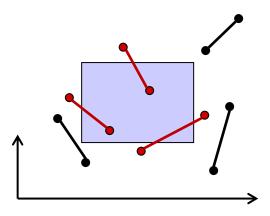
Computational Geometry



Windowing Michael Goodrich

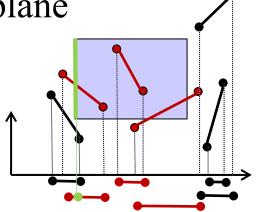
with slides from Carola Wenk and Kevin Buchin

1

Windowing

Input: A set *S* of *n* line segments in the plane

Query: Report all segments in *S* that intersect a given query window



Subproblem: Process a set of intervals on the line into a data structure which supports queries of the type: Report all intervals that contain a query point.

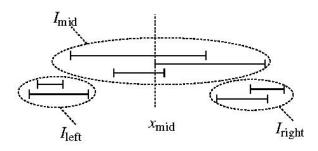
- \Rightarrow Interval trees
- \Rightarrow Segment trees

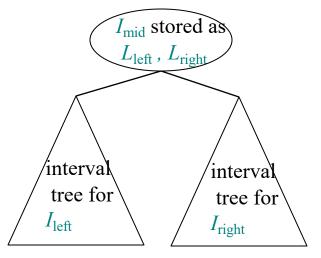
Interval Trees

Input: A set *I* of *n* intervals on the line.

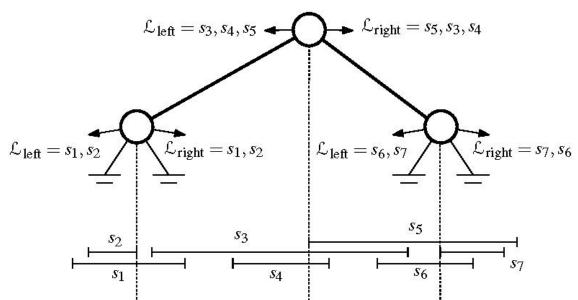
Idea: Partition *I* into $I_{\text{left}} \cup I_{\text{mid}} \cup I_{\text{right}}$ where x_{mid} is the median of the 2*n* endpoints. Store I_{mid} twice as two lists of intervals: L_{left} sorted by left endpoint and as L_{right} sorted by right endpoint.

disjoint union





Interval Trees



Lemma: An interval tree on a set of *n* intervals uses O(n) space and has height $O(\log n)$. It can be constructed recursively in $O(n \log n)$. time.

Proof: Each interval is stored in a set I_{mid} only once, hence O(n) space. In the worst case half the intervals are to the left and right of x_{mid} , hence the height is $O(\log n)$. Constructing the (sorted) lists takes $O(|I^v| + |I^v_{mid}| \log |I^v_{mid}|)$ time per vertex v.

Interval Tree Query

Algorithm QUERYINTERVALTREE(v, q_x)

Input. The root v of an interval tree and a query point q_x .

Output. All intervals that contain q_x .

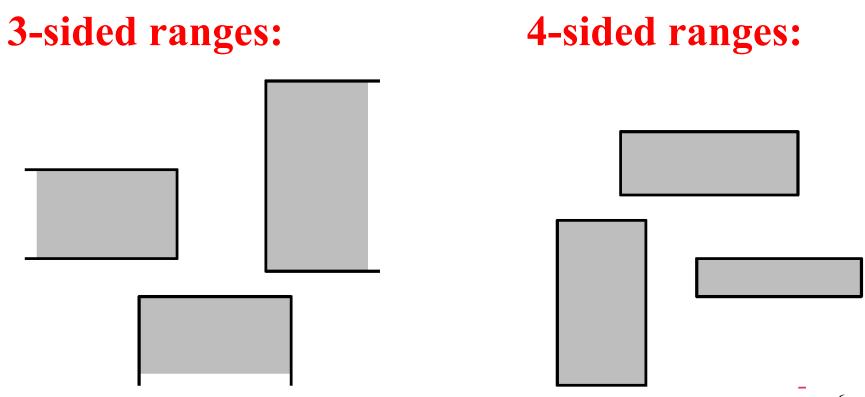
- 1. **if** v is not a leaf
- 2. **then if** $q_x < x_{\text{mid}}(v)$
- 3. **then** Walk along the list $\mathcal{L}_{left}(v)$, starting at the interval with the leftmost endpoint, reporting all the intervals that contain q_x . Stop as soon as an interval does not contain q_x .
- 4. QUERY INTERVALTREE $(lc(v), q_x)$
- 5. else Walk along the list \$\mathcal{L}_{right}(\nu)\$, starting at the interval with the rightmost endpoint, reporting all the intervals that contain \$q_x\$. Stop as soon as an interval does not contain \$q_x\$.
 6. QUERY INTERVALTREE(\$rc(\nu)\$, \$q_x\$)

Theorem: An interval tree on a set of *n* intervals can be constructed in $O(n \log n)$ time and uses O(n) space. All intervals that contain a query point can be reported in $O(\log n + k)$ time, where k =#reported intervals.

Proof: We spend $O(1+k_v)$ time at vertex *v*, where $k_v = \#$ intervals reported at *v*. We visit at most 1 node at any depth.

3-Sided Range Queries

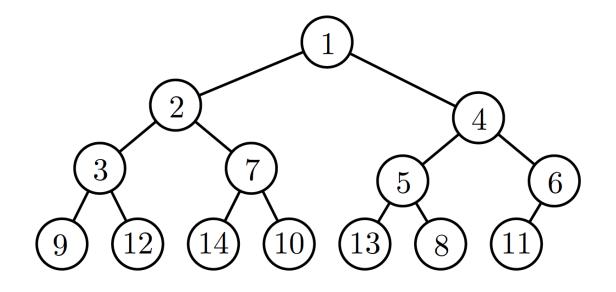
• 3-sided range queries want all points in a range where one of the sides is unbounded.



