
ci - X5_o(3)¥ = 2ci. Thus the sequence of weight centers for inserting the
(i + Dth species stage can be found in O(i) steps. Therefore this algo-
rithm uses O(n?) time overall, but only n log n experiments asymptotically.

4. AN O(nlog? n) ALGORITHM

Suppose J;_, is the phylogenetic tree on the first i — 1 species, and we
wish to construct .7; by adding s, in the appropriate position to .7,_;. It is
convenient to view the task of inserting s, as consisting of two phases.
Suppose we have a left-to-right ordering on sy, s,, ..., s;_; consistent with
some planar embedding of .7;_,. In the first phase, we insert s; into the
left-to-right ordering, and in the second phase we find the topology of .7.
The first phase of this algorithm is also modeled after binary insert sort.
However, it uses a splitting method that can be computed more easily than
the weight center.

The following lemma describes what we can infer from the result of an
experiment.

36 KANNAN, LAWLER, AND WARNOW

LEMMA 4. Let a, b, and c be species in a set S. If the result of the
experiment is ((a, b), ¢), then ¢ cannot lie in the interval between a and b in
the evolutionary tree for S.

Proof. Without loss of generality, let us assume that in the evolutionary
tree T for S, that a lies to the left of b in the left-to-right ordering on the
leaves. The left-to-right ordering on the leaves is defined by the recursive
rule: order the leaves of the left subtree, then order the leaves of the right
subtree. We will set 1V to be the node in T which is the least common
ancestor of a and b. It is clear from the recursive definition of the
ordering on the leaves, that the set of leaves in subtree rooted at v
occupies an interval I in the left-to-right order on the leaves, with interval
(a, b) c I. Therefore, since the species c¢ lies in the subtree above v, the
correct position for ¢ cannot be in (a,b). |

The above lemma immediately suggests a binary insert sort style algo-
rithm. However, in order to keep the cost of algorithm down to O(n log? n),
we will use red—black trees [15].

4.1. The Data Structure

The algorithm inserts the species s; into the linear ordering of the
species during the ith stage. We will use a red—black tree 7,_, with i — 1
leaves representing the first i — 1 species. The left-to-right ordering on the
leaves in the red—black tree T,_, is the same as the left-to-right ordering
on the true phylogenetic tree 5;_, for the first i — 1 species. 7;_, will
have depth at most 2log(i — 1). Each of its internal nodes v will be
labeled with a pair of numbers (I(v), r(v)), where I(v) is the number of
leaves in the left subtree, and r(v) is the number of leaves in the right
subtree. We will refer to I(v) as the “left label” of v, and r(v) as the “right
label.”

4.2. Inserting s; into T,_,

The algorithm we will describe iteratively inserts species into the
red-black tree, so that the left-to-right ordering on the leaves in the
red—black tree T._, is the same as the left-to-right ordering on the leaves
in a tree phylogenetic tree 9;_, for the species. To do this, we will first
make a copy 7;_, of T,_,, and repeatedly apply Lemma 4 to find the
appropriate position for s; in the left-to-right ordering on s, s,,...,5,_;.
In subsequent discussions of how we apply the previous lemma to these
red—black trees, we will speak of deleting leaves in an interval within the
tree, 7/_,. This is effected without actually performing any deletions;

1

rather, we reset the labels (within 7/_,) at the internal nodes so that these

DETERMINING EVOLUTIONARY TREES 37

leaves are not counted as falling below any internal nodes. In this way, we
can locate correctly the next experiment to be performed. At the end of
the iteration, having found the correct location for the new leaf s;, we add
s; to the red—black tree T;_,, rebalance it and update the labels, and thus
obtain 7.

The initial cases are as follows: In the first two stages two species s, and
s, are arbitrarily chosen and “inserted” in the order [s,, s,]. As a base
case, consider the third stage where s, is inserted by performing the
experiment involving s;, s,, and s;. If the result of this experiment if
((sq, 83), 5,) or (s1,(s,,s3)), then the linear order [s;, 53, s,] is chosen;
otherwise the linear order [s,, s,, s;] is chosen. In each case, we had two
choices for the position in which to insert s, and we arbitrarily chose one.

