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Abstract

In this paper we explore the algorithmic space in which stripification, simplification and geometric compression of
triangulated 2-manifolds overlap. Edge-collase/uncollapse based geometric simplification algorithms develop a
hierarchy of collapses such that during uncollapse the reverse order has to be maintained. We show that restricting
the simplification and refinement operations only to, what we call, thecollapsible edgescreateshierarchyless
simplificationin which the operations on one edge can be performed independent of those on another. Although
only a restricted set of edges is used for simplification operations, we prove topological results to show that, with
minor retriangulation, any triangulated 2-manifold can be reduced to either a single vertex or a single edge using
the hierarchyless simplification, resulting in extreme simplification.
The set of collapsible edges helps us analyze and relate the similarities between simplification, stripification and
geometric compression algorithms. We show that the maximal set of collapsible edges implicitly describes a tri-
angle strip representation of the original model. Further, these strips can be effortlessly maintained on multi-
resolution models obtained through any sequence of hierarchyless simplifications on these collapsible edges. Due
to natural relationship between stripification and geometric compression, these multi-resolution models can also
be efficiently compressed using traditional compression algorithms.
We present algorithms to find the maximal set of collapsible edges and reorganization of these edges to get mini-
mum number of connected components of these edges. An order-independent simplification and refinement of these
edges is achieved by our novel data structure and we show the results of our implementation of view-dependent,
dynamic, hierarchyless simplification. We maintain a single triangle strip across all multi-resolution models cre-
ated by the view-dependent simplification process. We present a new algorithm to compress the models using the
triangle strips implicitly defined by the collapsible edges.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms,
Triangulation, Stripification, Compression, Simplification G.2.2 [Graph algorithms]: Hamiltonian Cycle, Perfect
Matching.

1. Introduction

A popular approach for geometric simplification of triangu-
lated models has been through edge-collapse and uncollapse
(vertex-split) operations [HDD∗93]. Using these basic op-
erations, researchers have considered various aspects of the
problem including different cost functions for high quality
simplification [Hop96, GH97], memory and speed efficient
data structures [LT98, Paj01], dynamic view-dependent
simplification [XV96, ESV99], out-of-core simplification
[ESC00, DP02], and even multi-cost functions optimiza-
tion for attribute preserving simplification [COM98, GH98].
Similarly, there is a reasonable amount of literature for trian-

gle strip generation (e.g. [ESV96, Kor99, XHM99, Gop04])
and geometric compression [TDG∗00] of triangulated mod-
els. Even though there is a strong relationship between strip-
ification and compression there is little explicit work that
relates these two fields besides [Dee95, Cho97, Ise00]. Fur-
ther, there are only limited number of works relating simpli-
fication and stripification; existing literature primarily dis-
cuss the issue of maintaining strips during dynamic simpli-
fication (i.e. [ESAV99, BRR∗01, Ste01, SP03]).

In this paper, we explore the common algorithmic space
between simplification, stripification, and geometric com-
pression and lay a few theoretical foundations for the exis-
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Figure 1: Left to right: Conventional edge collapse and uncollapse operations. Multi-edgesb andc are formed by collapsing
edgea. Further collapse ofb merges all the three edges of triangle T1. Out of order uncollapsing ofa without uncollapsingb
results in ambiguity in the choice of edges to split: three possibilities are shown each of which equivalent to different single-edge
collapses from the original model. Such an ambiguity appears when collapse ofn number of edges results in the collapse of more
thann edges to a single vertex. Traditionally, this ambiguity is handled by maintaining a hierarchy of collapses and following
a strict reverse order of dependency during uncollapses. Hierarchyless simplification avoids this ambiguity by prohibiting two
edges of the same triangle to be collapsed.

tence of such a space. Clearly, since we attempt to look into
theintersectionof these three fields, each of these fields will
have a restricted scope. For example, we will not allow all
edge-collapses but only those on chosen edges; not all pos-
sible strip configurations but only strip-loops; and finally, not
all compression techniques but only those that produce trian-
gle strips as a by-product during compression. Nevertheless,
within this restricted space, we still can achieve extreme sim-
plification of geometric models and reduce them to a single
vertex or a single edge and can achieve a single strip-loop
that covers the entire and every multi-resolution model in
the process of simplification. Interestingly, by restricting the
scope of each of these fields, we are expanding the scope of
algorithmic applicability in each other field.

1.1. Main Contributions

Following are the main contributions of this paper.

• We introducehierarchyless simplificationin which the
simplification operations on one edge is independent of
the operations on other edges. This simplification is done
on a select set of edges, what we call thecollapsible edges.
We prove the existence of and provide an algorithm to find
the maximal number ofcollapsible edges.

• We prove topological properties ofhierarchyless simplifi-
cation that, with minor changes in the triangulation, any
two manifold with arbitrary genus can be reduced to a sin-
gle vertex or a single edge.

• We prove that the collapsible edges implicitly define a
stripification of the model that is again implicitly main-
tained over all the multi-resolution models created by the
simplification process.

• Finally, the triangle strip that represents the given model
can efficiently be encoded by classical triangle mesh com-
pression algorithms which use region growing or vertex-
spanning tree based coding methods. Since the strip is de-
fined by thecollapsible edgeswhich are the only edges
used by the hierarchyless simplification, the compressed
model can be viewed as the compression of the entire
multi-resolution representation.

