Doubly Connect Edge List (DCEL)

Notes from the book by de Berg, Van Kreveld, Overmars, and Schwarzkpf.
pp. 29-39
Doubly Connected Edge List (DCEL)

• DCEL is one of the most commonly used representations for planar subdivisions such as Voronoi diagrams.
• It is an edge-based structure which links together the three sets of records:
 - Vertex
 - Edge
 - Face
• It facilitates traversing the faces of planar subdivision, visiting all the edges around a given vertex
Doubly Connected Edge List (DCEL)

- Record for each face, edge, and vertex
 - Geometric information
 - Topological information
 - Attribute information
- Half-edge structure
Doubly Connected Edge List (DCEL)

- Main ideas:
 - Edges are oriented counterclockwise inside each face
 - Since an edge borders two faces, each edge is replaced by two half-edges, one for each face
Doubly Connected Edge List (DCEL)

- The vertex record of a vertex v stores the coordinates of v. It also stores a pointer $\text{IncidentEdge}(v)$ to an arbitrary half-edge that has v as its origin.

- The face record of a face f stores a pointer to some half-edge on its boundary which can be used as a starting point to traverse f in counterclockwise order.

- The half-edge record of a half-edge e stores pointer to:
 - $\text{Origin}(e)$
 - Twin of e, $e.\text{twin}$ or $\text{twin}(e)$
 - The face to its left ($\text{IncidentFace}(e)$)
 - $\text{Next}(e)$: next half-edge on the boundary of $\text{IncidentFace}(e)$
 - $\text{Previous}(e)$: previous half-edge

next(e_1) origin(e_1) previous(e_1)
Doubly Connected Edge List (DCEL)

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Coordinates</th>
<th>IncidentEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>(x_1, y_1)</td>
<td>$e_{2,1}$</td>
</tr>
<tr>
<td>v_2</td>
<td>(x_2, y_2)</td>
<td>$e_{4,1}$</td>
</tr>
<tr>
<td>v_3</td>
<td>(x_3, y_3)</td>
<td>$e_{3,2}$</td>
</tr>
<tr>
<td>v_4</td>
<td>(x_4, y_4)</td>
<td>$e_{6,1}$</td>
</tr>
<tr>
<td>v_5</td>
<td>(x_5, y_5)</td>
<td>$e_{9,1}$</td>
</tr>
<tr>
<td>v_6</td>
<td>(x_6, y_6)</td>
<td>$e_{7,1}$</td>
</tr>
</tbody>
</table>
Doubly Connected Edge List (DCEL)

<table>
<thead>
<tr>
<th>Face</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>$e_{1,1}$</td>
</tr>
<tr>
<td>f_2</td>
<td>$e_{5,1}$</td>
</tr>
<tr>
<td>f_3</td>
<td>$e_{5,2}$</td>
</tr>
<tr>
<td>f_4</td>
<td>$e_{8,1}$</td>
</tr>
<tr>
<td>f_5</td>
<td>$e_{9,2}$</td>
</tr>
</tbody>
</table>
Doubly Connected Edge List (DCEL)

<table>
<thead>
<tr>
<th>Half-edge</th>
<th>Origin</th>
<th>Twin</th>
<th>IncidentFace</th>
<th>Next</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{3,1}</td>
<td>v_2</td>
<td>e_{3,2}</td>
<td>f_1</td>
<td>e_{1,1}</td>
<td>e_{2,1}</td>
</tr>
<tr>
<td>e_{3,2}</td>
<td>v_3</td>
<td>e_{3,1}</td>
<td>f_2</td>
<td>e_{4,1}</td>
<td>e_{5,1}</td>
</tr>
<tr>
<td>e_{4,1}</td>
<td>v_2</td>
<td>e_{4,2}</td>
<td>f_2</td>
<td>e_{5,1}</td>
<td>e_{3,2}</td>
</tr>
<tr>
<td>e_{4,2}</td>
<td>v_4</td>
<td>e_{4,1}</td>
<td>f_5</td>
<td>e_{2,2}</td>
<td>e_{8,2}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Doubly Connected Edge List (DCEL)

