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� Evaluating information retrieval e�ectiveness

Two measures are commonly used to evaluate the e�ectiveness of information retrieval meth

ods	 precision and recall� The precision of a retrieval method is the fraction of the documents
retrieved that are relevant to the query	

precision �
number retrieved that are relevant

total number retrieved

The recall of a retrieval method is the fraction of relevant documents that were retrieved	

recall �
number relevant that are retrieved

total number relevant
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� Signature �les

Signature �les are an alternative to inverted �le indexing� The main advantage of signature
�les is that they don�t require that a lexicon be kept in memory during query processing� In
fact they do not require a lexicon at all� If the vocabulary of the stored documents is rich�
then the amount of space occupied by a lexicon may be a substantial fraction of the amount
of space �lled by the documents themselves�

Signature �les are a probabilistic method for indexing documents� Each term in a doc

ument is assigned a random signature� which is a bit vector� These assignments are made
by hashing� The descriptor of document is the bitwise logical OR of the signatures of its
terms� As we will see� queries to signature �les sometimes respond that a term is present in
a document when in fact the term is absent� Such false matches necessitate a three
valued
query logic�

There are three main issues to discuss	 ��� generating signatures� ��� searching on signa

tures� and ��� query logic on signature �les�

��� Generating signatures

The width W of each of the signatures� is the number of bits in each term�s signature� Out of
these bits some typically small subset of them are set to � and the rest are set to zero� The
parameter b speci�es how many are set to �� Typically� ����� � W � ������� �Managing

Gigabytes seems to suggest that typically � � b � ���� The probability of false matches may
be kept arbitrarily low by making W large� at the expense of increasing the lengths of the
signature �les�

To generate the signature of a term� we use b hash functions as follows

for i � � to b
signature�hashi�term� � w� � �

In practice we just have one hash function� but use i as an additional parameter�
To generate the signature of a document we just take the logical or of the term signatures�

As an example� consider the list of terms from the nursery rhyme �Pease Porridge Hot� and
corresponding signatures	
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Term Signature
cold ���� ���� ���� ����
days ���� ���� ���� ����
hot ���� ���� ���� ����
in ���� ���� ���� ����
it ���� ���� ���� ����
like ���� ���� ���� ����
nine ���� ���� ���� ����
old ���� ���� ���� ����
pease ���� ���� ���� ����
porridge ���� ���� ���� ����
pot ���� ���� ���� ����
some ���� ���� ���� ����
the ���� ���� ���� ����

Note that a termmay get hashed to the same location by two hash functions� In our example�
the signature for hot has only two bits set as a result of such a collision� If the documents
are the lines of the rhyme� then the document descriptors will be	

Document Text Descriptor
� Pease porridge hot� pease porridge cold� ���� ���� ���� ����
� Pease porridge in the pot� ���� ���� ���� ����
� Nine days old� ���� ���� ���� ����

 Some like it hot� some like it cold� ���� ���� ���� ����
� Some like it in the pot� ���� ���� ���� ����
� Nine days old� ���� ���� ���� ����

��� Searching on Signatures

To check whether a term T occurs in a document� check whether all the bits which are set
in T �s signature are also set in the document�s descriptor� If not� T does not appear in the
document� If so� T probably occurs in the document� because some combination of other
term signatures might have set these bits in T �s descriptor� it cannot be said with certainty
whether or not T appears in the document� For example� since the next
to
last bit in the
signature for it is set� it can only occur in the fourth and �fth documents� and indeed it
occurs in both� The term the can occur in documents two� three� �ve� and six� but in fact�
it occurs only in the second and �fth�

The question remains of how we e�ciently check which documents match the signature
of the term �include all its bits�� Consider the following �naive� procedure	 to �nd the
descriptor strings for which the bits in a given signature are set� pull out all descriptors� and
for each descriptor� check whether the appropriate bits are set for each descriptor� When the
descriptors are long and there are many �les� this approach will involve many disk accesses�
and will therefore be too expensive�
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A substantially more e�cientmethod is to access columns of the signature �le� rather than
rows� This technique is called bit�slicing� The signature �le is stored on disk in transposed
form� That is� the signature �le is stored in column
major order� in the naive approach� the
signature �le was stored in row
major order� To process a query for a single term� only b
columns need to be read from disk� in the naive approach� the entire signature �le needed
to be read� The bitwise and of these b columns yields the documents in which the term
probably occurs� For example� to check for the presence of porridge� take the and of columns
two� six� and eleven� to obtain ��������T � �This query returned two false matches��

��� Query logic on signature �les

We have seen that collisions between term signatures can cause a word to seem present in a
document when in fact the word is absent� on the other hand� words that seem absent are
absent� If� for example� pease is absent from a document D� then the answer to �Is pease is
D�� is No� if pease seems to be present� then the answer is Maybe�

For queries with negated terms �for example� �Is pease absent from document d��� the
situation is reversed� For example� since pease has bits six� eight� and �� set� it cannot
occur in documents three� four� or six� so for these documents the appropriate answer is Yes�
However� the other documents might contain pease� so for these documents the appropriate
answer is Maybe�

More generally� queries in signature �les need to be evaluated in three
valued logic�
Atomic queries �e�g� �Is nine present��� have two responses� No and Maybe� More complex
queries � queries built from atomic queries using not� and� and or � get evaluated using
the following rules	

not

n y

m m

y n

and n m y

n n n n

m n m m

y n m y

or n m y

n n m y

m m m y

y y y y

Consider� for example� the evaluation of ��some or not hot� and pease�	

Doc� s h p not h s or not h �s or not h� and p
� m m m m m m

� m m m m m m

� n n n y y n


 m m n m m n

� m m m m m m

� n n n y y n

��� Choosing signature width

How should W be chosen so that the expected number of false matches is less than or equal
to some number z� It turns out that W should be set to

�
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where

p� the probability that an arbitrary bit in a document descriptor is set� is given
by z

N
��b�

B� the total number of bits set in the signature of an average document� is given
by f

N
� b
q
�

N is the number of documents�
f is the number of �document� term� pairs�
b is the number of bits per query� and
q is the number of terms in each query�

The analysis used to derive ��� can be found in Witten� Mo�at� and Bell� Managing Giga�

bytes� chapter �� Section ���� One assumption made in this analysis is that all documents
contain roughly the same number of distinct terms� Clearly� this assumption does not always
hold�

��� An example� TREC

As an example� consider the TREC �Text REtrieval Conference� database� The TREC
database� which is used to benchmark information retrieval experiments� is composed of
roughly ��������� documents � more than �Gbytes of ASCII text � drawn from a variety
of sources	 newspapers� journal abstracts� U�S� patents� and so on� �These �gures were true
of TREC in ���
� It has probably grown in size since then�� In this example� we assume that
TREC contains a mere ������� documents� with ��� Million document
term pairs totaling
more than �Gbytes of text�

Consider making queries on a single term and assume we want at no more than � false
match� We assume b � �� To calculate W by equation ��� we have� f � ��� � ���� N �
��� � ���� z � �� q � �� which gives	

p �
�

�

��� � ���

����
� ����

B �
��� � ���

��� � ���
�
�

�
� �
��

W � ����

Thus� the total space occupied by the signature �le is ��� ������ � ���Kbytes � ���Mbytes
�about ��� of the space required by the documents themselves�� For b � �� a query on a
term will read � slices of ���Kbits� which is ���Kbytes �about ��� of the total database��

� Vector space models

Boolean queries are useful for detecting boolean combinations of the presence and absence
of terms in documents� However� Boolean queries never yield more information than a Yes
or No answer� In contrast� vector space models allow search engines to quantify the degree of
similarity between a query and a set of documents� The uses of vector space models include	
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Ranked keyword searches� in which the search engine generates a list of documents
which are ranked according to their relevance to a query�

Relevance feedback� where the user speci�es a query� the search engine returns a set of
documents� the user then tells the search engine which documents among the set are
relevant� and the search engine returns a new set of documents� This process continues
until the user is satis�ed�

Semantic indexing� in which search engines are able to return a set of documents whose
�meaning� is similar to the meanings of terms in a user�s query�

In vector space models� documents are treated as vectors in which each term is a separate
dimension� Queries are also modeled as vectors� typically �
� vectors� Vector space models
are often used in conjunction with clustering to accelerate searches� see Section ����� below�

��� Selecting weights

In vector space models� documents are modeled by vectors� with separate entries for each
distinct term in the lexicon� But how are the entries in these vectors obtained� One approach
would be to let the entry wd�t� the weight of term t in document d� be � if t occurs in d and
� otherwise� This approach� however� does not distinguish between a document containing
one occurrence of elephant and a document containing �fty occurrences of elephant� A better
approach would be to let wd�t be fd�t� the number of times t occurs in document d� However�
it seems that �ve occurrences of a word shouldn�t lead to a weight that is �ve times as heavy�
and that the �rst occurrence of a term should count for more than subsequent occurrences�
Thus� the following rule for setting weights is often used	 set wd�t to log��� � fd�t�� Under
this rule� an order of magnitude increase in frequency leads to a constant increase in weight�

These heuristics for setting fd�t all fail to take account of the �information content� of
a term� If supernova appears less frequently than star� then intuitively supernova conveys
more information� Borrowing from information theory� we say that the weight wt of a term
in a set of documents is log��N�ft�� where N is the number of documents and ft is the
number of documents in which the term appears�

One way to represent the weight of a term t in document d is by combining these ideas	

wd�t � log��N�ft� log��� � fd�t�

It should be emphasized that this rule for setting wd�t is one among many proposed heuristics�

��� Similarity measures

To score a document according to its relevance to a query� we need a way to measure the
similarity between a query vector vq and a document vector vd� One similarity measure is
inverse Euclidean distance� ��kvq � vdk� This measure discriminates against longer docu

ments� since vd which are distant from the origin are likely to be farther away from typical
vq� Another is the dot product vq � vd� This second measure unfairly favors longer docu

ments� For example� if vd� � �vd�� then vq �vd� � �vq �vd�� One solution to the problems with
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both these measures is to normalize the lengths of the vectors in the dot product� thereby
obtaining the following similarity measure	

wq � vd
kvqkkvdk

This similarity measure is called the cosine measure� since if � is the angle between vectors
�x and �y� then cos � � �x � �y��k�xkk�yk��

��� A simple example

Suppose we have the set of documents listed in the following table� These documents give rise
to the frequency matrix �fd�t�� frequencies ft of terms� and informational contents log��N�ft�
in the table	

Doc� no� Document Frequency matrix �fd�t�
a b c d e

� apple balloon balloon elephant apple apple � � � � �
� chocolate balloon balloon chocolate apple chocolate duck � � � � �
� balloon balloon balloon balloon elephant balloon � � � � �
� chocolate balloon elephant � � � � �
� balloon apple chocolate balloon � � � � �
	 elephant elephant elephant chocolate elephant � � � � �
ft � � � � �

log
�

N�ft� ���� ���	 ���� ���� ����

For simplicity� suppose wd�t is calculated according to the rule wd�t � fd�t � log��N�ft�� Then
the weight matrix �wd�t� would be as follows �the norms of each row of the weight matrix are
underneath kvdk�	

a b c d e kvdk
� � ��� � � ��� ����
� � ��� ��
� ���� � ����
� � ��� � � ��� ����
� � ��	 ��� � ��� ���	
� � ��� ��� � � ���

	 � � ��� � ���� ����

Then� for the queries listed below� the cosine measure gives the following similarities	

Doc� no� Query
d c c� d a� b� e a� b� c� d� e

kvqk � ���� kvqk � ���� kvqk � ��	� kvqk � ���� kvqk � ����
� ���� ���� ���� ���� ����
� ��
� ���� ���� ���� ����
� ���� ���� ���� ���� ���	
� ���� ��	
 ���� ���� ����
� ���� ���	 ���� ��
	 ����
	 ���� ���� ���� ���� ����

Note that in the second query� the fourth document beats the second because the fourth is
shorter overall� For each of the other queries� there is a single document with a very high
similarity to the query�
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��� Implementation of cosine measures using inverted lists

Directly computing the dot product of a query vector and all document vector s is too
expensive� given the fact that both vectors are likely to be sparse� A more economical
alternative is to keep �document� weight� pairs in the posting lists� so that a typical inverted
�le entry would look like

ht� ��dt��� wdt���t�� �dt��� wdt���t�� � � � � �dt�m� wdt�m�t��i�

Here� t is a term� dt�i is a pointer to the ith document containing term t� and wdt�i�t is weight
of t in document dt�i� �Heuristics for calculating wd�t were given in Section ����� For example�
the inverted �le entry for apple might be

happle� ���� ��� ��� ��� ���� ���i�

Fortunately� the weights wdt�i�t can typically be compressed at least as well as the distances
dt�i�� � dt�i in the inverted �le entry�

These posting lists help quicken the search for the documents which are most similar to
a query vector� In the following algorithm Q is a list of query terms� which we assume are
unweighted� A � fad j ad is the score so far for document dg is a set of accumulators� and
wd is the weight of document d� which we assume has been precomputed� This algorithm
returns the k documents which are most relevant to the query�

Search�Q�
For each term t � Q

ht�Pti � Search lexicon for t
Pt � Uncompress�Pt�
For each �d�wd�t� in Pt

If ad � A
ad � ad � wd�t

Else
ad � wd�t

A � A � fadg
For each ad � A

ad � ad�Wd

Return the k documents with the highest ad�

In this algorithm� the inverted �le entries for every term t � Q are processed in full� Each
document d that appears in some such inverted �le entry adds a cosine contribution to the
accumulator ad� At the end� the accumulator values are normalized by the weightsWd� Note
that there is no need to normalize by the weight wq of the query� as wq is constant for any
particular query�

The size of A can grow very large� so some search engines place an a priori bound on
the number of accumulators ad in A� One might think this approach would result in poor
retrieval e�ectiveness� since the most relevant documents may be found by the last terms
in the query� However� experiments with TREC and a standard collection of queries have
shown that ����� accumulators su�ce to extract the top ����� documents�
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��� Relevance feedback

In the query systems discussed so far� the user poses a query vq�� the search engine answers
it� and the process ends� But suppose the user has the ability to mark a set of documents R�

as relevant� and a set I� as irrelevant� The search engine then modi�es vq� to obtain vq� and
fetches a set of documents relevant to vq�� This is called relevance feedback� and continues
until the user is satis�ed� It requires the initial query to be adapted� emphasizing some
terms� de
emphasizing others� and perhaps introducing entirely new terms� One proposed
strategy for updating the query is the Dec Hi strategy	

vqi�� � vqi �

�
�X
d�Ri

vd

�
A� vn�

To obtain the �i���th query� the vectors for the most relevant documents Ri �chosen by the
user� are added to the ith query vector� and the vector vn of the least relevant document is
subtracted� A more general update rule is

vqi�� � �vq� � �vqi � �
X
d�Ri

vd � �
X
d�Ii

vd�

where �� �� �� and � are weighting constants� with � � ��
One potential problem with these update rules is that the query vectors vqi for i � �

can have far more terms than the initial query vq�� thus� these subsequent queries may be
too expensive to evaluate� One solution is to sort the terms in the relevant documents by
decreasing weight� and select a subset of them to in uence vqi��� Another solution is to use
clustering� which is described in the next section�

Experiments indicate that one round of relevance feedback improves responses from
search engines� and two rounds yield a small additional improvement�

��� Clustering

Clustering may be used to speed up searches for complicated queries� and to �nd documents
which are similar to each other� The idea is to represent a group of documents which are all
close to each other by a single vector� for example the centroid of the group� Then� instead
of calculating the relevance of each document to a query� we calculate the relevance of each
cluster vector to a query� Then� once the most relevant cluster is found� the documents
inside this cluster may be ranked against the query� This approach may be extended into a
hierarchy of clusters� see �gure ����

There are many techniques for clustering� as well as many other applications� Clustering
will be discussed in the November �� lecture�

� Latent semantic indexing �LSI�

All of the methods we have seen so far to search a collection of documents have matchedwords
in users� queries to words in documents� These approaches all have two drawbacks� First�
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Figure �
�	 A hierarchical clustering approach

since there are usually many ways to express a given concept� there may be no document
that matches the terms in a query even if there is a document that matches the meaning
of the query� Second� since a given word may mean many things� a term in a query may
retrieve irrelevant documents� In contrast� latent semantic indexing allows users to retrieve
information on the basis of the conceptual content or meaning of a document� For example�
the query automobile will pick up documents that do not contain automobile� but that do
contain car or perhaps driver�

��� Singular value decomposition 	SVD


����� De�nition

LSI makes heavy use of the singular value decomposition� Given an m 	 n matrix A with
m � n� the singular value decomposition of A �in symbols� SVD�A��� is A � U!V T � where	

�� UTU � V TV � In� the n	 n identity matrix�

�� ! � diag�	�� � � � � 	n�� the matrix with all ��s except for the 	i�s along the diagonal�

If ! is arranged so that 	� � 	� � � � � � 	n� then the SVD of A is unique �except for
the possibility of equal 	�� Further� if r denotes rank�A�� then 	i 
 � for � � i � r� and
	j � � for j � r � �� Recall that the rank of a matrix is the number of independent rows
�or columns��

We will use Uk to denote the �rst k columns of U � Vk the �rst k columns of V � and !k

the �rst k columns and rows of !� For latent semantic indexing� the key property of the
SVD is given by the following theorem	

Theorem� Let A � U!V T be the singular value decomposition of the m 	 n matrix A�
De�ne

Ak � Uk!kV
T
k �
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De�ne the distance between two m	 n matrices A and B to be

mX
i��

nX
j��

�aij � bij�
��

Then Ak is the matrix of rank k with minimum distance to A�

This basically says that the best approximation of A �for the given metric� using a
mapping of a k dimensional space back to the full dimension of A is based on taking the �rst
k columns of U and V �

In these scribe notes� we will refer to Ak � Uk!kV
T
k as the truncated SVD of A� In

the singular value decomposition U!V T � the columns of U are the orthonormal eigenvectors
of AAT and are called the left singular vectors� The columns of V are the orthonormal
eigenvectors of ATA and are called the right singular vectors� The diagonal values of ! are
the nonnegative square roots of the eigenvalues of AAT � and are called the singular values

of A�
The calculation of the SVD uses similar techniques as for calculating eigenvectors� For

dense matrices� calculating the SVD takes O�n�� time� For sparse matrices� the Lanczos
algorithm is more e�cient� especially when only the �rst k columns of U and V are required�

��� Using SVD for LSI

To use SVD for latent semantic indexing� �rst construct a term
by
document matrix A�
Here� At�d � � if term t appears in document d� Since most words do not appear in most
documents� the term
by
document matrix is usually quite sparse� Next� computing SVD�A��
generate U � !� and V � Finally� retain only the �rst k terms of U � !� and V � From these we
could reconstruct Ak� which is an approximation of A� but we actually plan to use the U �
!� and V directly�

The truncated SVD Ak describes the documents in k
dimensional space rather than the
n dimensional space of A �think of this space as a k dimensional hyperplane through the
space de�ned by the original matrixA�� Intuitively� since k is much smaller than the number
of terms� Ak �ignores� minor di�erences in terminology� Since Ak is the closest matrix of
rank �dimension� k to A� terms which occur in similar documents will be near each other in
the k
dimensional space� In particular� documents which are similar in meaning to a user�s
query will be near the query in k
dimensional space� even though these documents may share
no terms with the query�

Let q be the vector representation of a query� This vector gets transformed into a vector
"q in k
dimensional space� according to the equation

"q � qTUk!
��

k �

The projected query vector "q gets compared to the document vectors� and documents get
ranked by their proximity to the "q� LSI search engines typically use the cosine measure
as a measure of nearness� and return all documents whose cosine with the query document
exceeds some threshold� �For details on the cosine measure� see Section �����
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��� An example of LSI

Suppose we want to apply LSI to the small database of book titles given in Figure �
� �a��
Note that these titles fall into two basic categories� one having to do with the mathematics
of di�erential equations �e�g� B� and B��� and one having to do with algorithms �e�g� B�
and B��� We hope that the LSI will separate these classes� Figure �
� �b� shows the term

by
document matrix A for the titles and for a subset of the terms �the non stop
words that
appear more than once��

Now for k � � we can generate U�� !� and V� using an SVD� Now suppose that we are
interested in all documents that pertain to application and theory� The coordinates for the
query application theory are computed by the rule "q � qTU�!

��

� � as follows	

"q � ������� � ������� �

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
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T �
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

������ ���
���
������ �������
������ �������
�����
 ������
������ ������
����
� �������
������ �����
�
������ �������
������ ������
������ ������
������ ������
������ �������
���
�� �����

������ �������
������ ������
������ ���
��

�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

�

����
 �

� ������

�
��

All documents whose cosine with "q exceeds ��� are illustrated in the shaded region of Fig

ure �
�� Note that B�� whose subject matter is very close to the query� yet whose title
contains neither theory nor application� is very close to the query vector� Also note that the
mapping into � dimensions clearly separates the two classes of articles� as we had hoped�

��� Applications of LSI

As we have seen� LSI is useful for traditional information retrieval applications� such as
indexing and searching� LSI has many other applications� some of which are surprising�

Cross�language retrieval� This application allows queries in two languages to be
performed on collections of documents in these languages� The queries may be posed in
either language� and the user speci�es the language of the documents that the search engine
should return�

For this application� the term
by
document matrix contains documents which are com

posed of text in one language appended to the translation of this text in another language�
For example� in one experiment� the documents were a set of abstracts that had versions

���



Label Titles
B� A Course on Integral Equations
B� Attractors for Semigroups and Evolution Equations
B� Automatic Di�erentiation of Algorithms� Theory� Implementation� and Application
B� Geometrical Aspects of Partial Di�erential Equations
B� Ideals� Varieties� and Algorithms � An Introduction to Computational Algebraic

Geometry and Commutative Algebra
B	 Introduction to Hamiltonian Dynamical Systems and the N�Body Problem
B
 Knapsack Problems� Algorithms and Computer Implementations
B� Methods of Solving Singular Systems of Ordinary Di�erential Equations
B� Nonlinear Systems
B�� Ordinary Di�erential Equations
B�� Oscillation Theory for Neutral Di�erential Equations with Delay
B�� Oscillation Theory of Delay Di�erential Equations
B�� Pseudodi�erential Operators and Nonlinear Partial Di�erential Equations
B�� Sinc Methods for Quadrature and Di�erential Equations
B�� Stability of Stochastic Di�erential Equations with Respect to Semi�Martingales
B�	 The Boundary Integral Approach to Static and Dynamic Contact Problems
B�
 The Double Mellin�Barnes Type Integrals and Their Applications to Convolution
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Figure �
�	 An example set of document titles and the corresponding matrix A� Taken from
�Using Linear Algebra for Intelligent Information Retrieval� by Berry� Dumais and O�Brien�
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Figure �
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in both French and English� The truncated SVD of the term
document matrix is then
computed� After the SVD� monolingual documents can be �folded in� � a monolingual
document will get represented as the vector sum of its constituent terms� which are already
represented in the LSI space�

Experiments showed that the retrieval of French documents in response to English queries
was as e�ective as �rst translating the queries into French� then performing a search on
a French
only database� The cross
language retrieval method was nearly as e�ective for
retrieving abstracts from an English
Kanji database� and for performing searches on English
and Greek translations of the Bible�

Modeling human memory� LSI has been used to model some of the associative re

lationships in human memory� in particular� the type of memory used to recall synonyms�
Indeed� LSI is often described as a method for �nding synonyms � words which have similar
meanings� like cow and bovine� are close to each other in LSI space� even if these words never
occur in the same document� In one experiment� researchers calculated the truncated SVD
of a term
by
document matrix for an encyclopedia� They then tested the truncated SVD on
a synonym test� which had questions like

levied	
�A� imposed
�B� believed
�C� requested
�D� correlated

For a multiple
choice synonym test� they then computed the similarity of the �rst word �e�g�
levied� to each choice� and picked the closest alternative as the synonym� The truncated
SVD scored as well as the average student�

Matching people� LSI has been used to automate the assignment of reviewers to sub

mitted conference papers� Reviewers were described by articles they had written� Submitted
papers were represented by their abstracts� and then matched to the closest reviewers� In
other words� reviewers were �rst placed in LSI space� and then people who submitted papers
were matched to their closest reviewers� Analysis suggested that these automated assign

ments� which took less than one hour� were as good as those of human experts�

��� Performance of LSI on TREC

Recall that the TREC collection contains more then ��������� documents� more than �Gbytes
of ASCII text� TREC also contains ��� standard benchmarking queries� A panel of human
judges rates the e�ectiveness of a search engine by hand
scoring the documents returned
by the search engine when posed with these queries� These ��� queries are quite detailed�
averaging more than �� words in length�

Because TREC queries are quite rich� a smaller advantage can be expected for any
approach that involves enhancing user�s queries� as LSI does� Nonetheless� when compared
with the best keyword searches� LSI performed fairly well� For information retrieval tasks�
LSI performed ��� better� For information �ltering tasks� LSI performed ��� better� �In

���



information �ltering applications� a user has a stable pro�le� and new documents are matched
against these long
standing interests��

The cost of computing the truncated SVD on the full TREC collection was prohibitively
expensive� Instead� a random sample of ������ documents and ������ terms was used� The
resulting term
by
document matrix was quite sparse� containing only less than ����� non

zero entries� The Lanczos algorithm was used to �nd A���� this computation required ��
hours of CPU time on a SUN SPARCstation ���
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