During the ith stage, the algorithm inserts s; into the ordered list of the
first i — 1 species. This stage begins (as noted before) by making a copy
T!_, of T,_,. We then located a pair of species, (a, b), which occur at the
(li /3Drd and (12i /3)Drd positions respectively in the ordered list of species
and perform the experiment (a, b, s;). If the result of the experiment is
((a,b), s;), then the entire interval of leaves between @ and b is replaced by
a single leaf a (by resetting the labels at the internal nodes). We will refer
to a as the “representative” of the interval it replaces. Note that the
interval between a and b may not contain all the leaves in the subtree
rooted at v = Ica(a, b). However, this is not a problem since s; will not be
inserted between the representative a and any surviving leaf in the subtree
rooted at v. If the result of the experiment is ((a, s,), b) the interval to the
right of b is replaced by a representative and if the result of the experi-
ment is (a, (s;, b)), the interval to the left of a is replaced by a representa-
tive. The result of each experiment also involves updating the various
labels, so that /(v) and r(v) indicate properly the number of uneliminated
leaves in the left and right subtrees, respectively, below v. These updates
are described in Section 4.3.

At the end of the binary insert sort procedure, when we determine that
s; belongs between y and z in the left-to-right ordering on the leaves, we
can add s; to the red—black tree 7;_, as follows. Without loss of generality
let y <z in the left-to-right ordering. Then let e be the edge in 7,_,
incident to the leaf for z. Subdivide the edge e, and let s,'s parent be the
new vertex. Then let s; be the left child of its parent, and let z be the right
child. It can be seen that this will place s; appropriately in the left-to-right
ordering on the leaves. It is clear that we will need to adjust the labels for
the internal nodes on the path from s; toward the root, and that 7; will
then need to be rebalanced, and again the labels will be adjusted appropri-
ately. The details of how to achieve these updates efficiently are discussed
in the next section.

38 KANNAN, LAWLER, AND WARNOW

4.3. Updating the Balanced Binary Tree

We will modify the labels only in 7;_, while maintaining the topology.
After we have determined the correct position for s; within the left-to-right
ordering, we will discard 7;_,.

Thus, there are two types of modifications that the algorithm will
perform.

1. During the ith stage, in which we are determining the position of
the leaf for s; in the tree 7,_,, we perform no more than [log; (i — 1)]
experiments. Each time we perform an experiment we need to modify the
labels of the nodes in T;_,.

2. Each time we add a new species to 7,_, and get 7;, we must
adjust it, so that it remains balanced, and reset the labels.

The first type of modification, which occurs after we perform an experi-
ment on species a, b, and s;, causes us to delete an interval or to replace
an interval by a single node. Both of these actions can be described as
deleting the closed interval [u, v], for some species u and v. That is, if we
find that s; does not fall in the interval [a, b], we will replace the interval
[a, b] by the single leaf a. This amounts to “deleting” the interval [, b],
where ' is the leaf immediately following a.

Consider the problem of updating the labels of T;_, after the deletion
of the closed interval [u, v], for some pair of species u, v. Let x represent
the least common ancestor of u and v in 7;_;. The modification of the
labels of the vertices on the paths from u and v to the root depends on
whether the vertex lies above x or below x. We work bottom-up from u to
x. For any node w on the path from u to x, if u is in the left subtree of w,
then the right label of w is set to 0. The left label of w is set to the sum of
the labels of the left child of w. If u is in the right subtree, then the left
label of w is unchanged and the right label of w is set to the sum of the
labels of w’s right child. We will adjust the labels of the vertices on the
path between v and x similarly. We set the left label of x to be the sum of
the labels of its left child, and the right label the sum of the labels of its
right child. We then move up the path from x to the root r, adjusting the
labels as we go, so that the right label of each vertex on the path is equal
to the sum of the labels of its right children, while the left label is equal to
the sum of the labels of its left children.

Placing s; correctly in the left-to-right ordering of the leaves of 7;_,
involves up to [Iog3/2(i — 1)] experiments. With each experiment, we
modify the labels of T;_;, and use the modified labels of this temporary
copy of the original tree to determine the next experiment to perform.
After we determine the correct position for s, within the left-to-right

DETERMINING EVOLUTIONARY TREES 39

ordering of the species, we place s; within the original tree T,_,, and then
rebalance 7;_, using techniques which we now describe.

