
Algorithms in the Real World Notes by Ben Horowitz
Lecture ��� �Indexing and Searching �� c����� Ben Horowitz and Guy Blelloch

� Evaluating information retrieval e�ectiveness

� Signature �les

� Generating signatures

� Accessing signatures

� Query logic on signature �les

� Choosing signature width

� An example	 TREC

� Vector space models

� Selecting weights

� Similarity measures

� A simple example

� Implementation

� Relevance feedback

� Clustering

� Latent semantic indexing �LSI�

� Singular value decomposition �SVD�

� Using SVD for LSI

� An example of LSI

� Applications of LSI

� Performance of LSI on TREC

� Evaluating information retrieval e�ectiveness

Two measures are commonly used to evaluate the e�ectiveness of information retrieval meth

ods	 precision and recall� The precision of a retrieval method is the fraction of the documents
retrieved that are relevant to the query	

precision �
number retrieved that are relevant

total number retrieved

The recall of a retrieval method is the fraction of relevant documents that were retrieved	

recall �
number relevant that are retrieved

total number relevant

�
�

� Signature �les

Signature �les are an alternative to inverted �le indexing� The main advantage of signature
�les is that they don�t require that a lexicon be kept in memory during query processing� In
fact they do not require a lexicon at all� If the vocabulary of the stored documents is rich�
then the amount of space occupied by a lexicon may be a substantial fraction of the amount
of space �lled by the documents themselves�

Signature �les are a probabilistic method for indexing documents� Each term in a doc

ument is assigned a random signature� which is a bit vector� These assignments are made
by hashing� The descriptor of document is the bitwise logical OR of the signatures of its
terms� As we will see� queries to signature �les sometimes respond that a term is present in
a document when in fact the term is absent� Such false matches necessitate a three
valued
query logic�

There are three main issues to discuss	 ��� generating signatures� ��� searching on signa

tures� and ��� query logic on signature �les�

��� Generating signatures

The width W of each of the signatures� is the number of bits in each term�s signature� Out of
these bits some typically small subset of them are set to � and the rest are set to zero� The
parameter b speci�es how many are set to �� Typically� ����� � W � ������� �Managing

Gigabytes seems to suggest that typically � � b � ���� The probability of false matches may
be kept arbitrarily low by making W large� at the expense of increasing the lengths of the
signature �les�

To generate the signature of a term� we use b hash functions as follows

for i � � to b
signature�hashi�term� � w� � �

In practice we just have one hash function� but use i as an additional parameter�
To generate the signature of a document we just take the logical or of the term signatures�

As an example� consider the list of terms from the nursery rhyme �Pease Porridge Hot� and
corresponding signatures	

�
�

Term Signature
cold ���� ���� ���� ����
days ���� ���� ���� ����
hot ���� ���� ���� ����
in ���� ���� ���� ����
it ���� ���� ���� ����
like ���� ���� ���� ����
nine ���� ���� ���� ����
old ���� ���� ���� ����
pease ���� ���� ���� ����
porridge ���� ���� ���� ����
pot ���� ���� ���� ����
some ���� ���� ���� ����
the ���� ���� ���� ����

Note that a termmay get hashed to the same location by two hash functions� In our example�
the signature for hot has only two bits set as a result of such a collision� If the documents
are the lines of the rhyme� then the document descriptors will be	

Document Text Descriptor
� Pease porridge hot� pease porridge cold� ���� ���� ���� ����
� Pease porridge in the pot� ���� ���� ���� ����
� Nine days old� ���� ���� ���� ����

 Some like it hot� some like it cold� ���� ���� ���� ����
� Some like it in the pot� ���� ���� ���� ����
� Nine days old� ���� ���� ���� ����

��� Searching on Signatures

To check whether a term T occurs in a document� check whether all the bits which are set
in T �s signature are also set in the document�s descriptor� If not� T does not appear in the
document� If so� T probably occurs in the document� because some combination of other
term signatures might have set these bits in T �s descriptor� it cannot be said with certainty
whether or not T appears in the document� For example� since the next
to
last bit in the
signature for it is set� it can only occur in the fourth and �fth documents� and indeed it
occurs in both� The term the can occur in documents two� three� �ve� and six� but in fact�
it occurs only in the second and �fth�

The question remains of how we e�ciently check which documents match the signature
of the term �include all its bits�� Consider the following �naive� procedure	 to �nd the
descriptor strings for which the bits in a given signature are set� pull out all descriptors� and
for each descriptor� check whether the appropriate bits are set for each descriptor� When the
descriptors are long and there are many �les� this approach will involve many disk accesses�
and will therefore be too expensive�

�
�

A substantially more e�cientmethod is to access columns of the signature �le� rather than
rows� This technique is called bit�slicing� The signature �le is stored on disk in transposed
form� That is� the signature �le is stored in column
major order� in the naive approach� the
signature �le was stored in row
major order� To process a query for a single term� only b
columns need to be read from disk� in the naive approach� the entire signature �le needed
to be read� The bitwise and of these b columns yields the documents in which the term
probably occurs� For example� to check for the presence of porridge� take the and of columns
two� six� and eleven� to obtain ��������T � �This query returned two false matches��

��� Query logic on signature �les

We have seen that collisions between term signatures can cause a word to seem present in a
document when in fact the word is absent� on the other hand� words that seem absent are
absent� If� for example� pease is absent from a document D� then the answer to �Is pease is
D�� is No� if pease seems to be present� then the answer is Maybe�

For queries with negated terms �for example� �Is pease absent from document d��� the
situation is reversed� For example� since pease has bits six� eight� and �� set� it cannot
occur in documents three� four� or six� so for these documents the appropriate answer is Yes�
However� the other documents might contain pease� so for these documents the appropriate
answer is Maybe�

More generally� queries in signature �les need to be evaluated in three
valued logic�
Atomic queries �e�g� �Is nine present��� have two responses� No and Maybe� More complex
queries � queries built from atomic queries using not� and� and or � get evaluated using
the following rules	

not

n y

m m

y n

and n m y

n n n n

m n m m

y n m y

or n m y

n n m y

m m m y

y y y y

Consider� for example� the evaluation of ��some or not hot� and pease�	

Doc� s h p not h s or not h �s or not h� and p
� m m m m m m

� m m m m m m

� n n n y y n

 m m n m m n

� m m m m m m

� n n n y y n

��� Choosing signature width

How should W be chosen so that the expected number of false matches is less than or equal
to some number z� It turns out that W should be set to

�

� � �� � p���B
���

�
�

where

p� the probability that an arbitrary bit in a document descriptor is set� is given
by z

N
��b�

B� the total number of bits set in the signature of an average document� is given
by f

N
� b
q
�

N is the number of documents�
f is the number of �document� term� pairs�
b is the number of bits per query� and
q is the number of terms in each query�

The analysis used to derive ��� can be found in Witten� Mo�at� and Bell� Managing Giga�

bytes� chapter �� Section ���� One assumption made in this analysis is that all documents
contain roughly the same number of distinct terms� Clearly� this assumption does not always
hold�

��� An example� TREC

As an example� consider the TREC �Text REtrieval Conference� database� The TREC
database� which is used to benchmark information retrieval experiments� is composed of
roughly ��������� documents � more than �Gbytes of ASCII text � drawn from a variety
of sources	 newspapers� journal abstracts� U�S� patents� and so on� �These �gures were true
of TREC in ���
� It has probably grown in size since then�� In this example� we assume that
TREC contains a mere ������� documents� with ��� Million document
term pairs totaling
more than �Gbytes of text�

Consider making queries on a single term and assume we want at no more than � false
match� We assume b � �� To calculate W by equation ��� we have� f � ��� � ���� N �
��� � ���� z � �� q � �� which gives	

p �
�

�

��� � ���

����
� ����

B �
��� � ���

��� � ���
�
�

�
� �
��

W � ����

Thus� the total space occupied by the signature �le is ��� ������ � ���Kbytes � ���Mbytes
�about ��� of the space required by the documents themselves�� For b � �� a query on a
term will read � slices of ���Kbits� which is ���Kbytes �about ��� of the total database��

� Vector space models

Boolean queries are useful for detecting boolean combinations of the presence and absence
of terms in documents� However� Boolean queries never yield more information than a Yes
or No answer� In contrast� vector space models allow search engines to quantify the degree of
similarity between a query and a set of documents� The uses of vector space models include	

���

Ranked keyword searches� in which the search engine generates a list of documents
which are ranked according to their relevance to a query�

Relevance feedback� where the user speci�es a query� the search engine returns a set of
documents� the user then tells the search engine which documents among the set are
relevant� and the search engine returns a new set of documents� This process continues
until the user is satis�ed�

Semantic indexing� in which search engines are able to return a set of documents whose
�meaning� is similar to the meanings of terms in a user�s query�

In vector space models� documents are treated as vectors in which each term is a separate
dimension� Queries are also modeled as vectors� typically �
� vectors� Vector space models
are often used in conjunction with clustering to accelerate searches� see Section ����� below�

��� Selecting weights

In vector space models� documents are modeled by vectors� with separate entries for each
distinct term in the lexicon� But how are the entries in these vectors obtained� One approach
would be to let the entry wd�t� the weight of term t in document d� be � if t occurs in d and
� otherwise� This approach� however� does not distinguish between a document containing
one occurrence of elephant and a document containing �fty occurrences of elephant� A better
approach would be to let wd�t be fd�t� the number of times t occurs in document d� However�
it seems that �ve occurrences of a word shouldn�t lead to a weight that is �ve times as heavy�
and that the �rst occurrence of a term should count for more than subsequent occurrences�
Thus� the following rule for setting weights is often used	 set wd�t to log��� � fd�t�� Under
this rule� an order of magnitude increase in frequency leads to a constant increase in weight�

These heuristics for setting fd�t all fail to take account of the �information content� of
a term� If supernova appears less frequently than star� then intuitively supernova conveys
more information� Borrowing from information theory� we say that the weight wt of a term
in a set of documents is log��N�ft�� where N is the number of documents and ft is the
number of documents in which the term appears�

One way to represent the weight of a term t in document d is by combining these ideas	

wd�t � log��N�ft� log��� � fd�t�

It should be emphasized that this rule for setting wd�t is one among many proposed heuristics�

��� Similarity measures

To score a document according to its relevance to a query� we need a way to measure the
similarity between a query vector vq and a document vector vd� One similarity measure is
inverse Euclidean distance� ��kvq � vdk� This measure discriminates against longer docu

ments� since vd which are distant from the origin are likely to be farther away from typical
vq� Another is the dot product vq � vd� This second measure unfairly favors longer docu

ments� For example� if vd� � �vd�� then vq �vd� � �vq �vd�� One solution to the problems with

���

both these measures is to normalize the lengths of the vectors in the dot product� thereby
obtaining the following similarity measure	

wq � vd
kvqkkvdk

This similarity measure is called the cosine measure� since if � is the angle between vectors
�x and �y� then cos � � �x � �y��k�xkk�yk��

��� A simple example

Suppose we have the set of documents listed in the following table� These documents give rise
to the frequency matrix �fd�t�� frequencies ft of terms� and informational contents log��N�ft�
in the table	

Doc� no� Document Frequency matrix �fd�t�
a b c d e

� apple balloon balloon elephant apple apple � � � � �
� chocolate balloon balloon chocolate apple chocolate duck � � � � �
� balloon balloon balloon balloon elephant balloon � � � � �
� chocolate balloon elephant � � � � �
� balloon apple chocolate balloon � � � � �
	 elephant elephant elephant chocolate elephant � � � � �
ft � � � � �

log
�

N�ft� ���� ���	 ���� ���� ����

For simplicity� suppose wd�t is calculated according to the rule wd�t � fd�t � log��N�ft�� Then
the weight matrix �wd�t� would be as follows �the norms of each row of the weight matrix are
underneath kvdk�	

a b c d e kvdk
� � ��� � � ��� ����
� � ��� ��
� ���� � ����
� � ��� � � ��� ����
� � ��	 ��� � ��� ���	
� � ��� ��� � � ���

	 � � ��� � ���� ����

Then� for the queries listed below� the cosine measure gives the following similarities	

Doc� no� Query
d c c� d a� b� e a� b� c� d� e

kvqk � ���� kvqk � ���� kvqk � ��	� kvqk � ���� kvqk � ����
� ���� ���� ���� ���� ����
� ��
� ���� ���� ���� ����
� ���� ���� ���� ���� ���	
� ���� ��	
 ���� ���� ����
� ���� ���	 ���� ��
	 ����
	 ���� ���� ���� ���� ����

Note that in the second query� the fourth document beats the second because the fourth is
shorter overall� For each of the other queries� there is a single document with a very high
similarity to the query�

���

��� Implementation of cosine measures using inverted lists

Directly computing the dot product of a query vector and all document vector s is too
expensive� given the fact that both vectors are likely to be sparse� A more economical
alternative is to keep �document� weight� pairs in the posting lists� so that a typical inverted
�le entry would look like

ht� ��dt��� wdt���t�� �dt��� wdt���t�� � � � � �dt�m� wdt�m�t��i�

Here� t is a term� dt�i is a pointer to the ith document containing term t� and wdt�i�t is weight
of t in document dt�i� �Heuristics for calculating wd�t were given in Section ����� For example�
the inverted �le entry for apple might be

happle� ���� ��� ��� ��� ���� ���i�

Fortunately� the weights wdt�i�t can typically be compressed at least as well as the distances
dt�i�� � dt�i in the inverted �le entry�

These posting lists help quicken the search for the documents which are most similar to
a query vector� In the following algorithm Q is a list of query terms� which we assume are
unweighted� A � fad j ad is the score so far for document dg is a set of accumulators� and
wd is the weight of document d� which we assume has been precomputed� This algorithm
returns the k documents which are most relevant to the query�

Search�Q�
For each term t � Q

ht�Pti � Search lexicon for t
Pt � Uncompress�Pt�
For each �d�wd�t� in Pt

If ad � A
ad � ad � wd�t

Else
ad � wd�t

A � A � fadg
For each ad � A

ad � ad�Wd

Return the k documents with the highest ad�

In this algorithm� the inverted �le entries for every term t � Q are processed in full� Each
document d that appears in some such inverted �le entry adds a cosine contribution to the
accumulator ad� At the end� the accumulator values are normalized by the weightsWd� Note
that there is no need to normalize by the weight wq of the query� as wq is constant for any
particular query�

The size of A can grow very large� so some search engines place an a priori bound on
the number of accumulators ad in A� One might think this approach would result in poor
retrieval e�ectiveness� since the most relevant documents may be found by the last terms
in the query� However� experiments with TREC and a standard collection of queries have
shown that ����� accumulators su�ce to extract the top ����� documents�

���

��� Relevance feedback

In the query systems discussed so far� the user poses a query vq�� the search engine answers
it� and the process ends� But suppose the user has the ability to mark a set of documents R�

as relevant� and a set I� as irrelevant� The search engine then modi�es vq� to obtain vq� and
fetches a set of documents relevant to vq�� This is called relevance feedback� and continues
until the user is satis�ed� It requires the initial query to be adapted� emphasizing some
terms� de
emphasizing others� and perhaps introducing entirely new terms� One proposed
strategy for updating the query is the Dec Hi strategy	

vqi�� � vqi �

�
�X
d�Ri

vd

�
A� vn�

To obtain the �i���th query� the vectors for the most relevant documents Ri �chosen by the
user� are added to the ith query vector� and the vector vn of the least relevant document is
subtracted� A more general update rule is

vqi�� � �vq� � �vqi � �
X
d�Ri

vd � �
X
d�Ii

vd�

where �� �� �� and � are weighting constants� with � � ��
One potential problem with these update rules is that the query vectors vqi for i � �

can have far more terms than the initial query vq�� thus� these subsequent queries may be
too expensive to evaluate� One solution is to sort the terms in the relevant documents by
decreasing weight� and select a subset of them to in uence vqi��� Another solution is to use
clustering� which is described in the next section�

Experiments indicate that one round of relevance feedback improves responses from
search engines� and two rounds yield a small additional improvement�

��� Clustering

Clustering may be used to speed up searches for complicated queries� and to �nd documents
which are similar to each other� The idea is to represent a group of documents which are all
close to each other by a single vector� for example the centroid of the group� Then� instead
of calculating the relevance of each document to a query� we calculate the relevance of each
cluster vector to a query� Then� once the most relevant cluster is found� the documents
inside this cluster may be ranked against the query� This approach may be extended into a
hierarchy of clusters� see �gure ����

There are many techniques for clustering� as well as many other applications� Clustering
will be discussed in the November �� lecture�

� Latent semantic indexing �LSI�

All of the methods we have seen so far to search a collection of documents have matchedwords
in users� queries to words in documents� These approaches all have two drawbacks� First�

��

o
o

o
o +

o

o
o

o

+

+’s are centroids
o’s are documents
ellipses are clusters

+

o

o

o
o

o
o

o

oo
o

o

o

+

+

Figure �
�	 A hierarchical clustering approach

since there are usually many ways to express a given concept� there may be no document
that matches the terms in a query even if there is a document that matches the meaning
of the query� Second� since a given word may mean many things� a term in a query may
retrieve irrelevant documents� In contrast� latent semantic indexing allows users to retrieve
information on the basis of the conceptual content or meaning of a document� For example�
the query automobile will pick up documents that do not contain automobile� but that do
contain car or perhaps driver�

��� Singular value decomposition 	SVD

����� De�nition

LSI makes heavy use of the singular value decomposition� Given an m 	 n matrix A with
m � n� the singular value decomposition of A �in symbols� SVD�A��� is A � U!V T � where	

�� UTU � V TV � In� the n	 n identity matrix�

�� ! � diag�	�� � � � � 	n�� the matrix with all ��s except for the 	i�s along the diagonal�

If ! is arranged so that 	� � 	� � � � � � 	n� then the SVD of A is unique �except for
the possibility of equal 	�� Further� if r denotes rank�A�� then 	i
 � for � � i � r� and
	j � � for j � r � �� Recall that the rank of a matrix is the number of independent rows
�or columns��

We will use Uk to denote the �rst k columns of U � Vk the �rst k columns of V � and !k

the �rst k columns and rows of !� For latent semantic indexing� the key property of the
SVD is given by the following theorem	

Theorem� Let A � U!V T be the singular value decomposition of the m 	 n matrix A�
De�ne

Ak � Uk!kV
T
k �

���

De�ne the distance between two m	 n matrices A and B to be

mX
i��

nX
j��

�aij � bij�
��

Then Ak is the matrix of rank k with minimum distance to A�

This basically says that the best approximation of A �for the given metric� using a
mapping of a k dimensional space back to the full dimension of A is based on taking the �rst
k columns of U and V �

In these scribe notes� we will refer to Ak � Uk!kV
T
k as the truncated SVD of A� In

the singular value decomposition U!V T � the columns of U are the orthonormal eigenvectors
of AAT and are called the left singular vectors� The columns of V are the orthonormal
eigenvectors of ATA and are called the right singular vectors� The diagonal values of ! are
the nonnegative square roots of the eigenvalues of AAT � and are called the singular values

of A�
The calculation of the SVD uses similar techniques as for calculating eigenvectors� For

dense matrices� calculating the SVD takes O�n�� time� For sparse matrices� the Lanczos
algorithm is more e�cient� especially when only the �rst k columns of U and V are required�

��� Using SVD for LSI

To use SVD for latent semantic indexing� �rst construct a term
by
document matrix A�
Here� At�d � � if term t appears in document d� Since most words do not appear in most
documents� the term
by
document matrix is usually quite sparse� Next� computing SVD�A��
generate U � !� and V � Finally� retain only the �rst k terms of U � !� and V � From these we
could reconstruct Ak� which is an approximation of A� but we actually plan to use the U �
!� and V directly�

The truncated SVD Ak describes the documents in k
dimensional space rather than the
n dimensional space of A �think of this space as a k dimensional hyperplane through the
space de�ned by the original matrixA�� Intuitively� since k is much smaller than the number
of terms� Ak �ignores� minor di�erences in terminology� Since Ak is the closest matrix of
rank �dimension� k to A� terms which occur in similar documents will be near each other in
the k
dimensional space� In particular� documents which are similar in meaning to a user�s
query will be near the query in k
dimensional space� even though these documents may share
no terms with the query�

Let q be the vector representation of a query� This vector gets transformed into a vector
"q in k
dimensional space� according to the equation

"q � qTUk!
��

k �

The projected query vector "q gets compared to the document vectors� and documents get
ranked by their proximity to the "q� LSI search engines typically use the cosine measure
as a measure of nearness� and return all documents whose cosine with the query document
exceeds some threshold� �For details on the cosine measure� see Section �����

���

��� An example of LSI

Suppose we want to apply LSI to the small database of book titles given in Figure �
� �a��
Note that these titles fall into two basic categories� one having to do with the mathematics
of di�erential equations �e�g� B� and B��� and one having to do with algorithms �e�g� B�
and B��� We hope that the LSI will separate these classes� Figure �
� �b� shows the term

by
document matrix A for the titles and for a subset of the terms �the non stop
words that
appear more than once��

Now for k � � we can generate U�� !� and V� using an SVD� Now suppose that we are
interested in all documents that pertain to application and theory� The coordinates for the
query application theory are computed by the rule "q � qTU�!

��

� � as follows	

"q � ������� � ������� �

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

T �
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

������ ���
���
������ �������
������ �������
�����
 ������
������ ������
����
� �������
������ �����
�
������ �������
������ ������
������ ������
������ ������
������ �������
���
�� �����

������ �������
������ ������
������ ���
��

�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

�

����
 �

� ������

�
��

All documents whose cosine with "q exceeds ��� are illustrated in the shaded region of Fig

ure �
�� Note that B�� whose subject matter is very close to the query� yet whose title
contains neither theory nor application� is very close to the query vector� Also note that the
mapping into � dimensions clearly separates the two classes of articles� as we had hoped�

��� Applications of LSI

As we have seen� LSI is useful for traditional information retrieval applications� such as
indexing and searching� LSI has many other applications� some of which are surprising�

Cross�language retrieval� This application allows queries in two languages to be
performed on collections of documents in these languages� The queries may be posed in
either language� and the user speci�es the language of the documents that the search engine
should return�

For this application� the term
by
document matrix contains documents which are com

posed of text in one language appended to the translation of this text in another language�
For example� in one experiment� the documents were a set of abstracts that had versions

���

Label Titles
B� A Course on Integral Equations
B� Attractors for Semigroups and Evolution Equations
B� Automatic Di�erentiation of Algorithms� Theory� Implementation� and Application
B� Geometrical Aspects of Partial Di�erential Equations
B� Ideals� Varieties� and Algorithms � An Introduction to Computational Algebraic

Geometry and Commutative Algebra
B	 Introduction to Hamiltonian Dynamical Systems and the N�Body Problem
B
 Knapsack Problems� Algorithms and Computer Implementations
B� Methods of Solving Singular Systems of Ordinary Di�erential Equations
B� Nonlinear Systems
B�� Ordinary Di�erential Equations
B�� Oscillation Theory for Neutral Di�erential Equations with Delay
B�� Oscillation Theory of Delay Di�erential Equations
B�� Pseudodi�erential Operators and Nonlinear Partial Di�erential Equations
B�� Sinc Methods for Quadrature and Di�erential Equations
B�� Stability of Stochastic Di�erential Equations with Respect to Semi�Martingales
B�	 The Boundary Integral Approach to Static and Dynamic Contact Problems
B�
 The Double Mellin�Barnes Type Integrals and Their Applications to Convolution