2. Hierarchyless Simplification

An edge collapse operation merges two adjacent vertices of
the mesh. In Figure1a, the shared edgea between triangles
T1 andT2 is collapsed. The other two edges of each of the
triangles merge to form new “multi-edges”b and c (Fig-
ure 1b). Traditional simplification algorithms allow further
collapse of these “multi-edges” (Figure1b). After collaps-
ing the multi-edgeb, if edgea has to be uncollapsed then
it introduces an ambiguity, called thesplit ambiguity, as to
which incident edges have to be split to introduce two new
triangles. Even in a simple example of two edge collapses
shown in Figure1 we can see three possibilities just on one
side of the uncollapsed edgea. It becomes more complicated
with deeper nesting of collapses and uncollapses. Traditional
methodshandle this ambiguity byrestricting the orderof
collapse and uncollapse operations; edgeb is uncollapsed
before edgea. This dependency between the operations cre-
ates a hierarchy of edges for dynamic simplification. In this
paper, we introduce a method thateliminatesthis ambiguity
by restricting the edgesthat are collapsed and uncollapsed.

It can be shown that the following four conditions are
equivalent: (a) there exists asplit ambiguity; (b) collapsing
n edges has resulted in the collapse of more thann edges
to a single vertex; (c) more than one edge of a triangle has
been collapsed; (d) a multi-edge has been collapsed. Hence
if one of these conditions is avoided then thesplit ambiguity
is eliminated.

Definition 1: An hierarchyless simplificationis an edge-
collapse/uncollapse based geometric simplification process
in which the multi-edges are not collapsable.

In a manifold, this condition enables any collapsed edge to
be uncollapsed in any arbitrary order and the connectivity
in the neighborhood uniquely determined without any de-
pendency on other collapsed edges. We prove this property
in Appendix A. The data structure to effect such an order
independency in operations and to efficiently find the local
connectivity after every operation is detailed in Section5.

Since we collapse only a restricted set of edges, the first
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Figure 2: (a) The given triangulation of a manifold with genus 0. Assume the adjacency of boundary edges as shown by dotted
arrows and all the boundary triangles share a common vertex. A maximal set of collapsible edges are shown as dark edges.
Notice one and only one collapsible edge for every triangle. (b) Triangles are connected through non-collapsible edges to form
two triangle strip loops. There are two connected collapsible-edge components forming interior medial axis of each of these
loops and one forming the exterior medial axis of both these cycles. (c) Triangle-split operation: An adjacent triangle pair in
two different cycles are split at the mid-point of the collapsible edge and the collapsible edge assignment is toggled around this
vertex. This merges the two cycles and their interior medial axes collapsible edge components. (d) An alternative approach to
triangle-split operation is an edge-swap operation which also connects the cycles and their interior medial axes.

topological question is to know the smallest model that can
be got through hierarchyless simplification. Further, since
the choice of an edge as collapsible prohibits a few other
edges from being collapsible, it is important to know the best
choice of edges so that we can maximize the number of col-
lapsible edges to get the smallest model. We call a model
maximally face-simplifiableif all triangles can be collapsed;
in other words, since two triangles are removed per collapse,
the model hasF/2 collapsable edges, whereF is the number
of faces in the model.Not all triangulated models are max-
imally face-simplifiable.For example, models with bound-
aries are not guaranteed to be maximally face-simplifiable.

Theorem 1: Any triangulated two-manifold with arbitrary
genus is maximally face-simplifiable.

Proof: We definepartner trianglesto be the two triangles
incident on a collapsible edge. Clearly, every triangle can
have at most one partner triangle. The fundamental tech-
nique we use to arrive at maximum number of partner tri-
angle pairs is a perfect matching algorithm. Amatchingin
a graphG = (V,E) is a subset M of the edges E such that
no two edges in M share a common end node. Aperfect
matching Min G is a matching such that each node ofG is
incident to an edge inM. For a bridgeless graph in which
every vertex has degree three, there always exists a per-
fect matching [Pet91]. In our case, we are interested in the
dual graphs of triangulated two-manifolds; such graphs are
bridgeless (in fact, 3-connected) and have degree three. A
perfect matching in this dual graph will pair every triangle
with exactly one of its adjacent triangles in the primal mesh.
Hence any triangulated two-manifold with arbitrary genus
is maximally face-simplifiable. Further, such a collapsible
edge set, in other words a perfect matching in the dual graph
can be found in timeO(n) for planar graphs [BBDL01] or
O(nlog4 n) in general, wheren is the number of input nodes
in the dual graph; the latter bound can be further improved to
O(nlog3 nlog logn) using recent results of Thorup [Tho00].
A simple example of a triangulation of a genus zero object
and a set of collapsible edges is shown in Figure2a.

Weighted Perfect Matching
High quality geometric simplification can be achieved only
if the collapsable edges are chosen based on its cost of col-
lapse. We construct the dual graph of the triangulation in
which the cost of collapsing an edge in the mesh is as-
signed as the weight of the corresponding edge in the graph.
A weighted perfect matching algorithm on this graph will
choose the matching edges such that the sum of the weights
of the chosen edges is minimized. Many implementations of
weighted matching algorithm are available in public domain.
We use the LEDA library implementation of this algorithm.

3. Simplification and Stripification

There is a natural relationship between hierarchyless simpli-
fication of maximally face-simplifiable model and triangle-
strip representation of that model. Specifically,

Lemma 1: Maximum set of collapsible edges in a triangu-
lated two manifold implicitly defines a stripification of the
entire model.

