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ABSTRACT

GOPI MEENAKSHISUNDARAM:

Theory and Practice of Sampling and Reconstruction for Manifolds with Boundaries

(Under the direction of Prof. Jack Snoeyink)

Surface sampling and reconstruction are used in modeling objects in graphics and digital

archiving of mechanical parts in Computer Aided Design and Manufacturing (CAD/CAM). Sampling

involves collecting 3D points from the surface. Using these point samples, a reconstruction process

rebuilds a surface that is topologically equivalent and geometrically close to the original surface.

Conditions are imposed on sampling to ensure correct reconstruction. For a special case of manifolds,

there are theoretically sound algorithms for sampling and reconstruction. The sampling conditions

for such algorithms impose a minimum required sampling density (maximum distance between close

samples) to ensure correct reconstruction.

In this dissertation, I study the sampling and reconstruction of manifolds with boundaries.

For this class of surfaces, I show that the conditions on minimum required sampling density are

not sufficient to ensure correct reconstruction if only the point samples are given as input to the

reconstruction process. Additional information like the smallest boundary size in a model, though

sufficient to ensure correct reconstruction, imposes uniform sampling density throughout the model.

In this dissertation, I propose a novel way to use the variation in the sampling density across the surface

to encode the presence of a boundary. A sampling condition is proposed based on this approach,

and the reconstruction process requires no additional information other than the input set of sample

points. The reconstruction algorithm presented in this dissertation for reconstructing manifolds with

or without boundaries is shown to be correct, efficient, and easy to implement.
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CHAPTER 1

INTRODUCTION

The field of Computer Graphics since its birth has been striving to achieve photo-realism in computer

generated images, and physical realism in its simulation of environments. Object modeling, where

real-world objects in all their intricate complexity are represented in computers, is required to achieve

photo-realism. Physical modeling, where physical phenomena are accurately modelled in computers,

is required to achieve physical realism.

Object modeling is the process of representing a physical object in a suitable representation that

is useful for the intended application. There are two broad application areas where object modeling

is used – the Compute Aided Design and Manufacturing (CAD/CAM) industry, and the Computer

Graphics industry. In the CAD/CAM industry, the computer (re)presentation of objects is used to

manufacture physical models. In the computer graphics field, in general, existing physical objects are

used to get a computer representation. Object modeling tools that have been developed over many

years are more successful in aiding the user to present a model (for the CAD/CAM industry) than

to represent an object (for the computer graphics industry). This difference is due to substantially

different skill levels needed by the user for the tasks involved in presenting and representing the

models.

Recently, technology to directly capture physical objects, both their geometry and texture (color

and reflectance properties), has become commonplace, and this has given a tremendous boost to the

modeling in computer graphics. Devices using this technology include touch probe sensors, laser

scanner, 3D stereo systems, etc. With minimal human intervention, these devices sample the surface

of the object in the form of points in 3D.

In addition to modeling for computer graphics applications, the technology of sampling objects

is widely used for ‘digital archiving’. Digital archiving is a process of storing the models of objects



Figure 1.1: Surface Reconstruction Problem. Left: Sampling the surface, Middle: Sample points,
Right: Reconstructed surface.

and their corresponding documentation in computers, rather than storing them as physical models, to

save space and retrieval/reference time.

The set of points from the sampling process, by itself, is one form of representation of the

underlying object. But this representation is not very useful for both photo-realism (visualization) and

physical realism (simulation). Visualization requires the representation of a surface to handle texture

mapping, to provide correct occlusion properties, to represent multiple levels of detail, and to bring

out visual realism. Physical simulation and analysis requires a continuous surface representation. For

example, detecting collision between two models represented using points, instead of a continuous

surface, would produce unacceptable results. A continuous-surface representation, achieved by

connecting these points appropriately using triangles or other primitive surface pieces, is a natural

representation for visualization, physical simulation, and for applications involving surface analysis.

