Computing the Overlay of Two Subdivisions

Michael Goodrich

Computational Geometry

DCEL contains:

- a record for each vertex,
(1) Coordinates (v) : the coordinates of v,
(2) IncidentEdge (v): a pointer to an arbitrary half-edge that has v as its origin.
- a record for each face,
(1) OuterComponent (f) : to some half-edge on its outer boundary (nil if unbounded),
(2) InnerComponents (f) : a pointer to some half-edge on the boundary of the hole, for each hole.
- a record for each half-edge \vec{e},
(1) $\operatorname{Origin}(\vec{e})$: a pointer to its origin,
(2) $\operatorname{Twin}(\vec{e})$ a pointer to its twin half-edge,
(3) IncidentFace (\vec{e}) : a pointer to the face that it bounds.
(4) $\operatorname{Next}(\vec{e})$ and $\operatorname{Prev}(\vec{e})$: a pointer to the next and previous edge on the boundary of IncidentFace (\vec{e}).

Example DCEL

Computing the Overlay

- Input: DCEL for S_{1} and DCEL for S_{2}
- Output: DCEL for the overlay of S_{1} and S_{2}

Computing the Overlay

- Initialization: copy the DCEL for S_{1} and S_{2}
- These are then "merged" into one

Use Our Plane-Sweep Algorithm

- Plane-sweep as in our line segment intersection algorithm

A New Step

- For each intersection event, add a new vertex to the merged DCEL

Time Complexity

- The running time is $\mathrm{O}((\mathrm{n}+\mathrm{k}) \log \mathrm{n})$, where n is the total size of the two input subdivisions and k is the number of intersections
- And k can be $\mathrm{O}\left(\mathrm{n}^{2}\right)$:

Boolean Operations

- Essentially the same algorithm can be used for geometric Boolean operations