Proof: Since a triangulated two manifold is maximally face-
simplifiable, every triangle has one and only one collapsi-
ble edge and two non-collapsible edges. The sequences of
triangles defined by the adjacency relationship across non-
collapsible edges form a collection of disjoint triangle strip
loops, the union of which covers all triangles of the mesh. An
example of triangle strips defined by the collapsible edges is
shown in Figure2b.

The stripification work by Gopi and Eppstein [GE04], in
fact, exploits the perfect matching algorithm to find the tri-
angle strips. The collapsible edges form the ‘medial axes’ of
triangle strip loops (refer Figure2b). We use this property to
doextreme hierarchyless simplificationas shown in the next
section.

c© The Eurographics Association and Blackwell Publishing 2005.
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Figure 3: An even-degree vertex with alternating collapsible
edges is called a nodal-vertex. By toggling the collapsible
and non-collapsible edges around this vertex, triangle strips
and corresponding collapsible edge trees (A,B, and C) can
be merged. It can be proved that the connected component
of collapsible edges at the nodal vertex (D) cycles around
each of the triangle strip loops (A, B, and C) incident on the
nodal vertex. Hence the toggling operation around the nodal
vertex does not disconnect this connected component (D).

3.1. Extreme Simplification and Single Stripification

Though, in a maximally face-simplifiable model, all faces
can be collapsed using hierarchyless simplification, the sim-
plified model need not have minimum number of vertices. In
order to minimize the number of vertices after all possible
edge collapses, we have to reduce the number of connected
components of collapsable edges, as each connected com-
ponent collapses to one vertex. The number of connected
components of collapsible edges is related to the number of
triangle strip loops since the collapsible edges formmedial
axesof these strip loops.

Theorem 2: If s triangle strip loops cover the entire triangu-
lated two manifold of genusg then the number of connected
collapsible edge componentsc> 0 ands+1−g≤ c≤ s+1.

Proof of this theorem is given in AppendixB. Specifically,
for a model with an arbitrary genus, ifs is one thenc is either
one or two. In other words,in extreme hierarchyless simpli-
fication, an oriented triangulated two manifold represented
using a single strip loop can be simplified to either one ver-
tex or two vertices (an edge) irrespective of its topology.

Single triangle-strip representation of a manifold is
achieved in [GE04] using two operations: nodal vertex pro-
cessing and triangle-split. A nodal vertex in a mesh is one
that has an even numbere of triangles incident on it and
thesee triangles belong exactly toe/2 disjoint cycles (refer
to Figure3). The matched (collapsible) and unmatched (un-
collapsible) edges alternate around such a vertex. In nodal
vertex processing, the assignment of each of these edges is
toggled to merge all the incident disjoint triangle strip loops.

Simplification operation is basically a weighted retrian-
gulation of the mesh. The second operation to reduce the
number of triangle strip loops, thetriangle-split, retrian-
gulates the model (Figure2c). It splits two adjacent trian-

gles belonging to two different strip loops into four triangles
and performs a nodal vertex processing on the newly intro-
duced vertex to merge these two loops. In addition to the
above operation, we introduce a new operation that is equiv-
alent to triangle-split, the edge-swap operation (Figure2d),
in which we swap a collapsible edge separating two differ-
ent strip loops. A triangle split operation retains the visual
appearance of the geometry by introducing the new vertex at
the midpoint of the common edge. An edge swap operation
does not add new triangles but might change the visual ap-
pearance due to change in geometry. We propose to use the
edge-swap operation in the planar and low curvature regions
of the mesh in which visual appearance is least affected by
swapping edges, and use the triangle-split operation in other
regions.

Even though adding more triangles to later simplify
them seems contradicting, merging connected components
through this process gives us incredible flexibility in effi-
ciently managing the data during run-time simplification.
The added edges with potentially higher costs for simplifica-
tion might in any case be collapsed only during extreme sim-
plification. Hence the quality of simplification is not affected
in the early stages of simplification. More importantly, even
though the theoretical upper bound is 50% [GE04], empiri-
cally we add less than only 3% more triangles to the model.
Hence this addition has negligible effect in the overall qual-
ity of the simplified model but improves the run-time effi-
ciency and later, topological compression of these models.

3.1.1. Weighted Single Stripification

The strip and connected-component merging operations ex-
plained above change the choice of the collapsible edges
given by the minimum-weight perfect matching. Hence the
final set of collapsible edges will be suboptimal. The goal
is to limit this change in weight as much as possible while
performing these merging operations.

We assign a cost to each possible nodal vertex processing,
triangle-split, and edge-swap operations and sort them in a
priority list [Pug90]. This cost is given by the increase in the
overall weight of the matched edges after a certain opera-
tion. The cost of a nodal vertex processing would be the dif-
ference between the sums of the weights of the matched and
unmatched edges around the vertex. The cost of a triangle-
split operation is the cost of nodal vertex processing opera-
tion at the newly introduced vertex in the mid-point of the
edge (refer Figure2c). The cost of the edge swap operation
is the difference between the cost of the original edge and the
cost of the swapped edge with respect to the original model.