This problem of connecting the sample points appropriately to reconstruct the surface is

commonly known as surface reconstruction in the computer graphics community. (Note that in the

computer vision community, the process of sampling the object to get a point set is termed as surface

reconstruction [Faugeras93].) A well developed area in the field of signal processing is sampling

and reconstructing signals. The word “reconstruction” in surface reconstruction finds its root in the

similarity between the surface reconstruction and signal reconstruction problems.

This dissertation addresses the problem of converting a discrete set of points into a continuous

surface. Figure 1.1 shows the steps of this conversion. The figure on the left shows one of the discrete

data capturing device, the touch sensor, which is used manually to sample data points from a real

world model. The middle picture shows the data points sampled by this capture device. The right

2



picture shows a continuous representation of this data by reconstructing the surface using these sample

points. It can also be seen from the images that the continuous data reflects more faithfully the original

real-world object than the discrete data points. The rest of this dissertation describes in depth one such

method to reconstruct continuous surfaces from discrete data points.

1.1 Surface Reconstruction: Problem Definition and Issues

In this section I define the surface reconstruction problem. Various terms used in this section are

defined and elaborated in Chapters 2 and 3.

The surface reconstruction problem can be stated as follows: Given a set of points S that are

sampled from a surface M embedded in R3 , construct a surface F such that the points of S lie on

F , and F approximates M geometrically and is equivalent to M topologically. A variation of this

interpolatory definition, where F passes through the points in S, is one where F passes “close” to the

set of points S. In this dissertation we consider the interpolatory version of the surface reconstruction

problem.

The choice of underlying mathematical and computational representation of the reconstructed

surface is important for its applicability. The most common choices are triangular and polygonal mesh

representations. A triangular mesh allows us to express the topological properties of the surface, and

it is the most popular model representation for visualization and rendering applications. Hence, in this

dissertation, I will use only the piecewise linear triangular representation of the surface. Further, I

assume that the points input to the surface reconstruction algorithm are sampled from a manifold with

or without boundaries. There are various challenges for surface reconstruction algorithms including

reliability, robustness, versatility, efficiency, and quality of reconstruction. Here in this section, I

briefly discuss some of the issues that I address in this dissertation.

A proper reconstruction of surfaces is possible only if they are “sufficiently” sampled. However,

sufficiency conditions are difficult to formulate and as a result, most of the existing reconstruction

algorithms ignore or do not specify their requirements on sampling for reliable reconstruction. Hence,

these algorithms can be classified as surface reconstruction heuristics as opposed to algorithms.

Exceptions include the work of [Attali97, Bernardini97, Amenta98b]. These algorithms that

can reliably reconstruct surfaces (without boundaries) provide sufficiency conditions for sampling.

Assuming that the set of sample points satisfies these sampling conditions, correctness of these

algorithms are ensured by theoretical guarantees based on the sampling conditions.
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In this dissertation I show that the sampling conditions required to reconstruct the surfaces

without boundaries are not sufficient to reconstruct surfaces with boundaries. As a result, none of

the reconstruction algorithms available today can guarantee correct reconstruction of surfaces with

boundaries. I provide the conditions for sampling surfaces with and without boundaries and prove the

correctness of a reconstruction algorithm based on these sampling conditions.

Speed of reconstruction is another issue this dissertation will address. Currently, most of the

surface reconstruction algorithms that guarantee a “good” quality triangulation and are theoretically

sound produce higher dimensional simplices, like tetrahedra, or multi-sided polygons([Amenta01]).

A second stage of these algorithms removes interior facets or triangulates each of the multi-sided

polygons to produce the final triangulation. Therefore, these algorithms usually take in the order of a

few minutes to run on data sets of moderate sizes (about 20,000 to 30,000 points).