Priority Search Trees

A priority search tree is like a heap on *x*-coordinate and binary search tree on *y*-coordinate at the same time

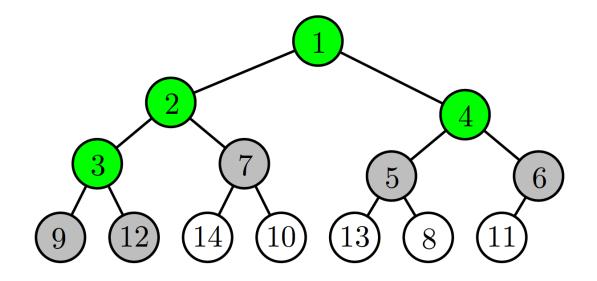
Recall the heap:



Priority Search Trees

A priority search tree is like a heap on *x*-coordinate and binary search tree on *y*-coordinate at the same time

Recall the heap:



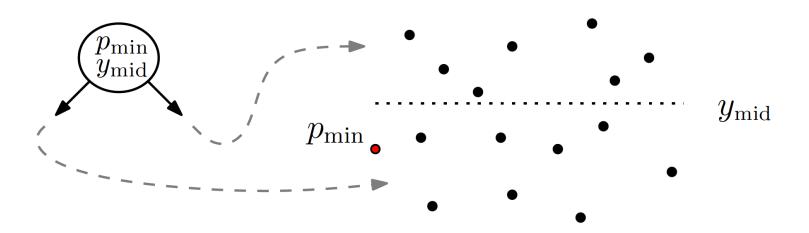
Report all values ≤ 4

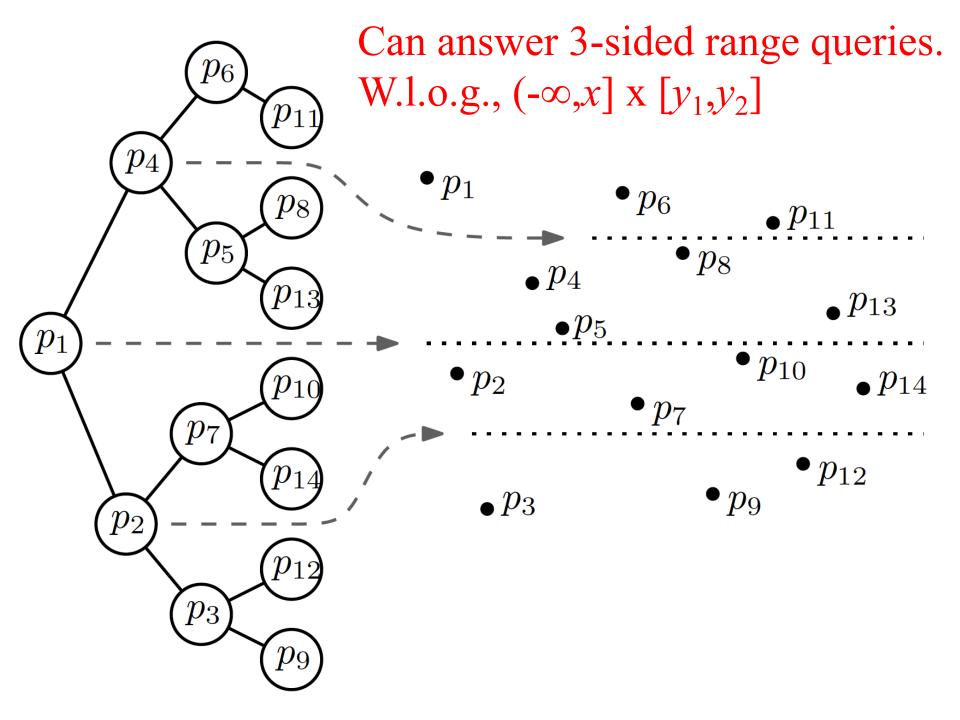
Priority Search Trees

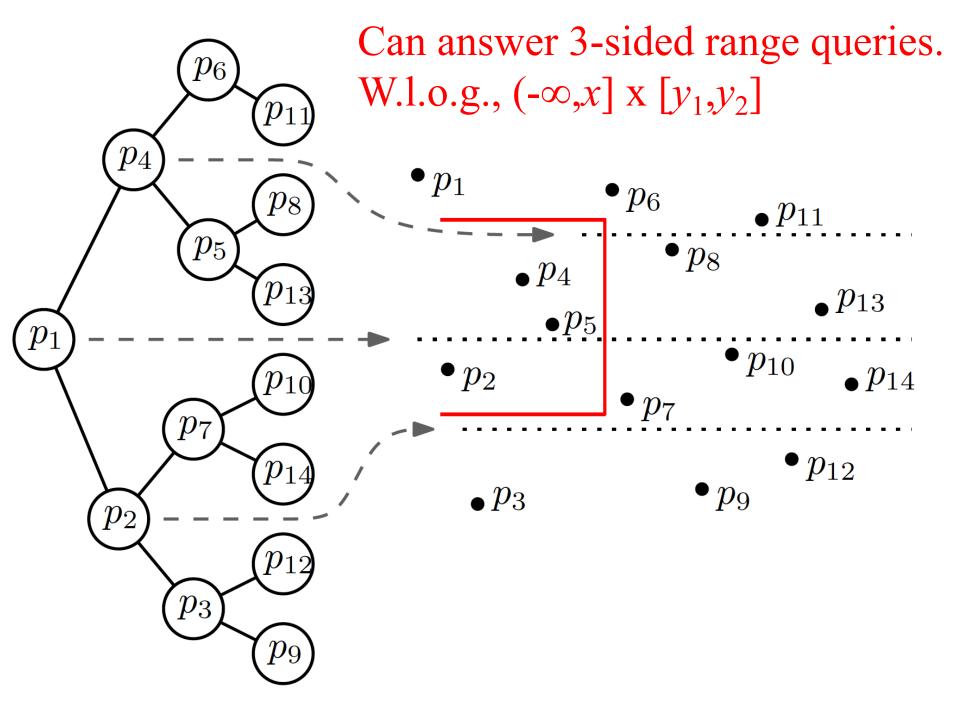
If $P = \emptyset$, then a priority search tree is an empty leaf