There are as many elements in the priority list as edges
connecting separate loops. In general, many of these oper-
ations join the same pair of loops. When one operation is
applied, it invalidates all its equivalent operations that are
still in the list. Operations are popped from the front of the
list and if they are valid, disjoint loops are merged. The al-

c© The Eurographics Association and Blackwell Publishing 2005.
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gorithm terminates when there are no more operations to be
processed or all the loops have been merged. This greedy al-
gorithm also minimizes the total cost increase in choosing
the new set of collapsible edges over the set that produces
many collapsible-edge connected components.

3.2. Maintaining Strips During Simplification

In a view dependent simplification process, it helps to get
additional performance boost by imposing a triangle strip
structure over the simplified model at every frame. Main-
taining classical triangle strips over a traditional simplifi-
cation method that allows collapse of all edges has been
studied earlier [ESAV99, SP03]. This requires special data
structures and the strips tend to get shortened over the view-
dependent simplification and refinement processes.

Hierarchyless simplification compensates for its restric-
tion in the set of collapsible edges by facilitating trivial
maintenance of strips. Since, by construction, the strip does
not cross the collapsible edge, with every edge collapse,
maintaining the strip involves removing the two triangles in
either side of the collapsible edge from their respective strips
and placing the previous and next triangles of the removed
triangles next to each other in the strips; with every edge un-
collapse, the corresponding triangles are inserted back. The
total number of strips remains unchanged and traversing the
new strip after every collapse/uncollapse operation is triv-
ial. Specifically, if the original model is represented using a
single strip loop (for extreme simplification), every level of
detail created by hierarchyless edge-collapse or uncollapse
operation is represented using a single triangle strip loop.

4. Collapsible Edges and Mesh Compression

Earlier we saw that the set of collapsible edges implicitly de-
fine triangle strip loops and enable us to maintain these strips
through all the multi-resolution models during the hierarchy-
less simplification process. In this section, we focus on using
these collapsible edges to efficiently encode the fundamental
input information consisting of the mesh connectivity. Vari-
ous techniques exist in the literature to compress the geome-
try, i.e. the vertex coordinates, which we will not address in
this paper.

4.1. Traditional Region Growing Techniques

Due to the property of collapsible edges (for extreme
simplification) that it implicitly defines a single tri-
angle strip, any mesh compression technique such as
[GS98, Ros99, RS99, Ise00] that is based on growing a con-
nected mesh region from a start triangle and adding a single
triangle at a time can be applied. Therefore, we could di-
rectly apply the Wrap&Zip compression technique [RS99]
resulting in a guaranteed 1.7 bit per triangle encoding, or
even smaller expected-case statistical coding. In fact, since

we have a single triangle strip, thesplit codeSin [RS99] can
completely be avoided for genus-0 meshes leaving only 4
opcodes, and hence a guaranteed 2 bit per triangle encoding
can be used. Handling complex meshes with handles follows
the same argumentation as in [Ros99, RS99]. The use of a
simple Edgebreaker [Ros99] or Wrap&Zip [RS99] code in
conjunction with our single triangle-strip representation also
compares well with [Ise00] that achieves similar connectiv-
ity encoding rates for encoding triangle strips.

Valence driven mesh encoding techniques [TG98, AD01]
provide some improvement in compression rates over the
above referenced methods. However, these do not allow for
an arbitrary (triangle strip) mesh traversal and may thus lead
to other extra costs.

4.2. Hand-and-Glove Mesh Compression

We now present a simple variant of a vertex-spanning tree
based mesh encoding (see also [TR98]). The fundamental
motivation for this algorithm is to encode the collapsible
edge trees along with the connectivity between the trees,
so that the compressed model can be viewed as the com-
pression of the entire multi-resolution representation. This
is also facilitated by the fact that in order to represent the
multi-resolution models we do not need to represent or com-
press a hierarchy of collapses as in traditional simplification
algorithm.

For genus zero manifold meshes we first observe that
a single triangle strip divides all vertices into two vertex-
spanning trees, formed by the collapsible edges of our hi-
erarchyless simplification. We call the two trees theHand
and theGloveas one conceptually wraps around the other in
defining the triangle strip in between the two, see also Fig-
ure4.

We first observe that both, theHand and Glove vertex-
spanning trees can be represented by an arbitrary start node
(indexed as 1 in Figure4) and a depth- or breadth-first tree
traversal. The traversal can be encoded by two bits per node:
one bit indicating if there are any child nodes, and one bit
indicating if the node has one or more siblings. With respect
to Figure4 this encodes theHand starting at vertex 1 by
the following sequence: 10, 11, 10, 11, 00, 00, 10, 10, 11,
00, 11, 00, 00. The same applies to the theGlove vertex-
spanning tree. Since every vertex appears exactly once as a
node in either of the two trees we spend 2 bits per vertex, or
equivalently 1 bit per triangle to encode this structure.

By definition of collapsible edges, every triangle has its
collapsible edge part of either theHandor theGlovetree and
the third vertex in the opposite vertex-spanning tree. There-
fore, the triangle strip is fully defined by a single start trian-
gle and a sequence of instructions on how to advance to the
next following triangle: taking the next vertex either from the
Glove(G) or theHand(H) vertex-spanning tree as shown in
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Figure 4: Two connected components of collapsible edges
forming ‘Hand’ and ‘Glove’ vertex spanning trees contain-
ing in-between them a single triangle strip loop traversing
through the entire genus-0 manifold. Such a representation,
implicitly given by extreme hierarchyless simplification, can
be encoded in guaranteed 2 bits per triangle.

