Doubly Connect Edge List (DCEL)

Notes from the book by de Berg, Van Kreveld, Overmars, and Schwarzkpf.

pp. 29-39
Doubly Connected Edge List (DCEL)

• DCEL is one of the most commonly used representations for planar subdivisions such as Voronoi diagrams.

• It is an edge-based structure which links together the three sets of records:
 – Vertex
 – Edge
 – Face

• It facilitates traversing the faces of planar subdivision, visiting all the edges around a given vertex
Doubly Connected Edge List (DCEL)

- Record for each face, edge, and vertex
 - Geometric information
 - Topological information
 - Attribute information
- Half-edge structure
Doubly Connected Edge List (DCEL)

• Main ideas:
 – Edges are oriented counterclockwise inside each face
 – Since an edge borders two faces, each edge is replaced by two half-edges, one for each face
Doubly Connected Edge List (DCEL)

- The vertex record of a vertex \(v \) stores the coordinates of \(v \). It also stores a pointer \(\text{IncidentEdge}(v) \) to an arbitrary half-edge that has \(v \) as its origin.

- The face record of a face \(f \) stores a pointer to some half-edge on its boundary which can be used as a starting point to traverse \(f \) in counterclockwise order.

- The half-edge record of a half-edge \(e \) stores pointer to:
 - \(\text{Origin}(e) \)
 - \(\text{Twin of } e, \ e.\text{twin or twin}(e) \)
 - The face to its left (\(\text{IncidentFace}(e) \))
 - \(\text{Next}(e) : \) next half-edge on the boundary of \(\text{IncidentFace}(e) \)
 - \(\text{Previous}(e) : \) previous half-edge
Doubly Connected Edge List (DCEL)

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Coordinates</th>
<th>IncidentEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>(x_1, y_1)</td>
<td>$e_{2,1}$</td>
</tr>
<tr>
<td>v_2</td>
<td>(x_2, y_2)</td>
<td>$e_{4,1}$</td>
</tr>
<tr>
<td>v_3</td>
<td>(x_3, y_3)</td>
<td>$e_{3,2}$</td>
</tr>
<tr>
<td>v_4</td>
<td>(x_4, y_4)</td>
<td>$e_{6,1}$</td>
</tr>
<tr>
<td>v_5</td>
<td>(x_5, y_5)</td>
<td>$e_{9,1}$</td>
</tr>
<tr>
<td>v_6</td>
<td>(x_6, y_6)</td>
<td>$e_{7,1}$</td>
</tr>
</tbody>
</table>
Doubly Connected Edge List (DCEL)

<table>
<thead>
<tr>
<th>Face</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>e_{1,1}</td>
</tr>
<tr>
<td>f_2</td>
<td>e_{5,1}</td>
</tr>
<tr>
<td>f_3</td>
<td>e_{5,2}</td>
</tr>
<tr>
<td>f_4</td>
<td>e_{8,1}</td>
</tr>
<tr>
<td>f_5</td>
<td>e_{9,2}</td>
</tr>
</tbody>
</table>

\[f_1, f_2, f_3, f_4, f_5 \]

\[e_{1,1}, e_{5,1}, e_{5,2}, e_{8,1}, e_{9,2} \]
Doubly Connected Edge List (DCEL)

<table>
<thead>
<tr>
<th>Half-edge</th>
<th>Origin</th>
<th>Twin</th>
<th>IncidentFace</th>
<th>Next</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{3,1}</td>
<td>v_2</td>
<td>e_{3,2}</td>
<td>f_1</td>
<td>e_{1,1}</td>
<td>e_{2,1}</td>
</tr>
<tr>
<td>e_{3,2}</td>
<td>v_3</td>
<td>e_{3,1}</td>
<td>f_2</td>
<td>e_{4,1}</td>
<td>e_{5,1}</td>
</tr>
<tr>
<td>e_{4,1}</td>
<td>v_2</td>
<td>e_{4,2}</td>
<td>f_2</td>
<td>e_{5,1}</td>
<td>e_{3,2}</td>
</tr>
<tr>
<td>e_{4,2}</td>
<td>v_4</td>
<td>e_{4,1}</td>
<td>f_5</td>
<td>e_{2,2}</td>
<td>e_{8,2}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Doubly Connected Edge List (DCEL)