Modifications of the second type caused by the addition of species s; to
T._, involve resetting labels and rebalancing the tree. When we insert s;
into 7,_, by creating a new leaf, we trace the path from that leaf to the
root, updating the labels as we meet them. Thus, if the path goes from a
left child to its parent, we increase the left label of the parent by one, and
if the path goes from a right child to its parent, we increase the right label
of the parent by one. We repeat this process until we reach the root.

The tree we now have includes the first i species, and has correct labels,
but may need to be rebalanced. The standard technique [15] for rebalanc-
ing red-black trees after an insertion involves a sequence of O(log i)
promotions followed by at most two single rotations. The promotions do
not affect the topology of the tree, and hence do not require modification
of the labels at the nodes. Updating the labels after performing a single
rotation is straightforward, and affects labels at only three nodes. Thus, we
can rebalance the tree and adjust the labels after the insertion of s; in
O(log i) time. Furthermore, the tree 7. we produce containing the first i
species will have depth at most 2logi. Thus, the overall cost to the
algorithm from this type of modification will be O(nlog n), since we
update the balanced binary tree at most n times, and each update costs us
O(log n).

4.4. Constructing the Tree During Phase |

Phase | may be modified to produce an actual phylogenetic tree 9 for
the species set S with an additional n operations. In this way, we can avoid
phase two entirely. We will now describe how we can construct .7 as we go
along.

Suppose, for example, we have determined the phylogenetic tree .7;_,
for the first i — 1 species. We also assume we have a planar embedding
P,_, of this tree J/_,, and a left-to-right ordering on these i — 1 species
given by P,_,. Using the experiments in Phase I, we then determine the
correct position for the next species, s;, within the left-to-right ordering.

We have already shown how to determine the correct left-to-right
ordering on sy, s,,..., s; consistent with a planar embedding of the phylo-
genetic tree 7;, through the use of these experiments. So assume this
ordering is given and that we have constructed 7;_,, the phylogenetic tree
for the first i — 1 species. We will now show how to use this information to
determine how to place s; with .7;_,

Since we know the correct position for s; in the left-to-right ordering, we
have determined one of the following two cases:

40 KANNAN, LAWLER, AND WARNOW

e The leaf for s; follows all the nodes s, s,,..., s;,_, in the left-to-right
ordering.

e The leaf for s; falls between a and b in the left-to-right ordering.

In the first case, we must forbid from consideration any topology which
might permit, under a rotation, a <s; < b for any pair of leaves a,b.
Therefore, the correct topology is the one in which s; is made a child of
the root of the new tree. So in this case, to create .7; from .7;_,, we should
add a new root ', and make r and s, the children of ', where r is the root
of 7_,.

In the second case, a and b might be “representatives” for subtrees of
J._,. SO we need to be careful in arguing about the position of s;. Let
v =lca; (a,b). Let L, and R, be the left and right subtrees of v,
respectively. Since a and b are adjacent to each other in the list of
surviving species, it must be the case that a represents all of L, and b
represents all of R,. For this to occur, it must be true that Vx,y € L, the
experiment on x,y, and s; has outcome ((x, y),s;) and similarly for all
X,y € R,. Also, since s; lies between a and b the result of the experiment
on a, b, and s, must be one of ((a, 5,), b) or (b, 5,), a). In the first case, the
least common ancestor of a and s; lies below v but above the root of L,
thus uniquely identifying the edge in which the parent p, of s; should be
inserted. Similarly, in the second case, the edge in which p, must be
inserted is the edge between v and its right child. Making s, a right child
of p; in the first case and a left child of p, in the second case ensures that
s; lies between a and b.

Thus, after determining that s, falls between a and b we can construct
g, from J;_, with at most one additional experiment on a,b, and s,.
Although the topology of the evolutionary tree can be determined as we go
along constructing the left-to-right ordering of the leaves, we present an
interesting algorithm which starts with a valid linear ordering and con-
structs the topology using at most a linear number of experiments. This
algorithm finds an interesting application in the results of [10].

4.5. Phase II: Determining the Tree from the Ordering

We now have a left to right ordering of all n species. Assume that the
species are renumbered so that this ordering (s, s,, ..., s,). To reconstruct
the tree, we need the following lemma.