Figure4. Advancing byG or H follows an out-order traver-
sal along the corresponding vertex spanning tree. Hence for
each triangle we need to specifyG or H by one bit and thus
the total representation cost amounts to a guaranteed 2 bit
per triangle encoding.

Advantages of our approach not only include its simplic-
ity and linear running time but also that there is no need to
keep track of any extra information such as region bound-
aries or zipping rules as in prior approaches, and that the
triangle strip formation is inherently part of our mesh rep-
resentation and its encoding, and hence comes at no ex-
tra cost. Furthermore, the encoding efficiency is compara-
ble to competitive approaches and leaves room for further
optimization. Improved compression ratios can be achieved
by combining the above basic coding scheme with pattern-
or Entropy-based variable rate data compression techniques
such as Lempel-Ziv [LZ78], Huffman [Huf52] or arithmetic
coding [CNW87]. We report some initial results in Section6
but further optimization of the encoding is beyond the scope
of this paper and will be addressed by future extensions.

As presented, our encoding applies to genus zero mani-
fold meshes because higher genus meshes may exhibit only
a single vertex-spanning tree structure. However, this can
easily be incorporated by virtually defining theHand and
Glove on the same vertex-spanning tree by different start
points and initial traversal directions. Note that the vertex-
spanning tree still only needs to be encoded once and thus
no additional coding cost occurs besides some negligible ini-
tialization data.

5. Data Structure for Hierarchyless Simplification

In hierarchyless simplification, the connectivity around, and
the geometric position of the new vertex formed after an
edge collapse is determined the same way as in other edge-

collapse based simplification algorithm. Further, the connec-
tivity after edge uncollapses in any arbitrary order can be re-
solved as shown in AppendixA. The only issue that remains
in hierarchyless simplification is that of finding the positions
of two vertices after an edge uncollapse.

The positions of the two vertices resulting from an edge
uncollapse is determined by the subsets of the collapsed ver-
tices that they represent. Since, in conventional simplifica-
tion methods the uncollapse order is determined by the col-
lapse order, these positions are stored explicitly in the mul-
tiresolution hierarchy itself. In hierarchyless simplification,
since the edges can be uncollapsed in any arbitrary order, it
potentially requires exponential amount of memory to store
the geometry for all possible permutations of orders of oper-
ations. We make use of the properties of hierarchyless sim-
plification to present a new data structure that requires linear
storage to solve this problem.

The set of collapsible edges form a forest as shown in Ap-
pendixA. The proposed data structure can be viewed as a
variant of a half-edge data structure and handles eachcol-
lapsible treein the forest of collapsible edges independently.
Consider a tree as shown in Figure5. We construct a directed
cycle calledcollapsible cyclearound this tree by connect-
ing the directed half-edges of the collapsible edges. We call
the duplicates of the same vertex asaliasesand the function
alias(i) gives the next alias ofi around the directed cycle.

We construct another tree, themerged tree, from the edges
that are already collapsed. A directedmerged cycleis con-
structed by connecting the duplicates and aliases in thecol-
lapsible cycleof the vertices belonging to the samemerged
tree. Note that every uncollapsed vertex in thecollapsible
tree is a merged tree and themerged cycleof this tree just
connects the aliases of the vertex in order.

We store at each nodei in the collapsible cycle, infor-
mation about the segment of the merge cycle fromi + 1 till
alias(i). The data stored can be anything that helps to calcu-
late the position of the vertex after an edge collapse. Further,
the property of this stored data is that when cycles are split or
merged, the data required for the resulting cycle(s) is com-
putable from the existing data. For example, if the position
of the resulting vertex is the average of all the collapsed ver-
tex positions, then instead of storing this average, we store
the sum of the positions and the number of vertices inde-
pendently. This enables weighted average calculation when
two cycles are merged. In our implementation, we use ac-
cumulated quadrics [GH97] since we minimize the quadric
error to find the position of the resulting collapsed vertex.
The edge collapse and uncollapse operations using this data
structure are described in Figure5.

6. Implementation and Results

We have three parts to our implementation: (1) The first one
is an off-line step to statically identify collapsible edges and
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Figure 5: Illustration of the Data Structure: (TOP-LEFT) Underlying triangulation and a tree of collapsible edges with vertices
a-g. Every edge is represented as two directed half-edges connecting the representatives of the vertices of the edge. For example
b has three representatives and are said to bealiasof each other. Leaf nodes (aliases of a, c, e, g) are connected by end-cap
directed edges. The cycle thus formed is called acollapsible cycle. (TOP-RIGHT) The vertices already collapsed (abcd and
e f g) form another set of cycles called themerged cycles(dashed directed edges). Every node in the collapsible cycle holds
accumulated information about the vertices in the segment of the merged cycle till its next alias; if this segment has no vertex,
then the information is empty (eg: one alias each of a, c, d, e, f ,g). Notice that the union of the information contained in
partner half-edges is actually the entire set. For example, the start node of the half edges of edge bc has information about c
and abd, union of which is abcd - the entire merge cycle. Using this property, the amount of information stored can be exactly
halved. (BOTTOM-LEFT)Edge Collapseof edge d f : The entire merge cycle information of each of the merge cycles is copied
to the nodes with empty information: e f g to the empty alias of d and abcd to that of f . Individual merge cycle information are
added together to get the final merge tree information from which the position of the vertex representing the entire tree can be
calculated. Update of other nodes is done using a variant of union-find data structure lazily when required. (BOTTOM-RIGHT)
Edge Uncollapseof edge bd: The information about the two merge cycles are in the start points of two half edges (circled in
the bottom-left figure) of the collapsed edge using which the new vertex positions of individual merged trees are computed.

find the minimum number of connected components of col-
lapsible edges; in other words, a single triangle strip. (2) The
second part is an online process of hierarchyless simplifi-
cation that dynamically collapses and uncollapses any col-
lapsible edges based on a given criterion. (3) The third step
is again an off-line process to compress the topology of the
collapsible edges and the stripification.