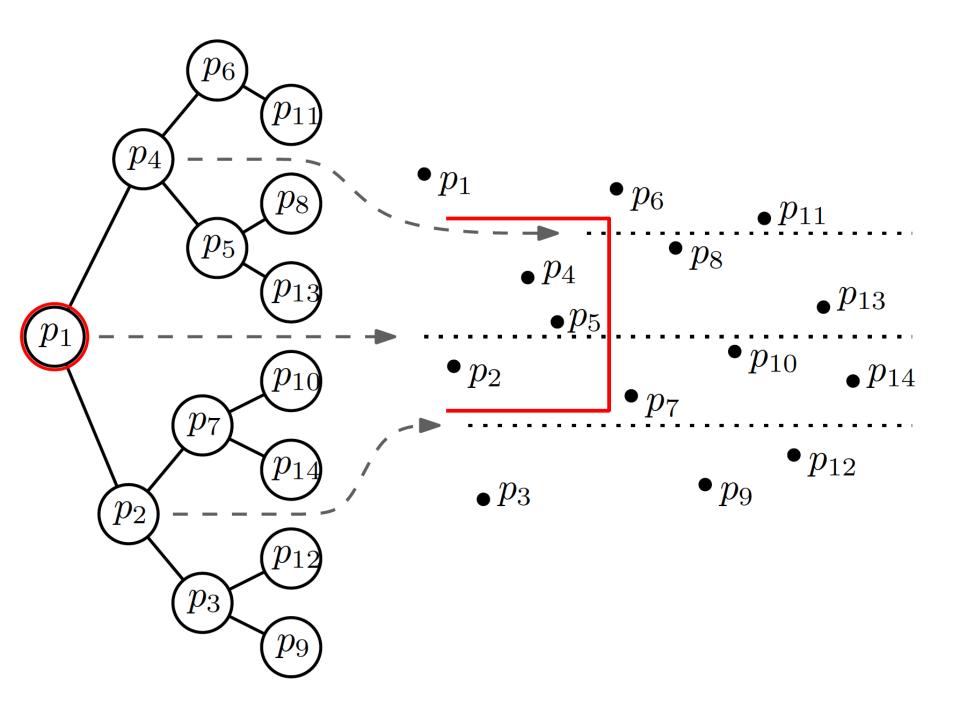
Otherwise, let p_{\min} be the leftmost point in P, and let y_{\min} be the median y-coordinate of $P \setminus \{p_{\min}\}$

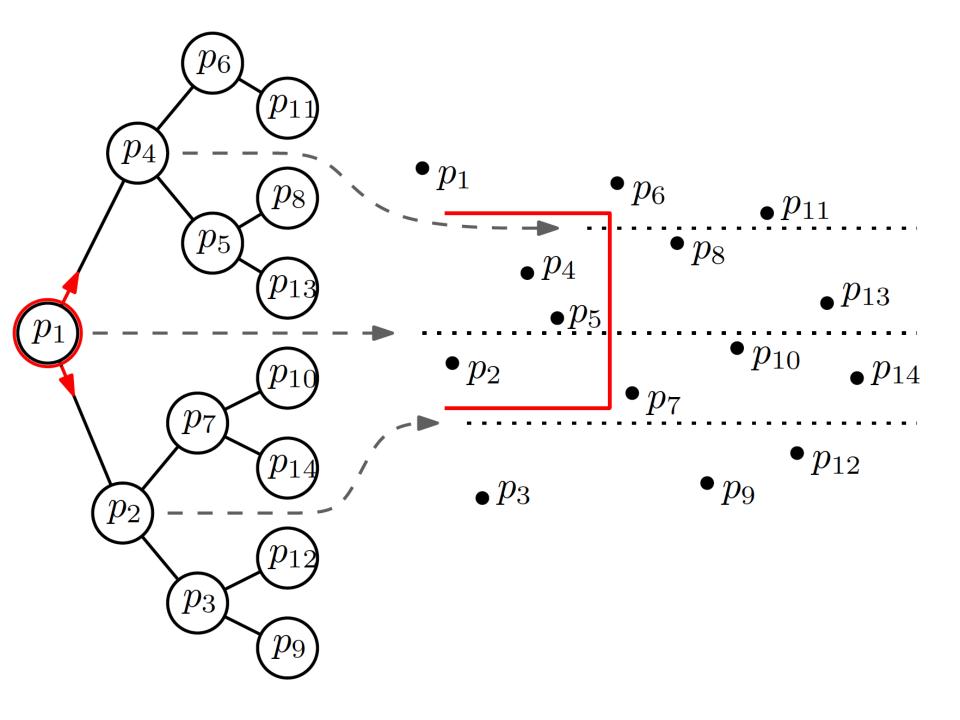
The priority search tree has a node v that stores p_{\min} and y_{\min} , and a left subtree and right subtree for the points in $P \setminus \{p_{\min}\}$ with y-coordinate $\leq y_{\min}$ and $> y_{\min}$