LEMMA 5. The species s, , and s, . , are siblings if and only if the outcome
of the experiments on sets {s;, S;.1, Sis,} and {S;, 1, S;.5, S; 3} are
(5,1, 8:00),8) and ((s;.q,S;4.,), 8. 3), respectively. The experiment on

DETERMINING EVOLUTIONARY TREES 41

{s1, 5,5, 53} produces the outcome ((sy, s,), s3) iff s, and s, form a sibling pair
of leaves. The experiment on {s,_,,s,_y, S, produces the outcome
((s,_ 1,8, 8,_,) iff s,_, and s, form a sibling pair of leaves.

Proof. We prove only the first statement of the lemma, the other two
being easier to prove. If s,,, and s, , form a sibling pair of leaves, it is
clear that the experiments on {s;, s, 1, ;. ,} and {s; 1, S, », 5;, 5} Will be as
indicated. Suppose now that (s;,,,s;,,) is the outcome of both experi-
ments. Since we have a full binary tree, if s, , is a right child of its parent,
s; must be in the left subtree of the parent of s;, ;. Thus the least common
ancestor of s; and s,,, is the parent of s,,,. Thus the outcome of the
experiment has to be the pair s;, s, ; contradicting our assumption. So s, ,
is a left child. s;,, must be in the right subtree of the parent of s,,,. A
similar argument proves that s;,, must be a right child of its parent. This
is only possible if s,,, has the same parent as s;; meaning that they are
sibling leaves. |1

We know that a full binary tree must have at least one pair of sibling
leaves. This observation together with the previous lemma gives us the
following algorithm for tree reconstruction.

We perform the experiments on {s;, ;. 8;,,}, i =1,2,..., until we
discover an index i such that the outcome of the experiment on
{s;_1, 8, 8.1 is ((s;, 8,4, 5,_,) and the outcome of the experiment on
{8, 8;4 10 8,101 15 ((s;, 8;51), S;..,)- In this case, s; and s;,, form a sibling
pair. Now in any experiment involving s; if s, is substituted for s; the
outcome will be “unchanged.” Precisely, if x and y are any other pair of
species, then the results of the experiments on {x, y, s;} and {x, y, s, ,} will
be isomorphic (i.e., with i replaced by i + 1). Consequently, we can drop s,
from the list of species we are considering. Now s;_,, s;,,, and s;,,
become consecutive species and the algorithm must perform the experi-
ment between these three species. If we think of s;,, as representing the
parent of s; and s,,, we can inductively construct a tree on n — 1 species.
Giving this parent node, the two children, s; and s;, ; now gives us the tree
on all n species.

We perform a linear number of experiments. There are n — 2 ““original”
triples on which experiments need to be done. In addition, each time a
species drops out one more experiment needs to be done. This happens
only n — 2 times causing, in all, 2n — 4 experiments to be performed. It
can also be seen that with suitable data structures the overall running time
of the second stage is linear. Note that this stage of the algorithm does not
affect the asymptotic number of experiments performed.

42 KANNAN, LAWLER, AND WARNOW

4.6. Analysis of Running Time

We first analyze the number of experiments used by this algorithm. As
we have already noted, we use [log,,,(i — 1)] experiments to place the
species s; in the correct position within the left-to-right ordering of the
first i — 1 species. Thus, overall this algorithm will perform only n log, ,, n
experiments in this first place, in which it constructs the left-to-right
ordering of the n species. Constructing the tree from the linear ordering
on the leaves uses only O(n) experiments, so that the number of experi-
ments used by this algorithm is n log, n + O(n).

We now examine the cost of the algorithm other than that contributed
by experiments. Finding least common ancestors of two nodes can be done
in O(log i) time for a red—black tree with i leaves, as we now show. To
find the least common ancestor of nodes a, b, in O(log i) time write down
the paths from a and b to the root of the red—black tree. Then compare
these two paths, starting at the root and working backward. The last node
for which the paths agree is the least common ancestor. Thus, the ith stage
(inserting s, into the linear order) costs us O(log? i) for least common
ancestor queries. Still, overall this only contributes O(n log® n) towards
the cost of the algorithm.

In order to achieve the overall complexity of O(nlog?n) for this
algorithm, we need to efficiently pick our experiments to perform. Here as
well the red—black trees will be useful in picking our experiments effi-
ciently. We now describe this in detail.

