Computational Geometry

Orthogonal Range Searching Michael Goodrich

Orthogonal range searching

Input: n points in d dimensions

- E.g., representing a database of n records each with d numeric fields

Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box:
- Are there any points?
- How many are there?
- List the points.

Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries

- Primary goal: Static data structure
- In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
- Solve query by binary search on endpoints.
- Obtain a static structure that can list k answers in a query in $\mathrm{O}(k+\log n)$ time.
Goal: Obtain a dynamic structure that can list k answers in a query in $\mathrm{O}(k+\log n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
- New organization principle: Store points in the leaves of the tree.
- Internal nodes store copies of the leaves to satisfy binary search property:
- Node x stores in $k e y[x]$ the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

$k e y[x]$ is the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

Note: \# internal nodes
$=\#$ leaves $-1=n-1$
So, $\mathrm{O}(n)$ complexity.

$k e y[x]$ is the maximum key of any leaf in the left subtree of x.

Example of a 1D range query

Pseudocode, part 1: Find the split node

1D-Range-Query $\left(T,\left[x_{1}, x_{2}\right]\right)$
$w \leftarrow T$.root
while w is not a leaf and ($x_{2} \leq w . k e y$ or $w . k e y<x_{1}$)
do if $x_{2} \leq w . k e y$
then $w \leftarrow w$.left
else $w \leftarrow w$.right
// w is now the split node
[traverse left and right from w and report relevant subtrees]

Pseudocode, part 2: Traverse left and right from split node

1D-RANGE-QUERY (T, $\left.\left[x_{1}, x_{2}\right]\right)$
[find the split node]
$/ / w$ is now the split node
if w is a leaf
then output the leaf w if $x_{1} \leq w . k e y \leq x_{2}$
else $v \leftarrow w$.left
// Left traversal
while v is not a leaf
do if $x_{1} \leq w . k e y$
then output all leaves in the subtree rooted at v.right

$$
v \leftarrow v . l e f t
$$

else $v \leftarrow v$.right
output the leaf v if $x_{1} \leq v . k e y \leq x_{2}$ [symmetrically for right traversal]

Analysis of 1D-Range-Query

Query time: Answer to range query represented by $\mathrm{O}(\log n)$ subtrees found in $\mathrm{O}(\log n)$ time. Thus:

- Can test for points in interval in $\mathrm{O}(\log n)$ time.
- Can report all k points in interval in $\mathrm{O}(\mathrm{k}+\log n)$ time.
- Can count points in interval in O($\log n$) time
Space: O(n)
Preprocessing time: $\mathrm{O}(n \log n)$

2D range trees

2D range trees

Store a primary 1D range tree for all the points based on x-coordinate.
Thus in $\mathrm{O}(\log n)$ time we can find $\mathrm{O}(\log n)$ subtrees representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

2D range trees

Idea: In primary 1D range tree of x-coordinate, every node stores a secondary 1D range tree based on y-coordinate for all points in the subtree of the node. Recursively search within each.

2D range tree example

Analysis of 2D range trees

Query time: In $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)=\mathrm{O}\left((\log n)^{2}\right)$ time, we can represent answer to range query by $\mathrm{O}\left(\log ^{2} n\right)$ subtrees. Total cost for reporting k points: $\mathrm{O}\left(k+(\log n)^{2}\right)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $\mathrm{O}(n \log n)$.
Preprocessing time: $\mathrm{O}(n \log n)$

d-dimensional range trees

Each node of the secondary y-structure stores a tertiary z-structure representing the points in the subtree rooted at the node, etc. Save one log factor using fractional cascading
Query time: $\mathrm{O}\left(k+\log ^{d} n\right)$ to report k points. Space: O($\left.n \log ^{d-1} n\right)$
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

Search in Subsets

Given: Two sorted arrays A_{1} and A, with $A_{1} \subseteq A$ A query interval $[l, r]$
Task: Report all elements e in A_{1} and A with $l \leq e \leq r$ Idea: Add pointers from A to A_{1} :
\rightarrow For each $a \in A$ add a pointer to the smallest element $b \in A_{1}$ with $b \geq a$
Query: Find $l \in A$, follow pointer to A_{1}. Both in A and A_{1} sequentially output all elements in $[l, r]$.

Runtime: $\mathrm{O}((\log n+k)+(1+k))=\mathrm{O}(\log n+k)$

Search in Subsets (cont.)

Given: Three sorted arrays A_{1}, A_{2}, and A, with $A_{1} \subseteq A$ and $A_{2} \subseteq A$

Runtime: $\mathrm{O}((\log n+k)+(1+k)+(1+k))=\mathrm{O}(\log n+k))$
Range trees:

Fractional Cascading: Layered Range Tree

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing:
$\mathrm{O}(n \log n)$
Query:

Fractional Cascading: Layered Range Tree

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing:

$$
\mathrm{O}(n \log n)
$$

Query:

$\mathrm{O}(\log n+k)$

d-dimensional range trees

Query time: $\mathrm{O}\left(k+\log ^{d-1} n\right)$ to report k points, uses fractional cascading in the last dimension
Space: $O\left(n \log ^{d-1} n\right)$
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

Best data structure to date:
Query time: $\mathrm{O}\left(k+\log ^{d-1} n\right)$ to report k points. Space: $\mathrm{O}\left(n(\log n / \log \log n)^{d-1}\right)$
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