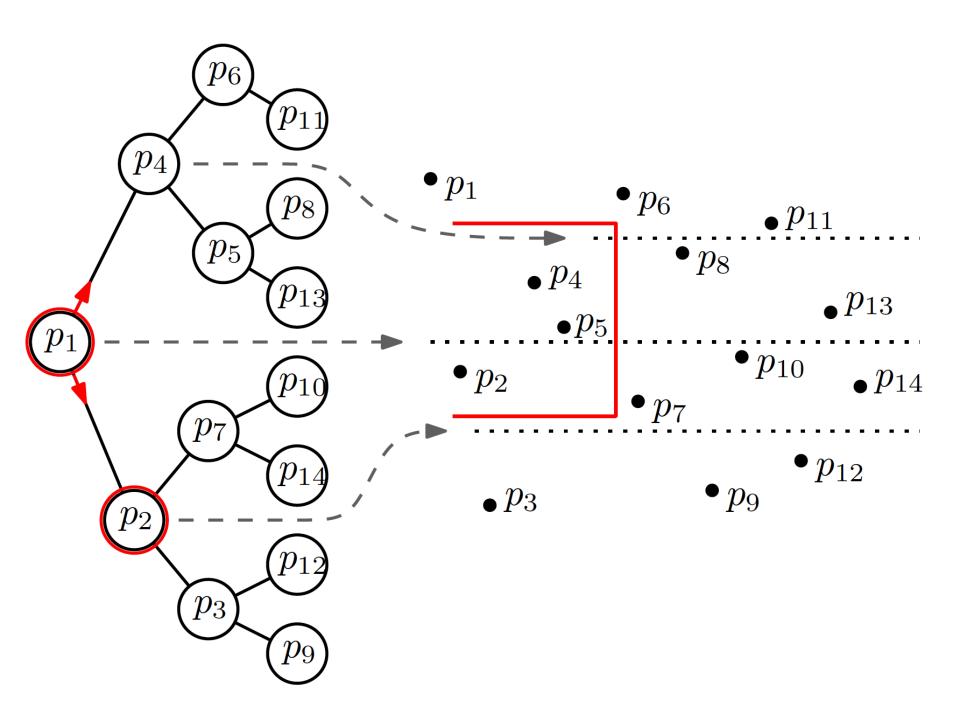


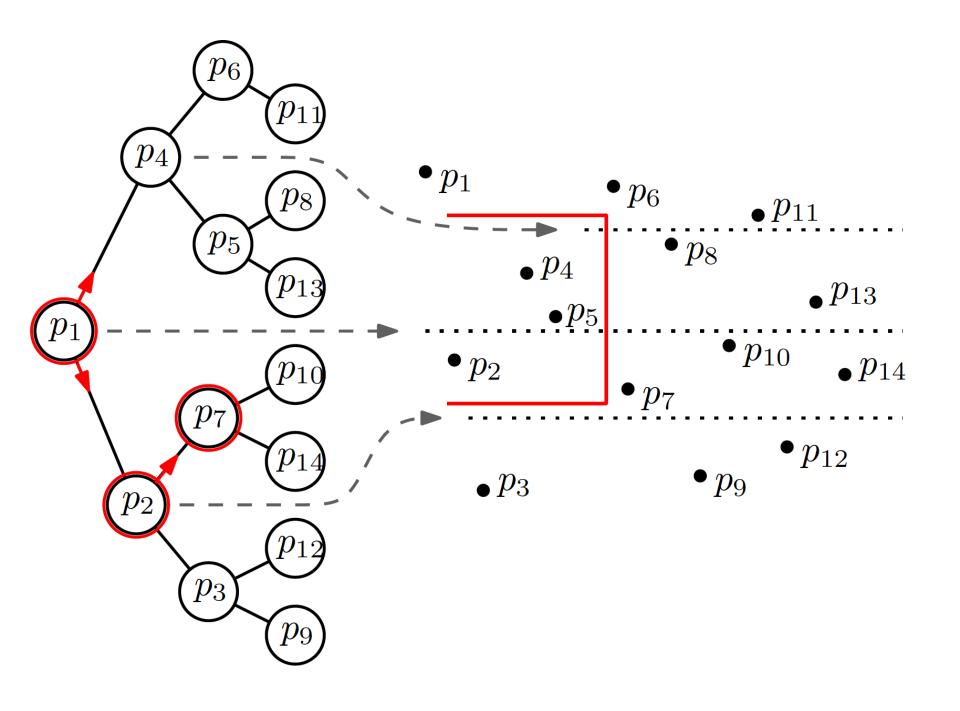


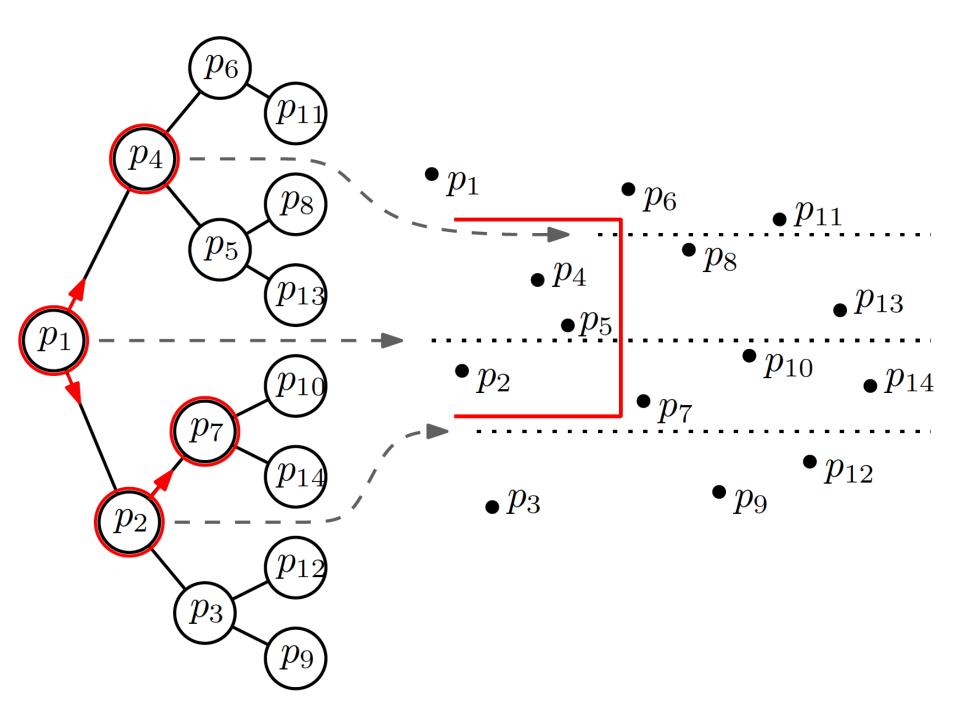


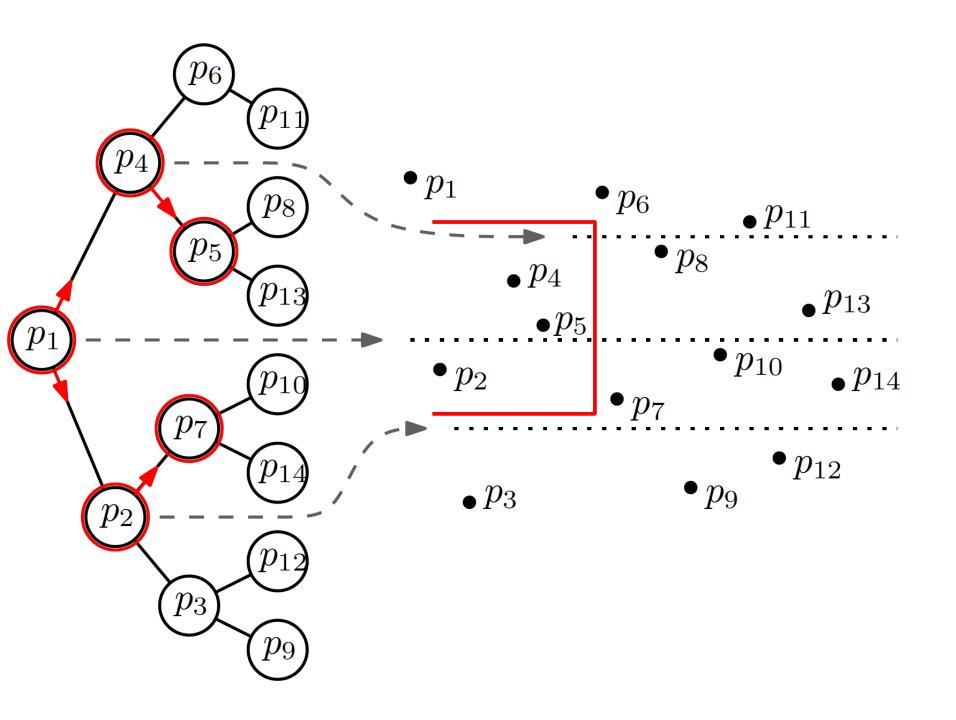


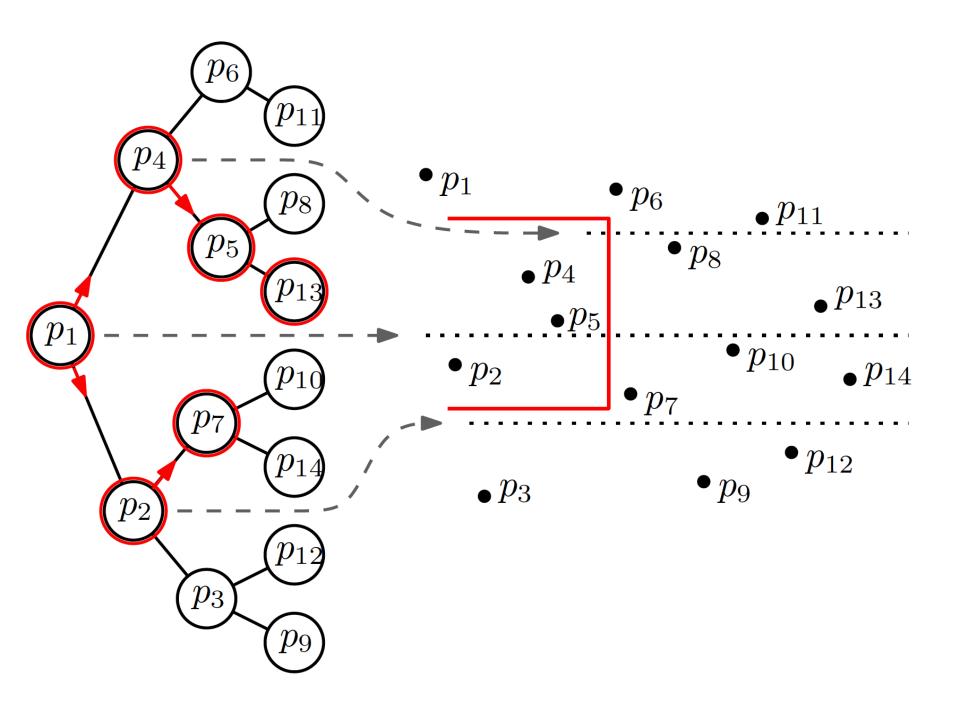


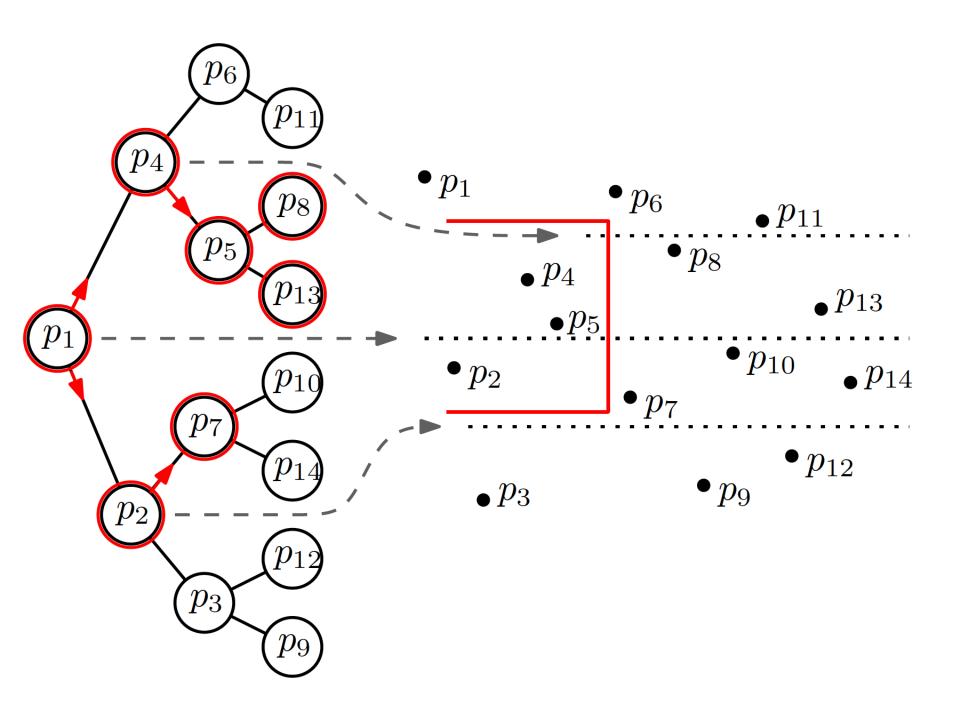


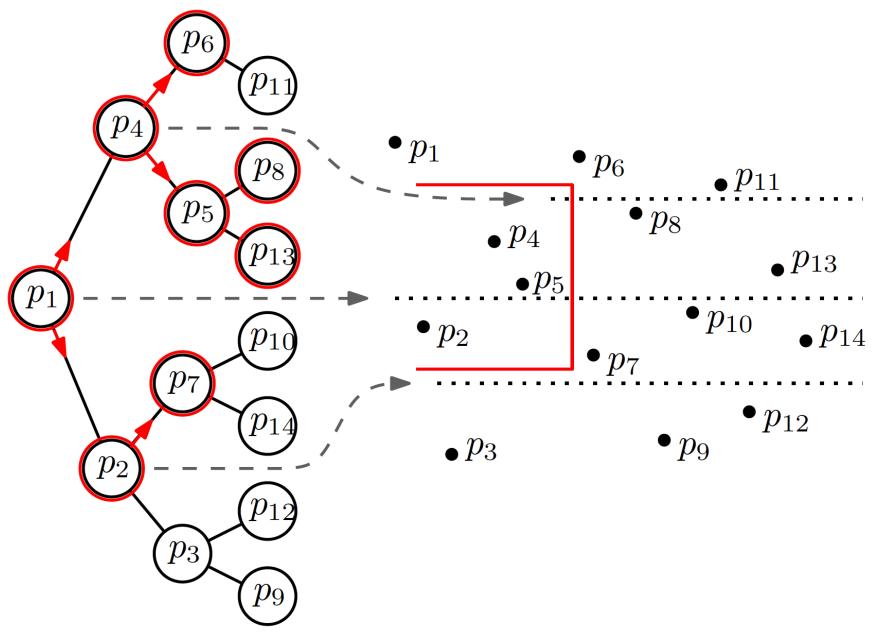












Algorithm QUERYPRIOSEARCHTREE $(\mathcal{T}, (-\infty : q_x] \times [q_y : q'_y])$ Search with q_y and q'_y in \mathfrak{T} 1. Let v_{split} be the node where the two search paths split 2. for each node v on the search path of q_y or q'_y 3. do if $p(\mathbf{v}) \in (-\infty; q_x] \times [q_y; q'_y]$ then report $p(\mathbf{v})$ 4. for each node v on the path of q_v in the left subtree of v_{split} 5. 