At the beginning of the ith stage, we need to select species a and b
defined above. We first compute the indices at which these nodes should
be (at a cost of O(log n)), and then we use the labels at the internal nodes
of the red—black tree 7,_, to determine that pair, a, b. We begin at the
root, and trace paths down from the root to the two nodes a and b. It is
easy to see that this can be done simply by examining the left and right
labels at the internal nodes, and following the correct edge, and thus
contributes also an O(log i) to the cost. This is repeated O(log i) times, for
an overall contribution of O(log? i) for finding the correct position for the
species s,. Thus, these costs contribute overall O(n log? n) towards the
cost of the algorithm.

The remaining costs come from the updates to the red-black trees
(rebalancing the red-black tree after an insertion and updating labels).
With each experiment, we must update the labels on the balanced binary
tree 7;_, to reflect this information. As noted before, the rebalancing
involves modifications to the labels as well, but only costs us O(log i).
Thus, the overall contribution from these updates is O(n log n).

The overall cost of the algorithm is O(n log? n), but we only require
linear space.

DETERMINING EVOLUTIONARY TREES 43

5. AN O(n log n) ALGORITHM

In this section, we give an O(xn log n) deterministic algorithm for deter-
mining the evolutionary tree. The algorithm we present has the same
overall structure as the algorithm of Section 4 in that it first determines
the left-to-right ordering on the species, and then uses the order to
construct the tree. As was the case for the algorithm in Section 4, the
algorithm can construct the tree as it goes along, rather than using the
second phase to construct the tree from the ordering. However, we will
only describe the manner by which this algorithm determines the left-to-
right ordering on the leaves. The interested reader is directed to Section 4
for details on how to handle both ways of completing the algorithm to
construct the tree. Each of these ways only adds a linear number of
operations, and so does no change the complexity of the algorithm.

5.1. The Data Structure

The red—black tree 7;_, we use to insert the ith species has node set
{s1,5,,...,5;_1}. Furthermore, the inorder traversal of all the nodes of
T!_, will produce a left-to-right ordering on the first i — 1 species set
which equals the left-to-right ordering of the leaves of a planar embedding
of the phylogeny of these species. (An inorder traversal of the tree is an
ordering of the nodes of the tree which obeys the following recursive rule:
the nodes of the left subtree occur before the root, which occurs before the
nodes of the right subtree) Thus, the red-black trees 7/ ; we use this
algorithm differs from the red-black trees 7,_; we used in the previous
algorithm, where only the leaves of 7;_, were drawn from the species set,
S.

5.2. Determining the Left-to-Right Ordering of the Species

The algorithm works by successively inserting species into the red—black
tree for the previously inserted species, in such a way that the inorder
traversal of the nodes of the tree we construct at each stage is compatible
with the left-to-right ordering of the leaves of a phylogenetic tree for those
species.

We will now describe how we insert the species s; in O(log i) time.

Let L;_, be the red—black tree for the first i — 1 species, into which we
wish to insert species s;. Suppose a and b are the leftmost and rightmost
species in T/_,, respectively. By performing the experiment (a, b, s,), we
can determine if s; should be put in the interval [a,] or outside it.
Assume that s; belongs in [a,b] since otherwise s; can be inserted
immediately (into the dangling edge from the root of the phylogenetic
tree).

44 KANNAN, LAWLER, AND WARNOW

We maintain the following invariants during the O(log i) steps of the ith
insertion. At the beginning of step j of the insertion of s;,, we have
narrowed down the possible positions for s; to two subtrees: a left subtree,
L and a right subtree, R, each having its root at level j of the red—black
tree, 7;_,. As the names imply, the nodes of L occur before the nodes of
R in an inorder traversal of the tree. We let A denote the root of L, and
C denote the root of R. Finally, we assume that we know some element B
that lies between L and R in the inorder traversal of the red—black tree.

Note that initially these invariants are true. Before step 1, the root of
the search tree, which is an element between the elements of the left
subtree and the elements of the right subtree, serves as the element B. Its
left child is A, the root of L, and its right child is C, the root of R.

At step j we perform the experiments, (A, B, s;) and (B, C, s,). We need
to show that after performing the experiments we can descend to the next
level of the tree while maintaining the invariants. There are three possible
outcomes to the experiment (A, B, s;). We use Lemma 4 to determine
which subtree(s) to delete.

((A4, B),s;): In this case, s; cannot lie between 4 and B and we can
eliminate the right subtree of L.

((A4,s;), B): In this case, s, cannot lie to the right of B and we can
eliminate the entire right tree, R.

