3D convex hulls

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Convex Hull in 3D

The problem: Given a set P of points in 3D, compute their convex hull

3D

polygon
polyhedron

2D

3D

Gift wrapping in 3D

- YouTube
- Video of CH in 3D (by Lucas Benevides)
- Fast 3D convex hull algorithms with CGAL

Gift wrapping in 3D

Algorithm

- find a face guaranteed to be on the CH
- REPEAT
- find an edge e of a face f that's on the CH , and such that the face on the other side of e has not been found.
- for all remaining points pi, find the angle of (e,pi) with f
- find point pi with the minimal angle; add face (e,pi) to CH
- Analysis: $\mathrm{O}(\mathrm{n} \times \mathrm{F})$, where F is the number of faces on CH

Gift wrapping in 3D

Algorithm

- find a face guaranteed to be on the CH
- REPEAT
- find an edge e of a face f that's on the CH , and such that the face on the other side of e has not been found.
- for all remaining points pi, find the angle of (e,pi) with f
- find point pi with the minimal angle; add face (e,pi) to CH
- Implementation details
- sketch more detailed pseudocode
- finding first face?
- what data structures do you need? how to keep track of vertices, edges, faces? how to store the connectivity of faces?

3d hull: divide \& conquer

The same idea as 2D algorithm

- divide points in two halves P1 and P2
- recursively find $\mathrm{CH}(\mathrm{P} 1)$ and $\mathrm{CH}(\mathrm{P} 2)$
- merge
- If merge in $\mathrm{O}(\mathrm{n})$ time $==>\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ algorithm

Merge

- How does the merged hull look like?

cylinder without end caps

Merge

- Idea: Start with the lower tangent, wrap around, find one face at a time.

Merge

- Let PI be a plane that supports the hull from below

Claim:

- When we rotate Pl around ab , the first vertex hit c must be a vertex adjacent to a or b
- \quad c has the smallest angle among all neighbors of a, b

Merge

1. Find a common tangent ab

Merge

1. Find a common tangent ab

- Now we need to find a triangle abc. Thus ac is an edge either on the left hull or on the right hull.

Merge

1. Find a common tangent ab

- Now we need to find a triangle abc. Thus ac is an edge either on the left hull or on the right hull.
- Now we have a new edge ac that's a tangent. Repeat.

Merge

1. Find a common tangent ab

- Now we need to find a triangle abc. Thus ac is an edge either on the left hull or on the right hull.
- Now we have a new edge ac that's a tangent. Repeat.

Merge

1. Find a common tangent ab

- Now we need to find a triangle abc. Thus ac is an edge either on the left hull or on the right hull.
- Now we have a new edge ac that's a tangent. Repeat.

Merge

1. Find a common tangent ab

- Now we need to find a triangle abc. Thus ac is an edge either on the left hull or on the right hull.
- Now we have a new edge ac that's a tangent. Repeat.

Merge

1. Find a common tangent ab
2. Start from ab and wrap around, to create the cylinder of triangles that connects the two hulls A and B
3. Find and delete the hidden faces that are "inside" the cylinder

(b)

- start from the edges on the boundary of the cylinder
- BFS or DFS faces "towards" the cylinder
- all faces reached are inside

3d hull: divide \& conquer

- Theoretically important and elegant
- Of all algorithms that extend to 3D, DC\& is the only one that achieves optimal ($\mathrm{n} \lg \mathrm{n}$)
- Difficult to implement
- The slower algorithms (quickhull, incremental) preferred in practice

