Computational Geometry

Point-Line DualityMichael Goodrich

with slides from Carola Wenk

Point-Line Duality

Let $P = \{p_1, ..., p_n\} \subseteq \mathbb{R}^2$ be a set of n points. Now define a set $P^* = \{p_1^*, ..., p_n^*\}$ of n lines as follows:

Primal plane

Point: $p = (p_x, p_y)$

Line: l: y = mx + b

Dual plane

Line: p^* : $y = p_x x - p_y$

Point: $l^* = (m, -b)$

Primal plane

Dual plane

Point:
$$p = (p_x, p_y)$$

Point: $p = (p_x, p_y)$ Line: p^* : $y = p_x x - p_y$

Line: l: y = mx + b Point: $l^* = (m, -b)$

Properties

- $(p^*)^* = p$
- $p \in l \Leftrightarrow l^* \in p^*$ incidence-preserving $p_1 \in l_2 \Leftrightarrow l^*_2 \in p^*_1$
- p lies above $l \Leftrightarrow l^*$ lies above p^*
- p_3 is above $l_1 \Leftrightarrow l_1^*$ is above p_3^*

Primal plane

Dual plane

Point:
$$p = (p_x, p_y)$$

Point: $p = (p_x, p_y)$ Line: p^* : $y = p_x x - p_y$

Line:
$$l: y = mx + b$$
 Point: $l^* = (m, -b)$

Properties

Dual Primal

Points p_1 and p_2 lie on line l_1

Lines p_1^* and p_2^* contain point l_1^*

Point-Line Duality Puzzle


```
p_1 lies above l_1 \Leftrightarrow l_1^* lies above p_1^* p_2 lies on l_1 \Leftrightarrow l_1^* lies on p_2^* p_2 lies on l_2 \Leftrightarrow l_2^* lies on p_2^* p_3 lies below l_1 \Leftrightarrow l_1^* lies below p_3^* p_4 lies above p_2^* p_3 lies above p_4^*
```

Dual plane

Point:
$$p = (p_x, p_y)$$

Point: $p = (p_x, p_y)$ Line: p^* : $y = p_x x - p_y$

Line:
$$l: y = mx + b$$
 Point: $l^* = (m, -b)$

LCH ≅ **UE**

Dual Primal

LCH lower convex hull

UE upper envelope (= pointwise maximum) = halfplane intersection (of upper halfplanes)

- LCH = p_1 , p_2 , p_3 , p_4 , p_5
- UE = $p_1^*, p_2^*, p_3^*, p_4^*, p_5^*$