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Guarding an Art Gallery

• Problem: Given the floor plan of an art gallery, place (a small number 
of) cameras/guards such that every point in the art gallery can be seen 
by some camera.

Art Gallery Floor plan



Polygons
• A polygonal curve is a finite chain of line segments.
• Line segments called edges, their endpoints called 

vertices.
• A simple polygon is a closed polygonal curve without 

self-intersection.
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Guarding an Art Gallery:
Computational Geometry version

• Problem: Given the floor plan of an art gallery as a simple polygon P
in the plane with n vertices. Place (a small number of) cameras/guards 
on vertices of P such that every point in P can be seen by some 
camera.



5

Guarding an Art Gallery

• There are many different variations:
– Guards on vertices only, or in the interior as well
– Guard the interior or only the walls
– Stationary versus moving or rotating guards

• Finding the minimum number of guards is 
NP-hard (Aggarwal ’84)

• First subtask: Bound the number of guards 
that are necessary to guard a polygon in the 
worst case.
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Guard Using Triangulations
• Decompose the polygon into shapes that are easier to handle: 

triangles
• A triangulation of a polygon P is a decomposition of P into 

triangles whose vertices are vertices of P. In other words, a 
triangulation is a maximal set of non-crossing diagonals.

diagonal
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Guard Using Triangulations
• A polygon can be triangulated in many different ways.
• Guard polygon by putting one camera in each triangle: 

Since the triangle is convex, its guard will guard the 
whole triangle.
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Triangulations of Simple Polygons
Theorem 1: Every simple polygon admits a 

triangulation, and any triangulation of a simple 
polygon with n vertices consists of exactly n-2
triangles.

Proof: By induction.
• n=3: 
• n>3: Let u be leftmost vertex, and v

and w adjacent to v. If vw does not 
intersect boundary of P: #triangles 
= 1 for new triangle + (n-1)-2 for 
remaining polygon = n-2

u

w

v P
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Triangulations of Simple Polygons
Theorem 1: Every simple polygon admits a 

triangulation, and any triangulation of a simple 
polygon with n vertices consists of exactly n-2
triangles.

If vw intersects boundary of P: Let u’≠u
be the the vertex furthest to the left of vw. 
Take uu’ as diagonal, which splits P into 
P1 and P2. 
#triangles in P
= #triangles in P1 + #triangles in P2
= #vertices in P1 – 2 + #vertices in P2  - 2
= n + 2 - 4 = n-2

u

w

v

u’

P

P1

P2



Example

• Polygon below has n = 13, and 11 triangles.
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3-Coloring
• A 3-coloring of a graph is an assignment of 

one out of three colors to each vertex such 
that adjacent vertices have different colors.
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3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.

Proof: Consider the dual graph of the triangulation:
– vertex for each triangle
– edge for each edge between triangles
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3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.

The dual graph is a tree (connected acyclic graph): Removing 
an edge corresponds to removing a diagonal in the polygon 
which disconnects the polygon and with that the graph.
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3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.
Traverse the tree  (DFS). Start with a triangle and give 
different colors to vertices. When proceeding from one 
triangle to the next, two vertices have known colors, which 
determines the color of the next vertex.
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Art Gallery Theorem

Theorem 2: For any simple polygon with n vertices      
guards are sufficient to guard the whole polygon.        

There are polygons for which       guards are necessary.
n
3  n

3 
Proof: For the upper bound, 3-color any triangulation of the 
polygon and take the color with the minimum number of 
guards.
Lower bound:

n
3  spikes

Need one guard per spike.
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Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the 
proof of Theorem 1.

• There is a very complicated O(n) time algorithm 
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time 
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)
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Monotone Polygons

• A simple polygon P is called monotone with respect to a 
line l iff for every line l’ perpendicular to l the intersection of 
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

x-monotone
(monotone 

w.r.t l)
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Monotone Polygons

• A simple polygon P is called monotone with respect to a 
line l iff for every line l’ perpendicular to l the intersection of 
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

NOT x-monotone
(NOT monotone 

w.r.t l)
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Monotone Polygons

• A simple polygon P is called monotone with respect to a 
line l iff for every line l’ perpendicular to l the intersection of 
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis

l

NOT monotone w.r.t 
any line l

l’
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Test Monotonicity
How to test if a polygon is x-monotone?

– Find leftmost and rightmost vertices, O(n) time
→ Splits polygon boundary in upper chain and lower chain
– Walk from left to right along each chain, checking that x-

coordinates are non-decreasing. O(n) time.
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Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the 
proof of Theorem 1.

• There is a very complicated O(n) time algorithm 
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time 
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)



22

Triangulate an l-Monotone Polygon
• Using a greedy plane sweep in direction l
• Sort vertices by increasing x-coordinate (merging the upper and lower 

chains in O(n) time)
• Greedy: Triangulate everything you can to the left of the sweep line.

1

2

3 4

l

5

6

7

8
9

10

11 12

13



23

Triangulate an l-Monotone Polygon
• Store stack (sweep line status) that contains vertices that have 

been encountered but may need more diagonals.

• Maintain invariant: Un-triangulated region 
has a funnel shape. The funnel consists of an 
upper and a lower chain. One chain is one line 
segment. The other is a reflex chain (interior 
angles >180°) which is stored on the stack.

• Update, case 1: new vertex lies on chain 
opposite of reflex chain. Triangulate.
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Triangulate an l-Monotone Polygon
• Update, case 2: new vertex lies on reflex chain

– Case a: The new vertex lies above line through 
previous two vertices: Triangulate.

– Case b: The new vertex lies below line through 
previous two vertices: Add to reflex chain (stack).
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Triangulate an l-Monotone Polygon
• Distinguish cases in constant time using half-plane 

tests
• Sweep line hits every vertex once, therefore each 

vertex is pushed on the stack at most once.
• Every vertex can be popped from the stack (in order to 

form a new triangle) at most once.
⇒ Constant time per vertex
⇒ O(n) total runtime



Example
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Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the 
proof of Theorem 1.

• There is a very complicated O(n) time algorithm 
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time 
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)
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Trapezoidal Decomposition
• Extend a vertical ray up and/or down into the interior of 

the polygon from each vertex until it hits the boundary
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Trapezoidal Decomposition
• Use plane sweep algorithm.
• At each vertex, extend vertical line until it hits a 

polygon edge.
• Each face of this decomposition is a trapezoid; which 

may degenerate into a triangle.
• Time complexity is O(n log n).
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Computing a Monotone Subdivision

• Monotone subdivision: subdivision of the simple 
polygon P into monotone pieces

split vertex merge vertexinterior
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Monotone Subdivision
• Call a reflex vertex with both rightward (leftward) edges a 

split (merge) vertex.
– Non-monotonicity comes from split or merge vertices.

• Add a diagonal to each to remove the non-monotonicity.
• To each split (merge) vertex, add a diagonal joining it to the 

polygon vertex of its left (right) trapezoid. Output as a 
DCEL.
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