Computing the Overlay of Two Subdivisions

Michael Goodrich Computational Geometry

DCEL contains:

- a record for each vertex,
 - \bigcirc Coordinates(v): the coordinates of v,
 - 2 IncidentEdge(v): a pointer to an arbitrary half-edge that has v as its origin.
- a record for each face,
 - ① OuterComponent(f): to some half-edge on its outer boundary (nil if unbounded),
 - 2 InnerComponents(f): a pointer to some half-edge on the boundary of the hole, for each hole.
- a record for each half-edge \overrightarrow{e} ,
 - \bigcirc $Origin(\overrightarrow{e})$: a pointer to its origin,
 - 2 $Twin(\overrightarrow{e})$ a pointer to its twin half-edge,
 - 3 $IncidentFace(\overrightarrow{e})$: a pointer to the face that it bounds.
 - 4 $Next(\overrightarrow{e})$ and $Prev(\overrightarrow{e})$: a pointer to the next and previous edge on the boundary of $IncidentFace(\overrightarrow{e})$.

Example DCEL

Vertex	Coordinates	IncidentEdge	
v_1	(0,4)	$ec{e}_{1,1}$	
v_2	(2,4)	$\vec{e}_{4,2}$	
v_3	(2,2)	$\vec{e}_{2,1}$	
v_4	(1, 1)	$ec{e}_{2,2}$	

Face	OuterComponent	InnerComponents
f_1	nil	$ec{e}_{1,1}$
$\underline{\hspace{1cm}} f_2$	$ec{e}_{4,1}$	nil

				v_4	
Half-edge	Origin	Twin	IncidentFace	Next	Prev
$\vec{e}_{1,1}$	v_1	$\vec{e}_{1,2}$	f_1	$\vec{e}_{4,2}$	$\vec{e}_{3,1}$
$\vec{e}_{1,2}$	v_2	$ec{e}_{1,1}$	f_2	$\vec{e}_{3,2}$	$ec{e}_{4,1}$
$\vec{e}_{2,1}$	v_3	$\vec{e}_{2,2}$	f_1	$\vec{e}_{2,2}$	$ec{e}_{4,2}$
$\vec{e}_{2,2}$	v_4	$\vec{e}_{2,1}$	f_1	$\vec{e}_{3,1}$	$ec{e}_{2,1}$
$\vec{e}_{3,1}$	v_3	$\vec{e}_{3,2}$	f_1	$ec{e}_{1,1}$	$ec{e}_{2,2}$
$\vec{e}_{3,2}$	v_1	$\vec{e}_{3,1}$	f_2	$\vec{e}_{4,1}$	$\vec{e}_{1,2}$
$ec{e}_{4,1}$	v_3	$\vec{e}_{4,2}$	f_2	$\vec{e}_{1,2}$	$\vec{e}_{3,2}$
$\vec{e}_{4,2}$	ν_2	$\vec{e}_{4,1}$	f_1	$\vec{e}_{2,1}$	$\vec{e}_{1,1}$

Computing the Overlay

- Input: DCEL for S₁ and DCEL for S₂
- Output: DCEL for the overlay of S₁ and S₂

Computing the Overlay

- Initialization: copy the DCEL for S₁ and S₂
- These are then "merged" into one

Use Our Plane-Sweep Algorithm

Plane-sweep as in our line segment intersection algorithm

A New Step

 For each intersection event, add a new vertex to the merged DCEL

Time Complexity

The running time is O((n+k)log n), where n
is the total size of the two input
subdivisions and k is the number of
intersections

And k can be O(n²):

Boolean Operations

 Essentially the same algorithm can be used for geometric Boolean operations

