

Lower Envelopes

Michael T. Goodrich

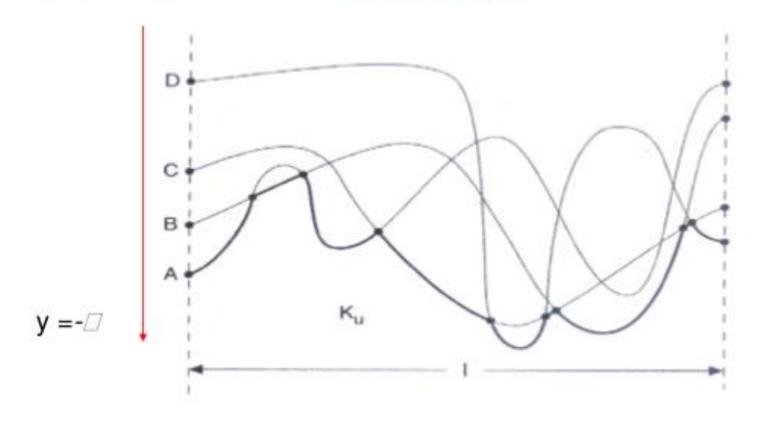
with some slides by Thomas Ottmann

Definition

Definition of the Lower Envelope (untere Kontur) of a set of functions: Given *n* real-valued functions, all defined on a common interval I, then the minimum is :

 $f(x) = \min_{1 \le i \le n} f_i(x)$

The graph of f(x) is called the lower envelope of the fis.



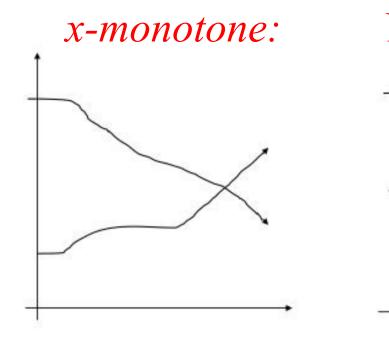
x-Monotone Curves

Definition :

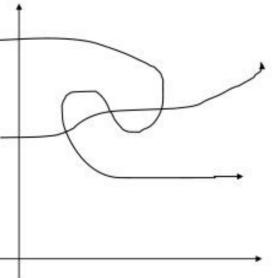
A curve c is x-monotone if any vertical line either does not intersect c, or it intersects c at a single point.

Assumptions

- All functions are x-monotone.
- Function evaluation and determination of intersection points take time O(1).
- The space complexity of the description of a function f_i is also constant.



Not *x-monotone*:



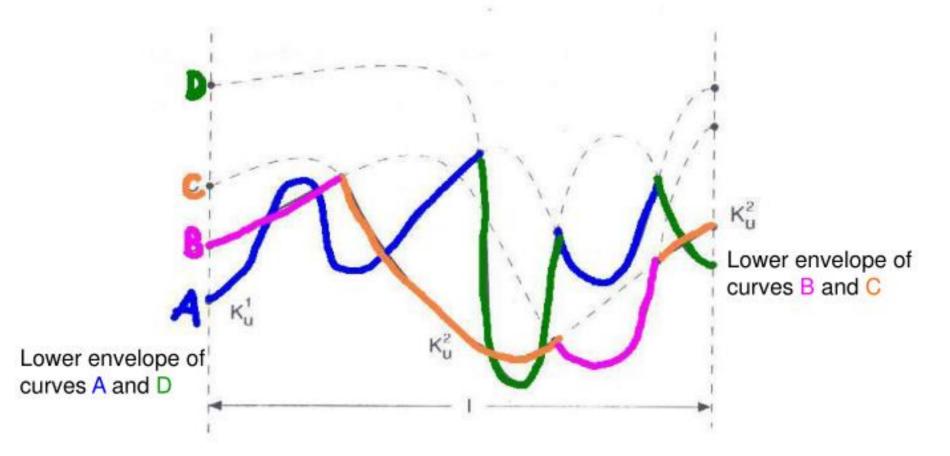
Representing a lower envelope s = # times any pair of curves intersect S=3,n=4 Maximum k=18 (6 pairs) C В в

Divide-and-Conquer + Plane-sweep

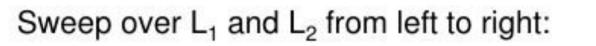
- Divide: the set S of n functions into two disjoint sets S₁ and S₂ of size n/2.
- Conquer: Compute the lower envelopes L₁ and L₂ for the two sets S₁ and S₂ of smaller size.
- Merge: Use a sweep-line algorithm for merging the lower envelopes L₁ and L₂ of S₁ and S₂ into the lower envelope L of the set S.