((B, s;), A): In this case, s; cannot lie to the left of 4 and we can
eliminate the left subtree of L.

Symmetrically, the outcome of the experiment (B, C,s;) eliminates ei-
ther one of the two subtrees rooted at the children of R or the entire left
subtree L. Note that the outcomes that eliminate all of R and all of L
cannot occur simultaneously. Thus the two experiments either eliminate
one child each of L and R, or they eliminate one of L and R entirely.

If the experiments eliminate a child of each of L and R, the old element
B still serves the function of B. The new element A4 and C are just the
children of the old 4 and C that have not been eliminated.

If the experiments eliminate an entire subtree, say L, the old C now
serves as the intermediate element B. The left and right children of the
old C in the search tree serve as 4 and C respectively. In all cases, we
have maintained the invariant and descended a level in the tree. Thus in
O(log i) stages we can place s,.

5.3. Running Time

Updating the search tree to include s; can now be done in O(log i) steps
using standard techniques. The overall running time for the ith insertion is
O(log i). To count the number of experiments note that a red—black tree

DETERMINING EVOLUTIONARY TREES 45

with i leaves (i — 1 internal nodes) has depth at most 2 log i. Descending
one level of depth requires performing two experiments. Thus, in the worst
case, a maximum of 4log i experiments are performed. The total number
of experiments over all insertions is upper bounded by 4x log, n.

6. CONSTRUCTING TREES IN GENERAL

A natural extension is to general trees rather than just binary trees.
When we do not require that the evolutionary tree have binary branching,
then the result of an experiment on three species a, b, ¢ can indicate that
all three pairs are equally closely related. When this occurs, the evolution-
ary history for a, b, and c is described by the tree in Fig. 2. This outcome
would be indicated by returning (a, b, ¢) as the result of the experiment on
the set {a, b, c}.

6.1. Constructing Unbounded Degree Trees

We will describe an algorithm which can construct unbounded degree
trees, and which uses O(n?) experiments. By Theorem 1, this algorithm is
optimal.

6.1.1. The Algorithm for Unbounded Degree Trees

Let x be any species in S. We can define an equivalence relation E, on
the species set as follows: v ~ w if the least common ancestor of v and x
is the same as the least common ancestor of w and x. The equivalence
class for species s is indicated by [s]. If T is the true evolutionary tree for
S with root r, then the path P from r to x is given by the sequence of
nodes r = vy, Uy, Uy, ..., U, Uy, 1 = X. Note that each v; has two subtrees,
one containing species x as a leaf, and another, which we call 7;. This is
described in Fig. 3.

It is then obvious that the equivalence relation E, which we defined
partitions S into the equivalence classes T, i = 0,..., k. These equiva-
lence classes are ordered (by the distance from the root of the least
common ancestor of x and the class), and T; < T; for i <j. Furthermore,
we can compute this equivalence relation E,. and the ordering on the
equivalence classes using the following rules:

1. If ((v,w), x)or (v,w, x), then v ~ w, and
2. If (v, x), u) then [v] > [u] (where [v] is the equivalence class of

V).

46 KANNAN, LAWLER, AND WARNOW

A=Vt

__/
L

Fic. 3. Computing the Equivalence Relation E ..

We can compute the equivalence relation and determine the order on the
equivalence classes by performing a binary insertion sort, repeatedly
finding the correct equivalence class of the next species s, among the
equivalence classes computed thus far. After computing the equivalence
relation the algorithm then recurses on each equivalence class.

If the evolutionary tree has a path of length k& from root to x, then this
algorithm will need O(n log k) experiments to compute the equivalence
relation and determine the ordering on the equivalence classes. If f(n) is
the worst case complexity of this algorithm, then f(n) can be seen to
satisfy

f(n) < m]?x {n log k

+{n1+n2+max {f(ny) + f(ny) + - +f(”k)}}}-

dng=n—1

Since f(n) is clearly linear or superlinear, for any choice of k, the
worst-case choices of n,, n,,...,n, are where n,, n,,...,n,_, are all set
to 1 and n, is set to n — k. In this case, the above recurrence can be

DETERMINING EVOLUTIONARY TREES 47

simplified as

f(n) < ml?x{n log k + f(n — k)}

which is upper bounded by (n? log k) /k which is O(n?). This is optimal,
since by Lemma 2, any such algorithm will need to perform Q(n?)
experiments.

