Computational Geometry

Orthogonal Range Searching Michael Goodrich

with slides from Carola Wenk

Orthogonal range searching

Input: *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned *box* (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

Orthogonal range searching

Input: *n* points in *d* dimensions

- Query: Axis-aligned *box* (in 2D, a rectangle)
 - Report on the points inside the box
- **Goal:** Preprocess points into a data structure to support fast queries
 - Primary goal: *Static data structure*
 - In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
 - Solve query by binary search on endpoints.
 - Obtain a static structure that can list k answers in a query in $O(k + \log n)$ time.

Goal: Obtain a dynamic structure that can list k answers in a query in $O(k + \log n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node *x* stores in *key*[*x*] the maximum key of any leaf in the left subtree of *x*.

key[x] is the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree Note: # internal nodes $\boldsymbol{\chi}$ = #leaves -1 = n - 1So, O(n) complexity.

key[x] is the maximum key of any leaf in the left subtree of x.

35 41

Pseudocode, part 1: Find the split node

1D-RANGE-QUERY(T, $[x_1, x_2]$) $w \leftarrow T.root$ while w is not a leaf and $(x_2 \le w.key \text{ or } w.key \le x_1)$ **do if** $x_2 \leq w.key$ then $w \leftarrow w.left$ else $w \leftarrow w.right$ // w is now the split node [traverse left and right from w and report relevant subtrees]

Pseudocode, part 2: Traverse left and right from split node

```
1D-RANGE-QUERY(T, [x_1, x_2])
    [find the split node]
    // w is now the split node
    if w is a leaf
    then output the leaf w if x_1 \le w.key \le x_2
    else v \leftarrow w.left
                                                        // Left traversal
          while v is not a leaf
             do if x_1 \leq w.key
                 then output all leaves in the subtree rooted at v.right
                        v \leftarrow v.left
                 else v \leftarrow v.right
          output the leaf v if x_1 \le v.key \le x_2
           [symmetrically for right traversal]
```

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented by $O(\log n)$ subtrees found in $O(\log n)$ time. Thus:

- Can test for points in interval in O(log *n*) time.
- Can report all k points in interval in O(k + log n) time.
- Can count points in interval in O(log n) time
- Space: O(n)
 Preprocessing time: O(n log n)

2D range trees

2D range trees

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in $O(\log n)$ time we can find $O(\log n)$ subtrees representing the points with proper *x*-coordinate. How to restrict to points with proper *y*-coordinate?

2D range trees

Idea: In primary 1D range tree of *x*-coordinate, <u>every</u> node stores a *secondary* 1D range tree based on *y*-coordinate for all points in the subtree of the node. Recursively search within each.

2D range tree example Secondary trees 7/2 (1/1)5/8 Primary tree

Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting *k* points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: O(n log n)

d-dimensional range trees Each node of the secondary *y*-structure stores a tertiary *z*-structure representing the points in the subtree rooted at the node, etc. Save one log factor using fractional cascading Query time: $O(k + \log^d n)$ to report k points. **Space:** $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

Search in Subsets

- **Given:** Two sorted arrays A_1 and A, with $A_1 \subseteq A$ A query interval [l,r]
- **Task:** Report all elements e in A_1 and A with $l \le e \le r$
- Idea: Add pointers from *A* to A_1 : \rightarrow For each $a \in A$ add a pointer to the smallest element $b \in A_1$ with $b \ge a$

Query: Find $l \in A$, follow pointer to A_1 . Both in A and A_1 sequentially output all elements in [l,r].

Runtime: $O((\log n + k) + (1 + k)) = O(\log n + k)$

Search in Subsets (cont.)

Given: Three sorted arrays $A_{1,}A_{2}$, and A, with $A_{1} \subseteq A$ and $A_{2} \subseteq A$

Runtime: $O((\log n + k) + (1+k) + (1+k)) = O(\log n + k))$

 $Y_1 \cup Y_2$

Range trees:

X

Fractional Cascading: Layered Range Tree

17

15

5 /7 8 12 15

(5,80) (8,37) (15,99)

17

52

52,23)

21 38 41 52

(33, 30)

(19) (7,10) (12,3) (17,52) (21,49) (41,95) (58,59) (93,30)

58

67

(67, 89)

67

93

58

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing: $O(n \log n)$ Query: $O(\log n + k)$

Fractional Cascading: Layered Range Tree

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing: $O(n \log n)$ Query: $O(\log n + k)$

d-dimensional range trees

Query time: $O(k + \log^{d-1} n)$ to report k points, uses fractional cascading in the last dimension Space: $O(n \log^{d-1} n)$ Preprocessing time: $O(n \log^{d-1} n)$

Best data structure to date: Query time: $O(k + \log^{d-1} n)$ to report k points. Space: $O(n (\log n / \log \log n)^{d-1})$ Preprocessing time: $O(n \log^{d-1} n)$