• **Storage space requirement:**
 – Linear in the number of vertices, edges, and faces

\[
\begin{align*}
&n = \# \text{ vertices} \quad \rightarrow \quad \text{no edges} \\
&\# \ V \ = \ \# \ \text{edges} \leq 3n - 6 \quad \text{cross} \\
&\# \ \text{faces} \leq 2n \\
&O(n) \ space
\end{align*}
\]
Doubly Connected Edge List (DCEL)

- Operations:
 - Walk around the boundary of a given face in CCW order
 - Access a face from an adjacent one
 - Visit all the edges around a given vertex
• **Interesting Queries:**
 – Given a DCEL description, a line \(L \) and a half-edge that this line cuts, efficiently find all the faces cut by \(L \).
Doubly Connected Edge List (DCEL)

• **Traversing face** f:

 – Given: an edge of f

 1. Determine the half-edge e incident on f
 2. Start_edge $\leftarrow e$
 3. While next(e) \neq start_edge then
 $e \leftarrow$ next(e)

\[\text{Time: size of } f\]
Doubly Connected Edge List (DCEL)

• **Traversing all edges incident on a vertex** \(v \)
 – Note: we only output the half-edges whose origin is \(v \)
 – Given: a half-edge \(e \) with the origin at \(v \)
 1. Start_edge \(\leftarrow e \)
 2. While \(\text{next(twin(e))} \neq \text{start_edge} \) then
 \(e \leftarrow \text{next(twin(e))} \)
Adding a Vertex

\[
\begin{align*}
d &= \text{prev}(e_{1,2}) \\
c &= \text{next}(e_{1,2}) \\
b &= \text{prev}(e_{1,1}) \\
a &= \text{next}(e_{1,1})
\end{align*}
\]
Adding a Vertex

- New vertex x
- New edges: $e_{1,2}'$ and $e_{1,2}''$
- $\text{IncidentEdge}(x) = e_{1,2}'$
- $\text{Origin}(e_{1,2}') = x$
- $\text{Next}(e_{1,2}') = \text{next}(e_{1,2})$
- $\text{Prev}(e_{1,2}') = e_{1,2}''$
- $\text{IncidentFace}(e_{1,2}') = f_2$
- $\text{Origin}(e_{1,2}'') = \text{origin}(e_{1,2})$
- $\text{Next}(e_{1,2}'') = e_{1,2}'$
- $\text{Prev}(e_{1,2}'') = \text{prev}(e_{1,2})$
- $\text{IncidentFace}(e_{1,2}'') = f_2$
- $\text{Next}(\text{Prev}(e_{1,2})) = e_{1,2}''$
- $\text{Prev}(\text{Next}(e_{1,2})) = e_{1,2}'$
- Delete edge $e_{1,2}$

Updating the records
Adding a Vertex

- New edges: $e_{1,1}'$ and $e_{1,1}''$
- Origin($e_{1,1}'$) = origin($e_{1,1}$)
- Next($e_{1,1}'$) = $e_{1,1}''$
- Prev($e_{1,1}'$) = prev($e_{1,1}$)
- IncidentFace($e_{1,1}'$) = f_1
- Origin($e_{1,1}''$) = $e_{1,1}'$
- Next($e_{1,1}''$) = next($e_{1,1}$)
- Prev($e_{1,1}''$) = $e_{1,1}'$
- IncidentFace($e_{1,1}''$) = f_1
- Next(prev($e_{1,1}$)) = $e_{1,1}'$
- Prev(next($e_{1,1}$)) = $e_{1,1}''$
- Twin($e_{1,2}'$) = $e_{1,1}'$
- Twin($e_{1,1}'$) = $e_{1,2}'$
- Twin($e_{1,2}''$) = $e_{1,1}''$
- Twin($e_{1,1}'''$) = $e_{1,2}''$
- Delete edge $e_{1,1}$
Adding a Vertex

• If $e_{1,1}$ was starting edge of f_1, need to change it to either one of the new edges
• If $e_{1,2}$ was starting edge of f_2, need to change it to either one of the new edges
Other Operations on DCEL

• **Add an Edge**
 – Planar subdivision
 – e is added
 – DCEL can be updated in constant time once the edges a and b are known