6.2. Bounded Degree Trees

In this section, we will describe a generalization of the O(n?) algorithm
of Section 3 for the construction of bounded degree trees. We will use
O(kn log n) experiments in the case where the number of children for
each node is bounded by k.

Let us suppose we have determined the tree 7, for the first i species,
and we now wish to place s,,, in 7;. We make the assumption that each
node of T, has at most k children. By Lemma 3, 7; has a weight center v.
This node has the property that each of the subtrees of 7; — {v} has at
most n /2 leaves. We will show that we can in at most [k /2] experiments
determine which of these k + 1 subtrees should contain the leaf for s, ;.
Thus, the O(n?) algorithm of Section 3 can be modified to produce an
O(n?) algorithm which uses O(kn log n) experiments.

We will label the distinct subtrees rooted at the weight center by
1., T;,..., T, with r < k, and let a; be a species chosen from the set of
leaves for the subtree 77, for i = 1,2,...,r. We wish to determine which
of the k& + 1 subtrees should contain the leaf for s, . If the answer is one
of the subtrees 7}, we say that s, ; lies below v, and otherwise we say s, ;
lies above v.

Consider the result of an experiment on the set of species {a;, a;, s;, }.
The experiment can have one of three results, which are:

((aj, a;)s;. 1) In this case, we know that s, , belongs above v.

((a;, s;,1)a,): In this case, we know that s, ; must belong to subtree
’
T.
(aj, a;,s;.1): This tells us that s,,, does not belong in subtrees T

or T;.

Thus, the experiment on (a;, a,, s, ,) either determines which of the r + 1
subtrees the leaf for s;. , belongs to or eliminates two of the lower
subtrees. Therefore, we need only perform at most [k /2] experiments to
determine the correct subtree for s,,,, for the case where the maximum
degree of the tree is constrained to be at most k.

48 KANNAN, LAWLER, AND WARNOW
7. SOLUTION TO PROBLEM 1la

So far, we have described several algorithms to find the topology of the
phylogenetic tree when the distances or other information available satisfy
noisy-ultrametricity. We now show how we can use the topology deduced
to solve Problem 1a defined in Section 2. Here the input to the problem is
a set of distances that are truly ultrametric.

Let T be the phylogenetic tree topology deduced by our algorithms. Let
r be any node of T, ay, a,, ..., a, be the children of r, and 7, be the tree
rooted at a; for i =1,. k Assume inductively that we have assigned
weights to all edges Withln Tai for all i in such a way that the following two
conditions hold:

1. Forall i and for leaves x and y of T, the distance from a; to x is
the same as the distance from q; to y.

2. Forall i and for leaves x and y of T, the distance from x to y is
the given distance d(x, y).

We show that we can assign weights to the edges (r, a;) for all i so as to
maintain these two invariants. Let the height of an internal node be its
distance from any leaf in the subtree rooted at this node. For an ultramet-
ric tree this is well-defined. Also by the inductive hypothesis, we know the
heights of a,, a,,...,a,.

Let xe T, and y €T, be two leaves. Choose r to be of height
d(x,y)/2 and for each i Iet the weight of edge (r, a;) be the difference of
the heights of r and a;. We claim that these weights contmue to satisfy the
two inductive statements.

CLaM 1. Letx,y, z be three leaves in T, , T, , and T, , respectively, where
i, j, and k where i # j and j # k. Then if the mput distances are ultrametric it
must be the case that d(x, y) = d(y, z).

Proof. The experiment on x, y, z must have had the outcome (x, y, z)
or ((x, z), y) because of the conditions on i, j, and k. In either case, by
ultrametricity d(x,y) =d(y,z). 1

Note that by transitivity this claim implies that the distance between any
two leaves which lie in different subtrees below r is the same as the
distance between any other two such leaves. This shows that our definition
of the height of r does not depend on the x and y chosen to define it.
Note also that by the fact that we have a noisy ultrametric input, the
height of r is greater than or equal to the height of g, for all i and hence
that all edges are assigned nonnegative weights.