6. do if the search path goes left at v then REPORTINSUBTREE ($rc(v), q_x$) 7. for each node v on the path of q'_v in the right subtree of $v_{\rm split}$ 8. 9. **do if** the search path goes right at v 10. then REPORTINSUBTREE ($lc(v), q_x$)

REPORTINSUBTREE (v, q_x)

- *Input.* The root v of a subtree of a priority search tree and a value q_x
- *Output.* All points in the subtree with *x*-coordinate at most q_x
- 1. if v is not a leaf and $(p(v))_x \le q_x$
- **2.** then Report $p(\mathbf{v})$
- **3.** REPORTINSUBTREE($lc(v), q_x$)
- 4. **REPORTINSUBTREE**($rc(v), q_x$)

This subroutine takes O(1+k) time, for k reported answers

The search paths to y and y' have $O(\log n)$ nodes. At each node O(1) time is spent

No nodes outside the search paths are ever visited

Subtrees of nodes between the search paths are queried like a heap, and we spend O(1+k') time on each one

The total query time is $O(\log n + k)$, if k points are reported

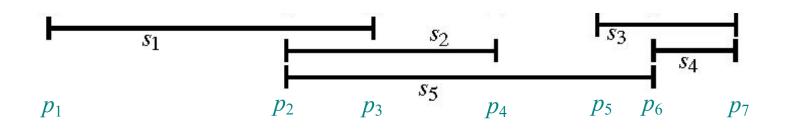
Priority search tree: result

Theorem: A priority search tree for a set *P* of *n* points uses O(n) storage and can be built in $O(n \log n)$ time. All points that lie in a 3-sided query range can be reported in $O(\log n + k)$ time, where *k* is the number of reported points