The implementation used to achieve (1) is based on the
idea of graph matching, in our case a weighted-perfect
matching solution as explained in Section2, to find the set of
collapsible edges. The current basic implementation makes
use of the LEDA package to solve this task. To maximally
join connected components of collapsible edge sets, nodal
vertex processing, triangle split and edge swap operations
are then applied as outlined in Section3.1. These steps are
similar to [GE04] and as such define the single triangle strip.
Finally, any cycles of collapsible edges are broken up by re-
moving one of the collapsible edges in the cycle. The result-
ing vertex-spanning trees (at most two) based on collapsible
edges are used for the hierarchyless simplification.

The input to (2) consists of the collapsible cycle(s) around

these vertex-spanning tree(s), and an initial set of trivial
merge cycles for each individual vertex. The dynamic main-
tenance of the collapsible and merge cycles as described in
Section5 is implemented using simple list data structures. To
keep track of the current positions of collapsed vertex sets,
which are defined by merge-cycles, is done via a union-find
data structure. All edge collapse and uncollapse operations
simply update the merge-cycles and the information attached
to the nodes of the collapsible cycles.

As explained in Section4.2, (3) incorporates a simple
depth-first traversal of the vertex-spanning tree(s) and the tri-
angle strip, sequentially outputting the corresponding codes
for vertices and triangle faces. The start triangle and strip di-
rection are implicitly given by chosing theHand andGlove
appropriately, as indicated in Figure4, such that the first
three vertices define it (one from theGloveand two from the
Hand). In addition to the basic vertex and triangle bit-codes,
we experimented with some simple variable-rate arithmetic
coding as mentioned below.

Figure 6 shows a basic progressive simplification se-
quence using our hierarchyless edge collapse operations.
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Figure 6: Demonstration of hierarchyless simplification.
Row 1: A genus-9 original 19778 face and simplified 578
face models. Rows 2-4: Left column top down shows global
progressive simplification (5784, 1048 and 4 faces) of a
2-manifold genus 0 object to its basic canonical tetrahe-
dral simplex. Right column shows frontal view of a model,
the corresponding view-frustum configuration and view-
dependent simplification. All models are represented using
a single triangle strip (shown on the Trico model) and can
be reduced to either a single edge or one vertex.

Despite the restricted set of collapsible edges, it clearly
demonstrates the extreme simplification of an arbitrary 2-
manifold genus 0 object to its canonical simplex, a sin-
gle tetrahedron. Additionally, it shows view-dependent sim-
plification of back-facing triangles for a given view frus-
tum which demonstrates the power of unconstrained col-
lapse/uncollapse operations that allow for dramatic changes
in mesh resolution otherwise not easily achievable.

Below we report compression ratios achieved by our en-
coding method. As outlined in Section4.2 we can guaran-
tee a simple 2 bit per triangle encoding. Without any opti-
mization, a simple adaptive arithmetic encoder [MNW98] on
this raw bit-stream reduces the cost down to about 1.5 bits

per triangle as shown in Table1. This compares very well
to other standard connectivity encodings such as an Edge-
breaker implementation from [Shi] which we also followed
by an arithmetic coding stage. Note that these experiments
were performed on the meshes after joining connected com-
ponents of collapsible edges and hence including the extra
3% triangles due to triangle splits.

Model #Vertices bits/t bits/t bits/t diff. %
HG+aac EB EB+aac

Trico 2894 1.73 1.98 1.62 06.9 %
Fandisk 6475 1.25 2.01 1.18 06.4 %

Blob 8036 1.61 2.01 1.46 10.5 %
Balljoint 137062 1.5 2.0 1.28 15.2 %

Armadillo 177354 1.56 N/A N/A -

Table 1: Mesh compression results using our Hand-and-
Glove encoding (HG) compared to Edgebreaker (EB), both
including an adaptive arithmetic coder (aac) stage. Cost is
reported as bits-per-triangle for mesh connectivity.

7. Summary

We have presented a completely different and a novel per-
spective of geometric simplification through the prism of
stripification and geometric compression. In this process, we
have identified and explored an interesting and exciting al-
gorithmic space between all these three apparently different
fields and problems. The relationship between these fields
has been lucidly brought out by just a subset of edges, what
we call thecollapsible edges, of the model. The existence of
collapsible edges is not just theoretical, but by relating this
to more than a century old graph matching problem and its
solution, we have made a practical contribution to the field of
geometric simplification. We saw interesting topological re-
sults that even with these restricted set of collapsible edges,
we can perform extreme simplification of the model. Further,
any short-coming in the quality of simplification is compen-
sated by the ability to represent any simplified model us-
ing a single triangle strip. Further, the compression of the
multi-resolution models of hierarchical simplification has
the same complexity as of compressing the original model.
Since the technique lies in the intersection space of simpli-
fication, stripification, and compression, it can be used to
develop systems that has both efficient off-line storage and
efficient online-rendering of models.

