Notes from the book by de Berg, Van Krevald, Overmars, and Schwarzkpf. pp. 29-39 - DCEL is one of the most commonly used representations for planar subdivisions such as Voronoi diagrams. - It is an edge-based structure which links together the three sets of records: - VertexEdgeFace - It facilitates traversing the faces of planar subdivision, visiting all the edges around a given vertex - Record for each face, edge, and vertex - Geometric information - Topological information - Attribute information - Half-edge structure #### Main ideas: - Edges are oriented counterclockwise inside each face - Since an edge borders two faces, each edge is replaced by two half-edges, one for each face • The vertex record of a vertex v stores the coordinates of v. It also stores a pointer IncidentEdge(v) to an arbitrary half-edge that has v as its origin The face record of a face f stores a pointer to some half-edge on its boundary which can be used as a starting point to traverse f in counterclockwise order • The half-edge record of a half-edge e stores pointer to: - Origin (e) ~ V when - Twin of e, e.twin or twin(e) - The face to its left (IncidentFace(e)) - Next(e): next half-edge on the boundary of IncidentFace(e) - Previous(e): previous half-edge | Vertex | Coordinates | IncidentEdge | |-----------------------|------------------------------------|------------------| | V_1 | (x_1, y_1) | e _{2,1} | | V ₂ | (x_2, y_2) | e _{4,1} | | V ₃ | (x_3, y_3) | e _{3,2} | | V ₄ | (x ₄ , y ₄) | e _{6,1} | | V ₅ | (x_5, y_5) | e _{9,1} | | v ₆ | (x_6, y_6) | e _{7,1} | | Face | Edge | | | |----------------|------------------|--|--| | f_1 | e _{1,1} | | | | f ₂ | e _{5,1} | | | | f_3 | e _{5,2} | | | | f ₄ | e _{8,1} | | | | f ₅ | e _{9,2} | | | | Half-edge | Origin | Twin | IncidentFace | Next | Previous | |------------------|----------------|------------------|----------------|------------------|------------------| | e _{3,1} | V ₂ | e _{3,2} | f_1 | e _{1,1} | e _{2,1} | | e _{3,2} | V ₃ | e _{3,1} | f ₂ | e _{4,1} | e _{5,1} | | e _{4,1} | v ₂ | e _{4,2} | f ₂ | e _{5,1} | e _{3,2} | | e _{4,2} | V ₄ | e _{4,1} | f ₅ | e _{2,2} | e _{8,2} | | | | | | | | #### Storage space requirement: Linear in the number of vertices, edges, and faces $$n = \# \text{ Vertiles}$$ $m \text{ edges}$ $\# \text{ am} = \# \text{ edges} \leq 3n - 6 \text{ (poss)}$ $\# \text{ faces} \leq 2n \text{ O(n) space}$ #### Operations: - Walk around the boundary of a given face in CCW order - Access a face from an adjacent one € ♦ ♦ - Visit all the edges around a given vertex #### Interesting Queries: Given a DCEL description, a line L and a half-edge that this line cuts, efficiently find all the faces cut by L. #### Traversing face f: - Given: an edge of f - 1. Determine the half-edge e incident on f - 2. Start_edge ← e - 3. While next(e) ≠ start_edge then e ← next (e) Time: Size of t - Traversing all edges incident on a vertex v - Note: we only output the half-edges whose origin is v - Given: a half-edge e with the origin at v - Start_edge ← e # Adding a Vertex/ (1) the #### Adding a Vertex - New vertex x - New edges: $e_{1,2}$ and $e_{1,2}$ " - IncidentEdge(x) = $e_{1,2}'$ - Origin($e_{1,2}'$) = x - Next($e_{1,2}$ ') = next ($e_{1,2}$) - Prev(e_{1,2}') = e_{1,2}" - IncidentFace($e_{1,2}'$) = f_2 - Origin($e_{1,2}$ ") = origin($e_{1,2}$) - Next(e_{1,2}") = e_{1,2} - Prev(e_{1,2}") = prev(e_{1,2}) - IncidentFace(e_{1,2}") = f₂ - Next(Prev($e_{1,2}$)) = $e_{1,2}$ " - Prev(Next($e_{1,2}$)) = $e_{1,2}$ - Delete edge e_{1,2} #### Adding a Vertex - New edges: $e_{1,1}$ and $e_{1,1}$ " - Origin($e_{1,1}$) = origin($e_{1,1}$) - Next($e_{1,1}'$) = $e_{1,1}''$ - $Prev(e_{1,1}') = prev(e_{1,1})$ - IncidentFace(e_{1,1}') = f₁ - Origin($e_{1,1}''$) = $e_{1,1}'$ - Next($e_{1,1}$ ") = next($e_{1,1}$) - Prev($e_{1,1}^{"}$) = $e_{1,1}^{"}$ - IncidentFace($e_{1,1}^{\prime\prime}$) = f_1 - Next(prev($e_{1,1}$)) = $e_{1,1}$ - Prev(next($e_{1,1}$)) = $e_{1,1}$ " - Twin($e_{1,2}'$) = $e_{1,1}'$ - Twin($e_{1,1}'$) = $e_{1,2}'$ - Twin($e_{1,2}^{"}$) = $e_{1,1}^{"}$ - Twin(e_{1,1}") = e_{1,2}" - Delete edge e_{1,1} ## Adding a Vertex - If e_{1,1} was starting edge of f₁, need to change it to either one of the new edges - If e_{1,2} was starting edge of f₂, need to change it to either one of the new edges #### Other Operations on DCEL #### Add an Edge - Planar subdivision - e is added - DCEL can be updated in constant time once the edges a and b are known