Segment Trees

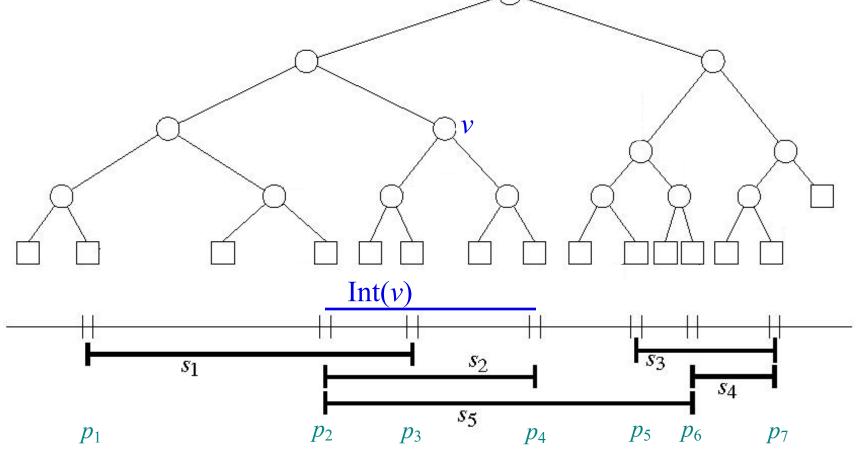
- Let $I = \{s_1, ..., s_n\}$ be a set of *n* intervals (segments), and let $p_1, p_2, ..., p_m$ be the sorted list of distinct interval endpoints of *I*.
- Partition the real line into elementary intervals: $(-\infty, p_1), [p_1, p_1], (p_1, p_2), \dots, (p_{m-1}, p_m), [p_m, p_m], (p_m, \infty)$
- Construct a balanced binary search tree T with leaves

corresponding to the elementary intervals



Elementary Intervals

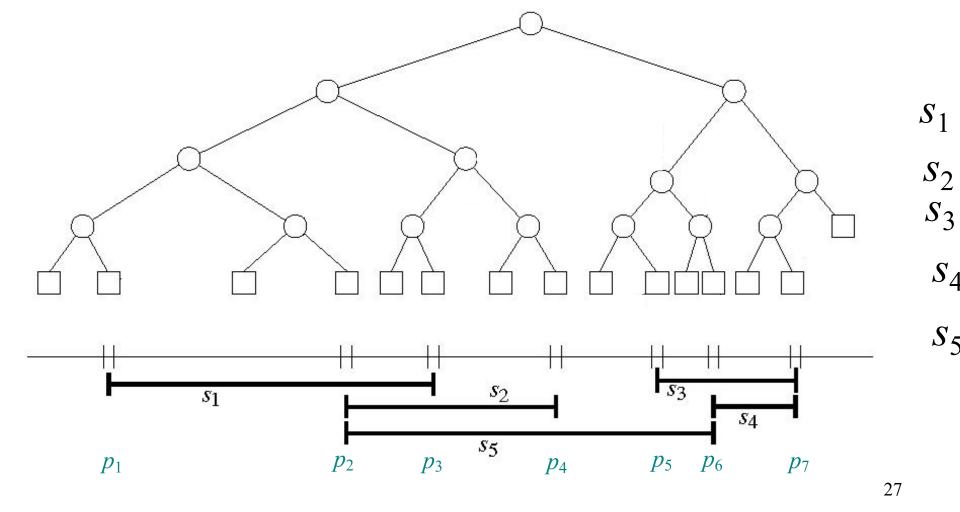
- Int(μ):=elementary interval corresponding to leaf μ
- Int(v):=union of $Int(\mu)$ of all leaves in subtree rooted at v



Segment Trees

Store segments as high as possible

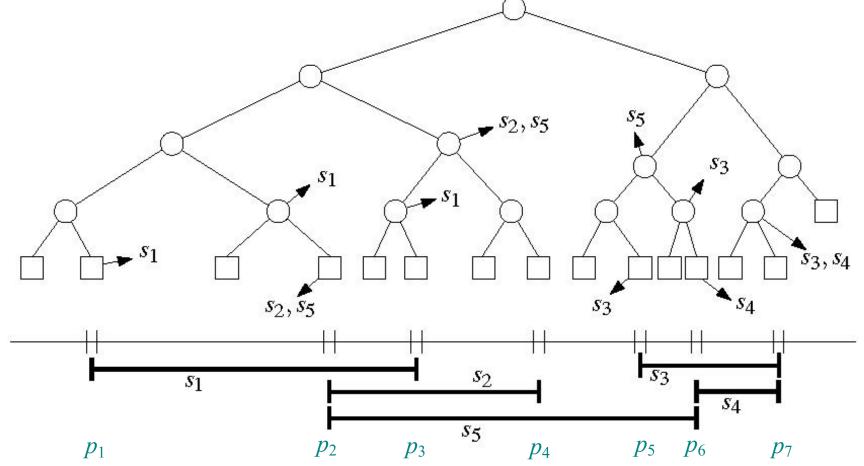
Each vertex *v* stores (1) Int(v) and (2) the canonical subset $I(v) \subseteq I$: $I(v) \coloneqq \{s \in I \mid Int(v) \subseteq s \text{ and } Int(parent(v)) \not\subset s\}$



Segment Trees

Store segments as high as possible

Each vertex *v* stores (1) Int(v) and (2) the canonical subset $I(v) \subseteq I$: $I(v) \coloneqq \{s \in I \mid Int(v) \subseteq s \text{ and } Int(parent(v)) \not\subset s\}$



Space

Lemma: A segment tree on n intervals uses $O(n \log n)$ space.

Proof: Any interval s is stored in at most two sets $I(v_1)$, $I(v_2)$ for two different vertices v_1 , v_2 at the same level of T. [If s was stored in $I(v_3)$] for a third vertex v_3 , then s would have to $parent(v_2)$ span from left to right, and V2 $Int(parent(v_2)) \subseteq s$, hence s is cannot be stored in v_2 .] The tree is a balanced tree of height S $O(\log n)$.