Theory

�a�

Terms Documents
B� B� B� B� B� B	 B
 B� B� B�� B�� B�� B�� B�� B�� B�	 B�

algorithms � � � � � � � � � � � � � � � � �
application � � � � � � � � � � � � � � � � �
delay � � � � � � � � � � � � � � � � �
di�erential � � � � � � � � � � � � � � � � �
equations � � � � � � � � � � � � � � � � �
implementation � � � � � � � � � � � � � � � � �
integral � � � � � � � � � � � � � � � � �
introduction � � � � � � � � � � � � � � � � �
methods � � � � � � � � � � � � � � � � �
nonlinear � � � � � � � � � � � � � � � � �
ordinary � � � � � � � � � � � � � � � � �
oscillation � � � � � � � � � � � � � � � � �
partial � � � � � � � � � � � � � � � � �
problem � � � � � � � � � � � � � � � � �
systems � � � � � � � � � � � � � � � � �
theory � � � � � � � � � � � � � � � � �

�b�

Figure �
�	 An example set of document titles and the corresponding matrix A� Taken from
�Using Linear Algebra for Intelligent Information Retrieval� by Berry� Dumais and O�Brien�
CS
�

���� University of Tennessee�

���

�� Berry� Dumais and O�Brien

0.0 0.2 0.4 0.6 0.8 1.0

 0.1

 0.2

- 0.2

 -0.5

algorithms

application

delay

differential
equations

implementation

integral

introduction

methods

nonlinear

ordinary

oscillation

partial

problem

systems

theory

B1
B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14
B15

B16

B17

QUERY

Fig� �� A Two�dimensional plot of terms and documents along with the query application

theory�

Figure �
�	 The �
dimensional positioning of the documents and terms for a set of �� articles�

���

in both French and English� The truncated SVD of the term
document matrix is then
computed� After the SVD� monolingual documents can be �folded in� � a monolingual
document will get represented as the vector sum of its constituent terms� which are already
represented in the LSI space�

Experiments showed that the retrieval of French documents in response to English queries
was as e�ective as �rst translating the queries into French� then performing a search on
a French
only database� The cross
language retrieval method was nearly as e�ective for
retrieving abstracts from an English
Kanji database� and for performing searches on English
and Greek translations of the Bible�

Modeling human memory� LSI has been used to model some of the associative re

lationships in human memory� in particular� the type of memory used to recall synonyms�
Indeed� LSI is often described as a method for �nding synonyms � words which have similar
meanings� like cow and bovine� are close to each other in LSI space� even if these words never
occur in the same document� In one experiment� researchers calculated the truncated SVD
of a term
by
document matrix for an encyclopedia� They then tested the truncated SVD on
a synonym test� which had questions like

levied	
�A� imposed
�B� believed
�C� requested
�D� correlated

For a multiple
choice synonym test� they then computed the similarity of the �rst word �e�g�
levied� to each choice� and picked the closest alternative as the synonym� The truncated
SVD scored as well as the average student�

Matching people� LSI has been used to automate the assignment of reviewers to sub

mitted conference papers� Reviewers were described by articles they had written� Submitted
papers were represented by their abstracts� and then matched to the closest reviewers� In
other words� reviewers were �rst placed in LSI space� and then people who submitted papers
were matched to their closest reviewers� Analysis suggested that these automated assign

ments� which took less than one hour� were as good as those of human experts�

��� Performance of LSI on TREC

Recall that the TREC collection contains more then ��������� documents� more than �Gbytes
of ASCII text� TREC also contains ��� standard benchmarking queries� A panel of human
judges rates the e�ectiveness of a search engine by hand
scoring the documents returned
by the search engine when posed with these queries� These ��� queries are quite detailed�
averaging more than �� words in length�

Because TREC queries are quite rich� a smaller advantage can be expected for any
approach that involves enhancing user�s queries� as LSI does� Nonetheless� when compared
with the best keyword searches� LSI performed fairly well� For information retrieval tasks�
LSI performed ��� better� For information �ltering tasks� LSI performed ��� better� �In

���

information �ltering applications� a user has a stable pro�le� and new documents are matched
against these long
standing interests��

The cost of computing the truncated SVD on the full TREC collection was prohibitively
expensive� Instead� a random sample of ������ documents and ������ terms was used� The
resulting term
by
document matrix was quite sparse� containing only less than ����� non

zero entries� The Lanczos algorithm was used to �nd A���� this computation required ��
hours of CPU time on a SUN SPARCstation ���

���

