
1

Computational Geometry

Triangulations and
Guarding Art Galleries

Michael T. Goodrich

with slides by Carola Wenk, Tulane Univ., and Subhash Suri, UCSB

2

Guarding an Art Gallery

• Problem: Given the floor plan of an art gallery, place (a small number
of) cameras/guards such that every point in the art gallery can be seen
by some camera.

Art Gallery Floor plan

Polygons
• A polygonal curve is a finite chain of line segments.
• Line segments called edges, their endpoints called

vertices.
• A simple polygon is a closed polygonal curve without

self-intersection.

3

4

Guarding an Art Gallery:
Computational Geometry version

• Problem: Given the floor plan of an art gallery as a simple polygon P
in the plane with n vertices. Place (a small number of) cameras/guards
on vertices of P such that every point in P can be seen by some
camera.

5

Guarding an Art Gallery

• There are many different variations:
– Guards on vertices only, or in the interior as well
– Guard the interior or only the walls
– Stationary versus moving or rotating guards

• Finding the minimum number of guards is
NP-hard (Aggarwal ’84)

• First subtask: Bound the number of guards
that are necessary to guard a polygon in the
worst case.

6

Guard Using Triangulations
• Decompose the polygon into shapes that are easier to handle:

triangles
• A triangulation of a polygon P is a decomposition of P into

triangles whose vertices are vertices of P. In other words, a
triangulation is a maximal set of non-crossing diagonals.

diagonal

7

Guard Using Triangulations
• A polygon can be triangulated in many different ways.
• Guard polygon by putting one camera in each triangle:

Since the triangle is convex, its guard will guard the
whole triangle.

8

Triangulations of Simple Polygons
Theorem 1: Every simple polygon admits a

triangulation, and any triangulation of a simple
polygon with n vertices consists of exactly n-2
triangles.

Proof: By induction.
• n=3:
• n>3: Let u be leftmost vertex, and v

and w adjacent to v. If vw does not
intersect boundary of P: #triangles
= 1 for new triangle + (n-1)-2 for
remaining polygon = n-2

u

w

v P

9

Triangulations of Simple Polygons
Theorem 1: Every simple polygon admits a

triangulation, and any triangulation of a simple
polygon with n vertices consists of exactly n-2
triangles.

If vw intersects boundary of P: Let u’≠u
be the the vertex furthest to the left of vw.
Take uu’ as diagonal, which splits P into
P1 and P2.
#triangles in P
= #triangles in P1 + #triangles in P2
= #vertices in P1 – 2 + #vertices in P2 - 2
= n + 2 - 4 = n-2

u

w

v

u’

P

P1

P2

Example

• Polygon below has n = 13, and 11 triangles.

10

11

3-Coloring
• A 3-coloring of a graph is an assignment of

one out of three colors to each vertex such
that adjacent vertices have different colors.

12

3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.

Proof: Consider the dual graph of the triangulation:
– vertex for each triangle
– edge for each edge between triangles

13

3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.

The dual graph is a tree (connected acyclic graph): Removing
an edge corresponds to removing a diagonal in the polygon
which disconnects the polygon and with that the graph.

14

3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.
Traverse the tree (DFS). Start with a triangle and give
different colors to vertices. When proceeding from one
triangle to the next, two vertices have known colors, which
determines the color of the next vertex.

15

Art Gallery Theorem

Theorem 2: For any simple polygon with n vertices
guards are sufficient to guard the whole polygon.

There are polygons for which guards are necessary.
n
3 n

3
Proof: For the upper bound, 3-color any triangulation of the
polygon and take the color with the minimum number of
guards.
Lower bound:

n
3 spikes

Need one guard per spike.

16

Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the
proof of Theorem 1.

• There is a very complicated O(n) time algorithm
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)

17

Monotone Polygons

• A simple polygon P is called monotone with respect to a
line l iff for every line l’ perpendicular to l the intersection of
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

x-monotone
(monotone

w.r.t l)

18

Monotone Polygons

• A simple polygon P is called monotone with respect to a
line l iff for every line l’ perpendicular to l the intersection of
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

NOT x-monotone
(NOT monotone

w.r.t l)

19

Monotone Polygons

• A simple polygon P is called monotone with respect to a
line l iff for every line l’ perpendicular to l the intersection of
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis

l

NOT monotone w.r.t
any line l

l’

20

Test Monotonicity
How to test if a polygon is x-monotone?

– Find leftmost and rightmost vertices, O(n) time
→ Splits polygon boundary in upper chain and lower chain
– Walk from left to right along each chain, checking that x-

coordinates are non-decreasing. O(n) time.

21

Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the
proof of Theorem 1.

• There is a very complicated O(n) time algorithm
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)

22

Triangulate an l-Monotone Polygon
• Using a greedy plane sweep in direction l
• Sort vertices by increasing x-coordinate (merging the upper and lower

chains in O(n) time)
• Greedy: Triangulate everything you can to the left of the sweep line.

1

2

3 4

l

5

6

7

8
9

10

11 12

13

23

Triangulate an l-Monotone Polygon
• Store stack (sweep line status) that contains vertices that have

been encountered but may need more diagonals.

• Maintain invariant: Un-triangulated region
has a funnel shape. The funnel consists of an
upper and a lower chain. One chain is one line
segment. The other is a reflex chain (interior
angles >180°) which is stored on the stack.

• Update, case 1: new vertex lies on chain
opposite of reflex chain. Triangulate.

24

Triangulate an l-Monotone Polygon
• Update, case 2: new vertex lies on reflex chain

– Case a: The new vertex lies above line through
previous two vertices: Triangulate.

– Case b: The new vertex lies below line through
previous two vertices: Add to reflex chain (stack).

25

Triangulate an l-Monotone Polygon
• Distinguish cases in constant time using half-plane

tests
• Sweep line hits every vertex once, therefore each

vertex is pushed on the stack at most once.
• Every vertex can be popped from the stack (in order to

form a new triangle) at most once.
⇒ Constant time per vertex
⇒ O(n) total runtime

Example

26

27

Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the
proof of Theorem 1.

• There is a very complicated O(n) time algorithm
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)

28

Trapezoidal Decomposition
• Extend a vertical ray up and/or down into the interior of

the polygon from each vertex until it hits the boundary

29

Trapezoidal Decomposition
• Use plane sweep algorithm.
• At each vertex, extend vertical line until it hits a

polygon edge.
• Each face of this decomposition is a trapezoid; which

may degenerate into a triangle.
• Time complexity is O(n log n).

30

Computing a Monotone Subdivision

• Monotone subdivision: subdivision of the simple
polygon P into monotone pieces

split vertex merge vertexinterior

31

Monotone Subdivision
• Call a reflex vertex with both rightward (leftward) edges a

split (merge) vertex.
– Non-monotonicity comes from split or merge vertices.

• Add a diagonal to each to remove the non-monotonicity.
• To each split (merge) vertex, add a diagonal joining it to the

polygon vertex of its left (right) trapezoid. Output as a
DCEL.

	Computational Geometry
	Guarding an Art Gallery
	Polygons
	Guarding an Art Gallery:�Computational Geometry version
	Guarding an Art Gallery
	Guard Using Triangulations
	Guard Using Triangulations
	Triangulations of Simple Polygons
	Triangulations of Simple Polygons
	Example
	3-Coloring
	3-Coloring Lemma
	3-Coloring Lemma
	3-Coloring Lemma
	Art Gallery Theorem
	Triangulating a Polygon
	Monotone Polygons
	Monotone Polygons
	Monotone Polygons
	Test Monotonicity
	Triangulating a Polygon
	Triangulate an l-Monotone Polygon
	Triangulate an l-Monotone Polygon
	Triangulate an l-Monotone Polygon
	Triangulate an l-Monotone Polygon
	Example
	Triangulating a Polygon
	Trapezoidal Decomposition
	Trapezoidal Decomposition
	Computing a Monotone Subdivision
	Monotone Subdivision

