
1

Computational Geometry

Orthogonal Range Searching
Michael Goodrich

with slides from Carola Wenk

2

Orthogonal range searching

Input: n points in d dimensions
• E.g., representing a database of n records

each with d numeric fields
Query:Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box:
• Are there any points?
• How many are there?
• List the points.

3

Orthogonal range searching

Input: n points in d dimensions
Query:Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box
Goal: Preprocess points into a data structure

to support fast queries
• Primary goal: Static data structure
• In 1D, we will also obtain a
dynamic data structure
supporting insert and delete

4

1D range searching
In 1D, the query is an interval:

First solution:
• Sort the points and store them in an array

• Solve query by binary search on endpoints.
• Obtain a static structure that can list
k answers in a query in O(k + log n) time.

Goal: Obtain a dynamic structure that can list
k answers in a query in O(k + log n) time.

5

1D range searching
In 1D, the query is an interval:

New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:
Store points in the leaves of the tree.

• Internal nodes store copies of the leaves
to satisfy binary search property:

• Node x stores in key[x] the maximum
key of any leaf in the left subtree of x.

6

Example of a 1D range tree

1

6 8 12 14

17

26 35 41 42

43

59 61

key[x] is the maximum key of any leaf in the left subtree of x.

7

Example of a 1D range tree

121

6 8 12 14

17

26 35 41 42

43

59 61

6 26 41 59

1 14 35 43

428

17
x

£ x > x

key[x] is the maximum key of any leaf in the left subtree of x.

Note: # internal nodes
= #leaves – 1 = n – 1
So, O(n) complexity.

8

12

8 12 14

17

26 35 41

26

14

Example of a 1D range query

1

6 42

43

59 61

6 41 59

1

12

8 12 14

17

26 35 41

26

14 35 43

428

17

RANGE-QUERY([7, 41])

x

£ x > x

9

General 1D range query
root

split node

10

Pseudocode, part 1:
Find the split node

1D-RANGE-QUERY(T, [x1, x2])
w ¬ T.root
while w is not a leaf and (x2 £ w.key or w.key < x1)

do if x2 £ w.key
then w ¬ w.left
else w ¬ w.right

// w is now the split node
[traverse left and right from w and report relevant subtrees]

w

11

Pseudocode, part 2: Traverse
left and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node]
// w is now the split node
if w is a leaf
then output the leaf w if x1 £ w.key £ x2
else v ¬ w.left // Left traversal

while v is not a leaf
do if x1 £ w.key

then output all leaves in the subtree rooted at v.right
v ¬ v.left

else v ¬ v.right
output the leaf v if x1 £ v.key £ x2
[symmetrically for right traversal]

w

12

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented
by O(log n) subtrees found in O(log n) time.
Thus:

• Can test for points in interval in O(log n) time.
• Can report all k points in interval in

O(k + log n) time.
• Can count points in interval in

O(log n) time
Space: O(n)
Preprocessing time: O(n log n)

13

2D range trees

14

Store a primary 1D range tree for all the points
based on x-coordinate.

2D range trees

Thus in O(log n) time we can find O(log n) subtrees
representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

15

2D range trees
Idea: In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node. Recursively search within each.

16

2D range tree example

1/1 2/7 3/5 5/8 6/6 7/2

9/31 3 6

2 7

5

5/8

2/7

6/6

3/5

9/3

7/2

1/1

8

6

3

7

2

5

5/8

2/7

3/5

1/1

8

5

7
6/6

9/3

7/2

6

3

2/7

1/1

1

5/8

3/5

56/6

7/2

2

Primary tree

Secondary trees

17

Analysis of 2D range trees
Query time: In O(log2 n) = O((log n)2) time, we can
represent answer to range query by O(log2 n) subtrees.
Total cost for reporting k points: O(k + (log n)2).

Preprocessing time: O(n log n)

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n log n).

18

d-dimensional range trees

Query time: O(k + logd n) to report k points.
Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Each node of the secondary
y-structure stores a tertiary
z-structure representing the points in the subtree
rooted at the node, etc. Save one log factor using

fractional cascading

19

Search in Subsets
Given: Two sorted arrays A1 and A, with A1ÍA

A query interval [l,r]
Task: Report all elements e in A1 and A with l ≤ e ≤ r
Idea: Add pointers from A to A1:

® For each aÎA add a pointer to the
smallest element bÎ A1 with b³a

Query: Find lÎA, follow pointer to A1. Both in A and A1
sequentially output all elements in [l,r].

3 10 19 23 30 37 59 62 80 90

10 19 30 62 80

Query:
[15,40]

A

A1
Runtime: O((log n + k) + (1 + k)) = O(log n + k)

20

Search in Subsets (cont.)
Given: Three sorted arrays A1, A2, and A,

with A1 ÍA and A2ÍA

3 10 19 23 30 37 59 62 80 90

10 19 30 62 80

Query:
[15,40]

A

A1 3 23 37 62 90A2
Runtime: O((log n + k) + (1+k) + (1+k)) = O(log n + k))

Range trees:

X
Y1 Y2

Y1ÈY2

21

Fractional Cascading:
Layered Range Tree

Replace 2D range tree
with a layered range
tree, using sorted
arrays and pointers
instead of the
secondary range trees.

Preprocessing:
O(n log n)

Query:
O(log n + k)

22

Fractional Cascading:
Layered Range Tree

Replace 2D range tree
with a layered range
tree, using sorted
arrays and pointers
instead of the
secondary range trees.

Preprocessing:
O(n log n)

Query:
O(log n + k)

[12,67]x[19,70]

x

x x
x
x
x

x
x

x

23

d-dimensional range trees

Query time: O(k + logd-1 n) to report k points,
uses fractional cascading in the
last dimension

Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Best data structure to date:
Query time: O(k + logd – 1 n) to report k points.
Space: O(n (log n / log log n)d – 1)
Preprocessing time: O(n logd – 1 n)