The Merge Step (plane-sweep)

The lower envelopes of curves A,D and B,C



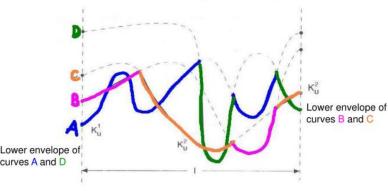
The Merge Step (plane-sweep)



Event points: All vertices of L₁ and L₂, all intersection points of L₁ and L₂

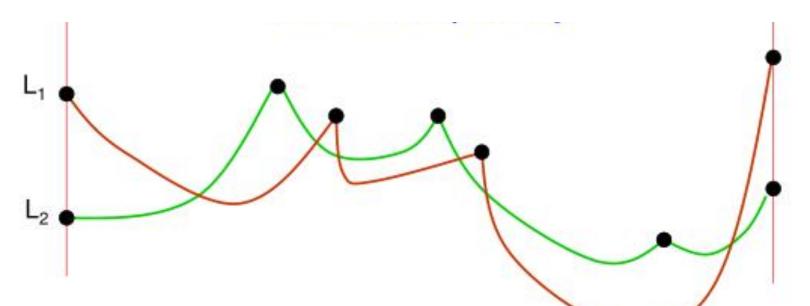
- 1 (the next) right endpoint of a segment of L₁
- 1 (the next) right endpoint of a segment of L₂
- The next intersection point of L_1 and L_2 , if it exists.

Sweep status structure: Contains two segments in y-order



The lower envelopes of curves A,D and B,C

Time Complexity



The lower envelope can be computed in time proportional to the number of events (halting points of the sweep line).

At each event point, a constant amount of work is sufficient to update the SSS and to output the result.

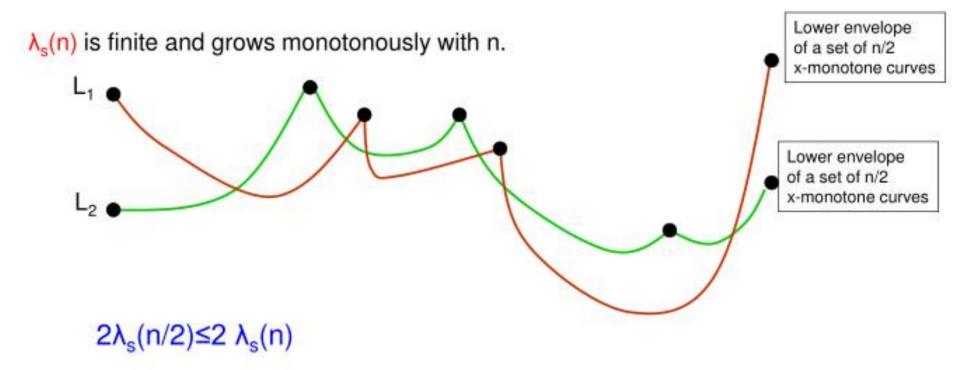
Total runtime of the merge step: O(#events).

A Complexity Measure

Define $\lambda_s(n)$:

the maximum number of segments of the lower envelope of an arrangement of

- n different x-monotone curves over a common interval
- such that every two curves have at most s intersection points



Analyzing Divide-and-Conquer

If n =1, do nothing, otherwise:

- Divide: the set S of n functions into two disjoint sets S₁ and S₂ of size n/2.
- Conquer: Compute the lower envelopes L₁ and L₂ for the two sets S₁ and S₂ of smaller size.
- Merge: Use a sweep-line algorithm for merging the lower envelopes L₁ and L₂ of S₁ and S₂ into the lower envelope L of the set S.

Time complexity T(n) of the D&C/Sweep algorithm for a set of n x-monotone curves, s.t. each pair of curves intersects in at most s points:

T(1) = CT(n) $\leq 2 T(n/2) + C \lambda_s(n)$

Time Complexity

Using the Lemma : For all s, $n \ge 1$, $2\lambda_s(n) \le \lambda_s(2n)$,

and the recurrence relation T(1) = C, $T(n) \le 2 T(n/2) + C \lambda_s(n)$ yields:

Theorem: To calculate the lower envelope of n different x-monotone curves on the same interval, with the property that any two curves intersect in at most s points can be computed in time $O(\lambda_s(n) \log n)$.

So we just need a good upper bound for $\lambda_s(n)$...

Davenport-Schinzel Sequences (DSS)

Consider words (strings) over an alphabet {A, B, C,...} of n letters.