- **Storage space requirement:**
 - Linear in the number of vertices, edges, and faces
Doubly Connected Edge List (DCEL)

- **Operations:**
 - Walk around the boundary of a given face in CCW order
 - Access a face from an adjacent one
 - Visit all the edges around a given vertex
Doubly Connected Edge List (DCEL)

• **Interesting Queries:**
 – Given a DCEL description, a line L and a half-edge that this line cuts, efficiently find all the faces cut by L.
Doubly Connected Edge List (DCEL)

- **Traversing face** f:
 - Given: an edge of f
 1. Determine the half-edge e incident on f
 2. Start_edge $\leftarrow e$
 3. While next(e) \neq start_edge then
 $\quad e \leftarrow$ next (e)
Doubly Connected Edge List (DCEL)

- **Traversing all edges incident on a vertex** v
 - Note: we only output the half-edges whose origin is v
 - Given: a half-edge e with the origin at v
 1. Start_edge $\leftarrow e$
 2. While next(twin(e)) \neq start_edge then
 e \leftarrow next(twin(e))
Adding a Vertex
Adding a Vertex

• New vertex x
• New edges: $e_{1,2}'$ and $e_{1,2}''$

• $\text{IncidentEdge}(x) = e_{1,2}'$

• $\text{Origin}(e_{1,2}') = x$
• $\text{Next}(e_{1,2}') = \text{next}(e_{1,2})$
• $\text{Prev}(e_{1,2}') = e_{1,2}''$
• $\text{IncidentFace}(e_{1,2}') = f_2$

• $\text{Origin}(e_{1,2}'') = \text{origin}(e_{1,2})$
• $\text{Next}(e_{1,2}'') = e_{1,2}'$
• $\text{Prev}(e_{1,2}'') = \text{prev}(e_{1,2})$
• $\text{IncidentFace}(e_{1,2}'') = f_2$

• $\text{Next(Prev}(e_{1,2})) = e_{1,2}''$
• $\text{Prev(Next}(e_{1,2})) = e_{1,2}'$

• Delete edge $e_{1,2}$
Adding a Vertex

• New edges: \(e_{1,1}'\) and \(e_{1,1}''\)

• \(\text{Origin}(e_{1,1}') = \text{origin}(e_{1,1})\)
• \(\text{Next}(e_{1,1}') = e_{1,1}''\)
• \(\text{Prev}(e_{1,1}') = \text{prev}(e_{1,1})\)
• \(\text{IncidentFace}(e_{1,1}') = f_1\)

• \(\text{Origin}(e_{1,1}'') = e_{1,1}'\)
• \(\text{Next}(e_{1,1}'') = \text{next}(e_{1,1})\)
• \(\text{Prev}(e_{1,1}'') = e_{1,1}'\)
• \(\text{IncidentFace}(e_{1,1}'') = f_1\)

• \(\text{Next}(\text{prev}(e_{1,1})) = e_{1,1}'\)
• \(\text{Prev}(\text{next}(e_{1,1})) = e_{1,1}''\)

• \(\text{Twin}(e_{1,2}') = e_{1,1}'\)
• \(\text{Twin}(e_{1,1}') = e_{1,2}'\)
• \(\text{Twin}(e_{1,2}'') = e_{1,1}''\)
• \(\text{Twin}(e_{1,1}'') = e_{1,2}''\)
• Delete edge \(e_{1,1}\)
Adding a Vertex

- If $e_{1,1}$ was starting edge of f_1, need to change it to either one of the new edges
- If $e_{1,2}$ was starting edge of f_2, need to change it to either one of the new edges
Other Operations on DCEL

• **Add an Edge**
 – Planar subdivision
 – e is added
 – DCEL can be updated in constant time once the edges a and b are known