As part of the future work, we would like to extend to
models with boundaries and apply our compression tech-
nique to models with higher genus boundaries. The same
common space in higher dimensions can also be explored.

References

[AD01] ALLIEZ P., DESBRUNM.: Valence-driven con-
nectivity encoding for 3D meshes. Computer

c© The Eurographics Association and Blackwell Publishing 2005.



Diaz-Gutierrez, Gopi, Pajarola / Simplification, Stripification and Compression

Graphics Forum 20(3), (EUROGRAPHICS)
2001, pp. 480–489.5

[BBDL01] BIEDL T. C., BOSE P., DEMAINE E. D., LU-
BIW A.: Efficient algorithms for Petersen’s
matching theorem. J. Algorithms 38(2001),
110–134. 3

[BRR∗01] BELMONTE O., REMOLAR I., RIBELLES J.,
CHOVER M., REBOLLO C., FERNANDEZ M.:
Multiresolution triangle strips.IASTED Inver-
national Conference on Visualization, Imaging
and Image Processing(2001), pp. 182–187.1

[Cho97] CHOW M. M.: Optimized geometry compres-
sion for real-time rendering.Proc. IEEE Visual-
ization(1997), pp. 347–354.1

[CNW87] CLEARY J. G., NEAL R. M., WITTEN I. H.:
Arithmetic coding for data compression.Com-
munications of the ACM 30, 6 (June 1987), 520–
540. 6

[COM98] COHEN J., OLANO M., MANOCHA D.:
Appearance-perserving simplification. InSIG-
GRAPH1998, pp. 115–122.1

[Dee95] DEERING M.: Geometry compression.SIG-
GRAPH1995, pp. 13–20.1

[DP02] DECORO C., PAJAROLA R.: XFastMesh: Fast
view-dependent meshing from external mem-
ory. IEEE Visualization2002, pp. 363–370.1

[ESAV99] EL-SANA J., AZANLI E., VARSHNEY A.: Skip
strips: Maintaining triangle strips for view-
dependent rendering.IEEE Visualization1999,
pp. 131–138.1, 5

[ESC00] EL-SANA J., CHIANG Y.-J.: External memory
view-dependent simplification.EUROGRAPH-
ICS2000, pp. 139–150.1

[ESV96] EVANS F., SKIENA S., VARSHNEY A.: Opti-
mizing triangle strips for fast rendering.IEEE
Visualization, pp. 319–326.1

[ESV99] EL-SANA J., VARSHNEY A.: Generalized
view-dependent simplification. InProc. EURO-
GRAPHICS 99(1999), pp. 83–94.1

[GE04] GOPI M., EPPSTEIND.: Single strip triangula-
tion of manifolds with arbitrary topology.Com-
puter Graphics Forum (EUROGRAPHICS) 23,
3 (2004), 371–379.3, 4, 7

[GH97] GARLAND M., HECKBERT P. S.: Surface sim-
plification using quadric error metrics.SIG-
GRAPH(1997), pp. 209–216.1, 6

[GH98] GARLAND M., HECKBERT P. S.: Simplifying
surfaces with color and texture using quadric er-
ror metrics. InProceedings IEEE Visualization
98 (1998), pp. 264–269.1

[Gop04] GOPI M.: Controllable single-strip generation
for triangulated surfaces. InPacific Conference
(2004), pp. 61–69.1

[GS98] GUMHOLD S., STRASSERW.: Real time com-
pression of triangle mesh connectivity. InPro-
ceedings SIGGRAPH(1998), pp. 133–140.5

[HDD∗93] HOPPE H., DEROSE T., DUCHAMP T., MC-
DONALD J., STUETZLE W.: Mesh optimiza-
tion. SIGGRAPH(1993), pp. 19–26.1

[Hop96] HOPPE H.: Progressive meshes.SIGGRAPH
1996, pp. 99–108.1

[Huf52] HUFFMAN D. A.: A method for the construc-
tion of minimum redundancy codes.Proc. Inst.
Electr. Radio Eng.(1952), pp. 1098–1101.6

[Ise00] ISENBURG M.: Triangle strip compression.
Graphics Interface2000, pp. 197–204.1, 5

[Kor99] KORNMANN D.: Fast and simple triangle strip
generation. Technical Report, 1999.1

[LT98] L INDSTROM P., TURK G.: Fast and memory
efficient polygonal simplification.IEEE Visual-
ization1998, pp. 279–286.1

[LZ78] LEMPEL A., ZIV J.: Compression of individual
sequences via variable-rate coding.IEEE Trans-
actions on Information Theory 24, 5 (September
1978), 530–536.6

[MNW98] MOFFAT A., NEAL R., WITTEN I. H.: Arith-
metic coding revisited.ACM Trans. on Informa-
tion Systems 16, 3 (July 1998), 256–294.8

[Paj01] PAJAROLA R.: Fastmesh: Efficient view-
dependent meshing. InProceedings Pacific
Graphics(2001), pp. 22–30.1

[Pet91] PETERSONJ. P. C.: Die theorie der regularen
graphs (The Theory of Regular Graphs).Acta
Mathematica 15(1891), 193–220.3

