Computational Geometry

Lower Envelopes

Michael T. Goodrich

Definition

Definition of the Lower Envelope (untere Kontur) of a set of functions: Given n real-valued functions, all defined on a common interval I, then the minimum is :

$$
f(x)=\min _{1 \text { sisn } n} f_{i}(x)
$$

The graph of $f(x)$ is called the lower envelope of the $f i$ s.

x-Monotone Curves

Definition :

A curve c is x -monotone if any vertical line either does not intersect c , or it intersects c at a single point.

Assumptions

- All functions are x-monotone.
- Function evaluation and determination of intersection points take time O (1).
- The space complexity of the description of a function f_{i} is also constant.

Representing a lower envelope

$s=\#$ times any pair of curves intersect

Divide-and-Conquer + Plane-sweep

1. Divide: the set S of n functions into two disjoint sets S_{1} and S_{2} of size $\mathrm{n} / 2$.
2. Conquer: Compute the lower envelopes L_{1} and L_{2} for the two sets S_{1} and S_{2} of smaller size.
3. Merge: Use a sweep-line algorithm for merging the lower envelopes L_{1} and L_{2} of S_{1} and S_{2} into the lower envelope L of the set S .

The Merge Step (plane-sweep)

The lower envelopes of curves A, D and B, C

The Merge Step (plane-sweep)

The lower envelopes of curves A,D and B,C

Sweep over L_{1} and L_{2} from left to right:

Event points: All vertices of L_{1} and L_{2}, all intersection points of L_{1} and L_{2}
At each instance of time, the event queue contains only 3 points:
1 (the next) right endpoint of a segment of L_{1}
1 (the next) right endpoint of a segment of L_{2}
The next intersection point of L_{1} and L_{2}, if it exists.

Sweep status structure: Contains two segments in y-order

Time Complexity

The lower envelope can be computed in time proportional to the number of events (halting points of the sweep line).

At each event point, a constant amount of work is sufficient to update the SSS and to output the result.

Total runtime of the merge step: $\mathrm{O}(\#$ \#events).
How large is this number?

A Complexity Measure

Define $\lambda_{s}(n)$:
the maximum number of segments of the lower envelope of an arrangement of

- n different x -monotone curves over a common interval
- such that every two curves have at most s intersection points
$\lambda_{s}(n)$ is finite and grows monotonously with n.

$2 \lambda_{s}(n / 2) \leq 2 \lambda_{s}(n)$

Analyzing Divide-and-Conquer

If $\mathrm{n}=1$, do nothing, otherwise:

1. Divide: the set S of n functions into two disjoint sets S_{1} and S_{2} of size $\mathrm{n} / 2$.
2. Conquer: Compute the lower envelopes L_{1} and L_{2} for the two sets S_{1} and S_{2} of smaller size.
3. Merge: Use a sweep-line algorithm for merging the lower envelopes L_{1} and L_{2} of S_{1} and S_{2} into the lower envelope L of the set S.

Time complexity $T(n)$ of the D\&C/Sweep algorithm for a set of n x-monotone curves, s.t. each pair of curves intersects in at most s points:
$T(1)=C$
$T(n) \leq 2 T(n / 2)+C \lambda_{s}(n)$

Time Complexity

Using the Lemma : For all $s, n \geq 1,2 \lambda_{s}(n) \leq \lambda_{s}(2 n)$,
and the recurrence relation $T(1)=C, T(n) \leq 2 T(n / 2)+C \lambda_{s}(n)$ yields:
Theorem: To calculate the lower envelope of n different x-monotone curves on the same interval, with the property that any two curves intersect in at most s points can be computed in time $O\left(\lambda_{s}(n) \log n\right)$.

So we just need a good upper bound for $\lambda_{s}(n) \ldots$

Davenport-Schinzel Sequences (DSS)

Consider words (strings) over an alphabet $\{A, B, C, \ldots\}$ of n letters.
A DSS of order s is a word such that

- no letter occurs more than once on any two consecutive positions
- the order in which any two letters occur in the word changes at most s times.

Examples: ABBA is no DSS, ABDCAEBAC is DSS of order 4, (it contains A..B..A..B..A)

```
Theorem:
The maximal length of a DSS of order s over an alphabet of \(n\) letters is \(\lambda_{s}(n)\).
```


Relationship to Lower Envelopes

Lower envelope contains the segments $A B A C D C B C D$ in this order.
Because $s=3$, no pair of letters alternates more than 3 times.
Thus, this is a DSS of order 3.

"Almost" Linear Size

Properties of $\lambda_{s}(n)$

1. $\lambda_{1}(n)=n$
2. $\lambda_{2}(n)=2 n-1$
3. $\lambda_{s}(n) \leq s(n-1) n / 2+1$
4. $\lambda_{s}(n) \in O\left(n \log ^{*} n\right)$, where $\log ^{*} n$ is the smallest integer m, s.t. the m-th iteration of the logarithm of n

$$
\log _{2}\left(\log _{2}\left(\ldots\left(\log _{2}(n)\right) \ldots\right)\right)
$$

yields a value ≤ 1 :
Note: For realistic values of n, the value $\log ^{*} n$ can be considered as constant!
Example: For all $n \leq 10^{20000}, \log ^{*} n \leq 5$

Line Segments

Lower envelope of an arrangement of line segments in general position

Theorem: The lower envelope of n linesegments in general position has $O\left(\lambda_{3}(n)\right)$ many segments. It can be computed in time $O\left(\lambda_{3}(n) \log n\right)$.

Line Segments

The lower envelope of line segments has size $O\left(n \log ^{*} n\right)$, so it is almost linear, but not quite linear.