The above discussion immediately implies that the distance from r to
any of the leaves in the subtree rooted at r is equal to the height of r thus

DETERMINING EVOLUTIONARY TREES 49

establishing one of the two inductive invariants. It also shows that for any
x,y in the subtree rooted at r, the distance from x to y in the tree is the
same as the given distance, d(x, y). This proves the inductive hypothesis
and shows that given any ultrametric set of distances, we can find an
edge-weighted phylogenetic tree realizing these distances. Note that the
computational complexity of determining the edge-weights is O(n) since
the weight of each edge from bottom-up can be computed in constant time
by maintaining an array of heights of the various nodes. If we think of
experiments as probes into the distance matrix, then no additional experi-
ments are needed for this stage since the experiments used in determining
the topology also contain the information necessary to determine the
node-heights.

8. CONCLUSIONS AND OPEN PROBLEMS

A natural question that arises in this model is: given a set of &
experiments involving »n species and their outcomes, decide if there is an
evolutionary tree consistent with the experiments without performing
additional experiments. This problem occurs naturally in the theory of
relational databases, as the problem of synthesizing a relational algebra
expression from a simple tableau. In [1], Aho ef al. gave a simple O(kn)
algorithm for this problem. Recently, Henzinger et al. [11] have found a
min{O(kn*'?), O(K + n?log n)} deterministic algorithm and an O(k log® n)
randomized algorithm for this problem. The only lower bound known for
this question is the obvious one of n.

The consistency question can be thought of as being analogous to the
guestion of whether a set of ordering relations defines a partial order.
Carrying the analogy a little further, one could ask for the number of
binary trees consistent with a given set of experiments. Another question
is: How many additional experiments need to be performed in order to
determine a unique binary tree? To the best of our knowledge, all of these
guestions are still open and possibly at least as hard as the corresponding
guestions for partial orders and sorting in the usual comparison tree
model.

REFERENCES

1. A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman, Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions,
SIAM J. Comput. 10, No. 3 (1981), 405-421.

2. J. Culberson and P. Rudnicki, A fast algorithm for constructing trees from distance
matrices, Inform. Process. Lett. 30 (1989), 215-220.

50 KANNAN, LAWLER, AND WARNOW

10.

11.

12.
13.

14.

15.
16.

17.

18.

. W. H. E. Day, Computational complexity of inferring phylogenies from dissimilarity
matrices, Bull. Math. Biol. 49, No. 4 (1987) 461-467.

. A. Dress and A. von Haessler (Eds.), “Trees and Hierarchical Structures, Proceedings,
Bielefeld 1987,” Lecture Notes in Biomathematics, Springer-Verlag, Berlin/New York,
1987.

. M. Farach, S. Kannan, and T. Warnow, A robust model for inferring optimal evolutionary
trees, Algorithmica 13, No. 1 (1995), 155-179.

. J. S. Farris, Estimating phylogenetic trees from distance matrices, Amer. Nat. 106 (1972),
645-668.

. J. Felsenstein, Numerical methods for inferring evolutionary trees, Quart. Rev. Biol. 57,
No. 4 (Dec. 1982), 379-404.

. J. Hein, An optimal algorithm to reconstruct trees from additive distance matrices, Bull.
Math. Biol. 51, No. 5 (1989), 597-603.

. J. Hein, A tree reconstruction method that is economical in the number of pairwise

comparisons used, Mol. Biol. Evol. 6, No. 6 (1989), 669-684.

S. Kannan, T. Warnow, and S. Yooseph, Computing the local consensus of trees, in

“Proceedings of ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA,

1995, pp. 68-77.

M. Henzinger, V. King, and T. Warnow, Constructing a tree from homeomorphic

subtrees, with applications to computational molecular biology, unpublished manuscript.

Deleted in proof.

C. G. Sibley and J. E. Ahlquist, Phylogeny and classification of birds based on the data of

DNA-DNA hybridization, Current Ornithol. 1 (1983), 245-292.

R. R. Sokal and P. H. A. Sneath, “Principles of Numerical Taxonomy,” Freeman, San

Francisco.

R. E. Tarjan, “Data Structures and Network Algorithms,” SIAM, Philadelphia, 1983.

T. Warnow, “Combinatorial Algorithms for Constructing Phylogenetic Trees,” Ph.D.

Thesis, Univ. of California, Berkeley, 1991.

M. S. Waterman, T. F. Smith, M. Singh, and W. A. Beyer, Additive evolutionary trees, J.

Theoret. Biol. 64 (1977), 199-213.

M. S. Waterman, T. F. Smith, and W. A. Beyer, Some biological sequence metrics, Adv.

Math. 20 (1976), 367-387.