A DSS of order s is a word such that

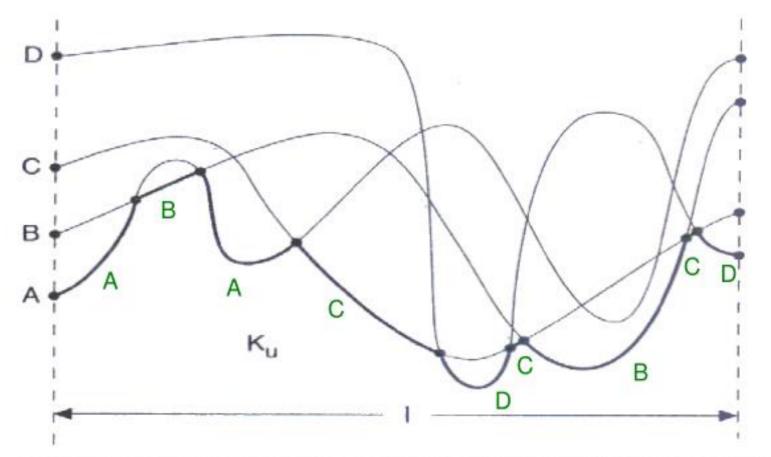
- no letter occurs more than once on any two consecutive positions
- the order in which any two letters occur in the word changes at most s times.

Examples: ABBA is no DSS, ABDCAEBAC is DSS of order 4, (it contains A..B..A.B..A)

Theorem:

The maximal length of a DSS of order *s* over an alphabet of *n* letters is $\lambda_s(n)$.

Relationship to Lower Envelopes



Lower envelope contains the segments ABACDCBCD in this order.

Because s = 3, no pair of letters alternates more than 3 times. Thus, this is a DSS of order 3.

"Almost" Linear Size

Properties of $\lambda_s(n)$

- 1. $\lambda_1(n) = n$
- 2. $\lambda_2(n) = 2n 1$
- 3. $\lambda_s(n) \leq s (n-1) n/2 + 1$
- 4. $\lambda_s(n) \in O(n \log^* n)$, where $\log^* n$ is the smallest integer *m*, s.t. the *m*-th iteration of the logarithm of n

```
log<sub>2</sub>(log<sub>2</sub>(...(log<sub>2</sub>(n))...))
```

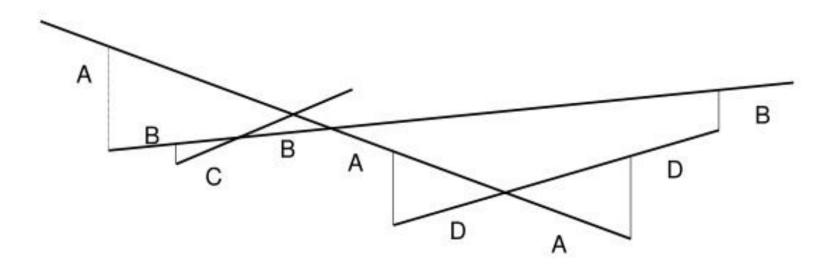
yields a value ≤ 1 :

Note: For realistic values of n, the value log *n can be considered as constant!

```
Example: For all n \le 10^{20000}, \log n \le 5
```

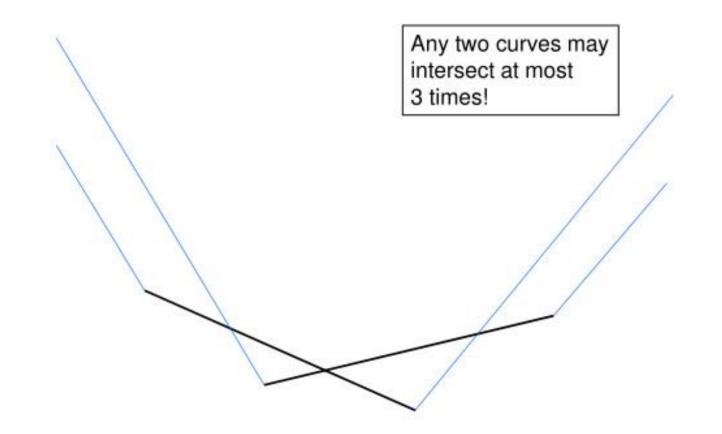
Line Segments

Lower envelope of an arrangement of line segments in general position



Theorem: The lower envelope of n linesegments in general position has $O(\lambda_3(n))$ many segments. It can be computed in time $O(\lambda_3(n) \log n)$.

Line Segments



The lower envelope of line segments has size O(n log* n), so it is almost linear, but not quite linear.