Segment Tree Query

Algorithm QUERYSEGMENTTREE(v, q_x)

Input. The root of a (subtree of a) segment tree and a query point q_x . *Output.* All intervals in the tree containing q_x .

- 1. Report all the intervals in I(v).
- 2. **if** \mathbf{v} is not a leaf
- 3. then if $q_x \in \text{Int}(lc(v))$
- 4. **then** QUERYSEGMENTTREE($lc(v), q_x$)
- 5. else QUERYSEGMENTTREE $(rc(v), q_x)$

Runtime Analysis:

- Visit one node per level.
- Spend $O(1+k_v)$ time per node v.
- \Rightarrow Runtime O(log n + k)

Segment Tree Construction

- $O(n \log n) \begin{bmatrix} 1. & \text{Sort interval endpoints of } I. \rightarrow \text{elementary intervals} \\ 2. & \text{Construct balanced BST on elementary intervals.} \\ 3. & \text{Determine Int}(v) \text{ bottom-up.} \end{bmatrix}$
 - - 4. Compute canonical subsets by incrementally inserting intervals $s = [x, x'] \in I$ into *T* using InsertSegmentTree:

Algorithm INSERTSEGMENTTREE(v, s)

Input. The root of a (subtree of a) segment tree and an interval. Output. The interval will be stored in the subtree.

- if $Int(v) \subseteq S$ 1.
- then store S at v2.

3. else if
$$\operatorname{Int}(lc(v)) \cap S \neq \emptyset$$

- then INSERTSEGMENTTREE(lc(v), s) 4.
- 5. if $\operatorname{Int}(rc(\mathbf{v})) \cap S \neq \emptyset$
 - then INSERTSEGMENTTREE(rc(v), s)

Segment Trees

Runtime:

- Each interval stored at most twice per level
- At most one node per level that contains the left endpoint of s (same with right endpoint)
- \rightarrow Visit at most 4 nodes per level
- $\rightarrow O(\log n)$ per interval, and $O(n \log n)$ total

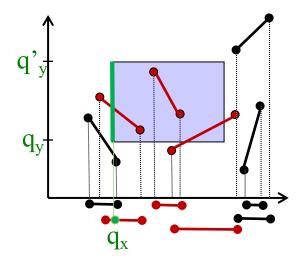
Theorem: A segment tree for a set of n intervals can be built in $O(n \log n)$ time and uses $O(n \log n)$ space. All intervals that contain a query point can be reported in $O(\log n + k)$ time.

2D Windowing Revisited

Input: A set *S* of *n* disjoint line segments in the plane

Task: Process *S* into a data structure such that all segments intersecting a

vertical query segment $q:=q_x \times [q_y,q'_y]$ can be reported efficiently.

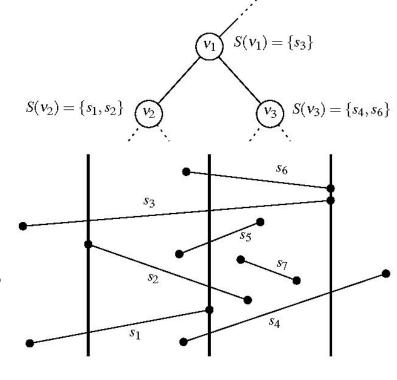


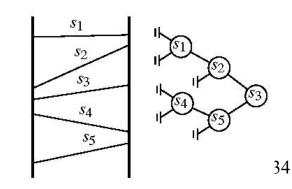
2D Windowing Revisited

Solution:

Segment tree with nested range tree

- Build segment tree *T* based on *x*-intervals of segments in *S*.
 - $\rightarrow \text{each Int}(v) \cong \text{Int}(v) \times (-\infty, \infty)$ vertical slab
- I(v)≅S(v) canonical set of segments spanning vertical slab
- Store S(v) in 1D range tree (binary search tree) T(v) based on vertical order of segments

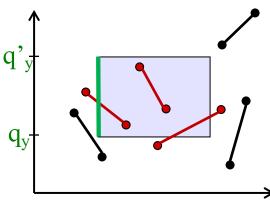




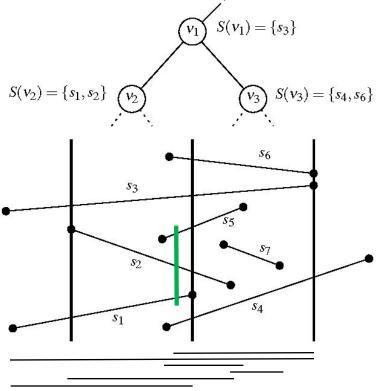
2D Windowing Revisited

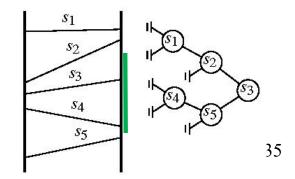
Query algorithm:

- Search regularly for q_x in T
- In every visited vertex v report segments in T(v) between q_y and q'_y (1D range query)
 ⇒ O(log n + k_v) time for T(v)
 ⇒ O(log²n + k) total



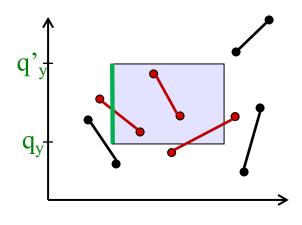
 $\mathbf{q}_{\mathbf{x}}$





2D Windowing Summary

Theorem: Let *S* be a set of (interior-) disjoint line segments in the plane. The segments intersecting a vertical query segment (or an axis-parallel rectangular query window) can be reported in $O(\log^2 n + k)$ time, with $O(n \log n)$ preprocessing time and $O(n \log n)$ space.



 $\mathbf{q}_{\mathbf{x}}$