[Pug90] PUGH W.: Skip lists: a probabilistic alternative
to balanced trees.Commun. ACM 33, 6 (1990),
668–676. 4

[Ros99] ROSSIGNACJ.: Edgebreaker: Compressing the
incidence graph of triangle meshes.IEEE Trans-
actions on Visualization and Computer Graph-
ics 5, 1 (January-March 1999), 47–61.5

[RS99] ROSSIGNAC J., SZYMCZAK A.: Wrap&zip
decompression of the connectivity of triangle
meshes compressed with edgebreaker.Journal
of Computational Geometry, Theory and Appli-
cations 14, 1-3 (November 1999), 119–135.5

[Shi] SHIKHARE D.: Edgebreaker 3D compression
package. http://www.angelfire.com/space2/ di-
neshshikhare/compression/eb/index.html.8

c© The Eurographics Association and Blackwell Publishing 2005.



Diaz-Gutierrez, Gopi, Pajarola / Simplification, Stripification and Compression

[SP03] SHAFAE M., PAJAROLA R.: DStrips: Dynamic
triangle strips for real-time mesh simplification
and rendering. InProc. Pacific Graphics(2003),
pp. 271–280.1, 5

[Ste01] STEWART A. J.: Tunneling for triangle strips in
continuous level-of-detail meshes. InProceed-
ings Graphics Interface(2001), pp. 91–100.1

[TDG∗00] TAUBIN G., DEERING M., GOTSMAN C.,
GUMHOLD S., ROSSIGNAC J.: 3D geometry
compression. SIGGRAPH 2000 Course Notes
38, 2000. 1

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh com-
pression.Graphics Interface1998, pp. 26–34.5

[Tho00] THORUP M.: Near-optimal fully-dynamic
graph connectivity.Symp. on Theory of Com-
puting2000, pp. 343–350.3

[TR98] TAUBIN G., ROSSIGNAC J.: Geometric com-
pression through topological surgery.ACM
Trans. on Graphics 17, 2 (1998), 84–115.5

[XHM99] X IANG X., HELD M., M ITCHELL J. S. B.:
Fast and effective stripification of polygonal sur-
face models. InProc. Symp. on Interactive 3D
Graphics(1999), pp. 71–78.1

[XV96] X IA J. C., VARSHNEY A.: Dynamic view-
dependent simplification for polygonal models.
IEEE Visualization1996, pp. 327–334.1

Appendix A: Proof of Uniqueness of Adjacency in
Hierarchyless Simplification Operations

Observation: Consider aconnected graph Gof collapsible
edges and the vertices they connect. Construct a spanning
treeSof this graph. Since bothGandSare connected graphs,
collapsing all the edges will result in a single vertex in both
the graphs. Following the same reason, a spanning tree of ev-
ery connected component of collapsible edges can be com-
puted such that collapsing the edges in these spanning trees
will result in the same number of vertices as collapsing the
original set of edges. Hence, we can assume that the set of
collapsible edges is a forest of connected components.

Theorem 3: In a triangulated two manifold whose set of col-
lapsible edges is a forest of connected components, the con-
nectivity change due to an arbitrary edge uncollapse can be
uniquely determined.

Proof: If the set of collapsible edges form a forest of con-
nected components, so does the set of already merged edges
which is actually a subset of set of collapsible edges. The un-
collapse operations can be performed only on the edge that
is already merged (collapsed). Identify the (merged) tree to
which the vertices of the uncollapsed edge belong. A tree is
one connected; removing one edge will disconnect the tree.
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Figure 7: Planar unfoldings of a torus and a double-
torus. Every alternate edge can be a non-contractible non-
intersecting closed loop. The number of connected regions
on the manifold depends only on the number of contractible
closed curves. In both figures, curves 1 and 2 are con-
tractible and others are not. Both these manifolds have three
connected regions.

Hence, given the edgeAB, we can partition the vertices of
the tree into two groups, say left and right, one on the side
of A and the other on the side ofB, and the new vertex posi-
tions of these two groups can be computed unambiguously.
Once the positions of the (representatives of the) vertices are
found, resolving the connectivity is trivial: if there is an edge
between two verticesa andb in the original mesh, connect
the representatives ofa andb in the simplified mesh with an
edge. Similarly, face connectivity can also be resolved.

Appendix B: Proof of Theorem 2

Theorem: If s triangle strip loops cover the entire triangu-
lated two manifold of genusg then the number of connected
collapsible edge componentsc> 0 ands+1−g≤ c≤ s+1.

Proof: The triangle strip loops on a manifold neither self-
intersect nor intersect with each other. Hence they can be
considered as closed curves on the surface. The number of
connected components of the ‘medial axis’ collapsible edges
is same as the number of regions the manifold is partitioned
by the closed triangle strip curves. On a plane, the number
of connected components isn+ 1 for n closed curves. This
is true for a sphere also. For a higher genus object, while ev-
ery contractible closed curve partitions the space into two,
non-contractible closed curves do not. Figure7 shows pla-
nar unfolding of a torus and a double torus. In both these
unfoldings, curves 1 and 2 are contractible closed curves
and other curves are non-contractible curves homotopic to
fundamental curves. Even though there are 2g fundamental
closed curves, whereg is the genus, onlyg of them are mu-
tually non-intersecting. Hence there is a minimum ofn−g
contractible closed curves, and the number of connected par-
titions isn+1−g.
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