Finally, the quality of triangulation has to be addressed when using triangulation

representations. In many applications, like graphics rendering and finite element analysis, “fat”

triangles with large vertex angles are preferred. The minimum angle in the triangulation is one measure

of the quality of the triangulation. The reconstruction algorithm presented in this dissertation tries to

maximize the minimum angle in its triangulation.

1.2 Thesis Statement and Results

The central claim of this research is:

Conditions on minimum required sampling density are not sufficient to ensure reliable

reconstruction of surfaces with boundaries from an input set of points and normal vectors

at those points.

There are a few ways to define sufficient conditions to reconstruct surfaces with boundaries.

These conditions are discussed in detail in Section 5.4.1. Following is an additional claim of this

research.

Conditions on relative minimum and maximum sampling densities are sufficient to ensure

reliable reconstruction of surfaces with boundaries that takes a set of points and normal

vectors at those points as input.

In summary, I present in this dissertation the following:
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1. Sampling conditions and their properties to sample surfaces with and without boundaries.

2. An efficient reconstruction algorithm called the Localized Delaunay Triangulation algorithm

that generates good quality triangulations of the surfaces with and without boundaries from the

data points satisfying the conditions in 1.

3. A definition of Geometric Triangulation, and its properties.

4. Properties of multicovering functions between simplicial complexes and manifolds. In

particular, the relationship between multicovering and the geometric triangulation.

5. A proof of correctness of the Localized Delaunay Triangulation by showing that the

reconstructed triangulation is a geometric triangulation of the original surface.

6. An implementation of the Localized Delaunay Triangulation.

Apart from the above contributions, I also present a new normal estimation technique at sample

points using other spatially close points, and a fast Voronoi neighbor computation algorithm.

1.3 Outline of this Dissertation

In Chapter 2, I provide the necessary background material for better appreciation of this dissertation.

Following this, in Chapter 3, the work done till now in the field of surface reconstruction is briefly

described.

In Chapter 4, I describe in detail my algorithm for surface reconstruction. This algorithm, called

the Localized Delaunay Triangulation, is efficient, and can reconstruct surfaces both with and without

boundaries. Further, in this chapter, I elaborate on the implementation of the above triangulation

algorithm, analyze its performance and show the results of the algorithm on various moderate-sized

models. The following chapters explore the theoretical foundation for this reconstruction algorithm,

and prove that this algorithm produces a correct reconstruction of the surface.

In Chapter 5, the theory of sampling surfaces is explained. The basic difference between

sampling surfaces with boundaries and without boundaries is elucidated with examples. The

shortcomings of the familiar sampling techniques using medial axes, when sampling surfaces with

boundaries, is also illustrated using examples. In this chapter, I also explore the design space of

reconstruction algorithms that uses additional information other than the input set of sample points.
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Finally, I use the variation in the sampling density as an implicit information to encode the presence

of boundaries, and I prescribe this approach to design algorithms that uses only the sample points to

reconstruct surfaces with boundaries.

In Chapter 6, I define the sampling conditions for surfaces both with and without boundaries.

Results from Chapter 5 are used to develop the required mathematical formulation of the sampling

conditions. The sampling conditions formulated in this chapter ensure that the Localized Delaunay

Triangulation is a correct triangulation.

In Chapter 7, I develop the theory of triangulation, first by defining triangulations, and later by

enumerating the properties of a triangulation. In this context, I introduce the concept of a Geometric

Triangulation, as opposed to a conventional Topological Triangulation, to avoid multi-covering

triangulation of surfaces. Under certain assumptions about the model, I prove the necessary and

sufficient conditions for a triangulation to be a geometric triangulation. Finally, I prove that the

Localized Delaunay Triangulation is a geometric triangulation, and hence a “correct” triangulation.

Finally, in Chapter 8, I conclude and list a few open problems and future directions.
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CHAPTER 2

PRELIMINARIES

In this chapter I define surfaces, curvature, surface boundaries, samples, Voronoi diagrams, Delaunay

triangulations, medial axes, and other concepts that are required to understand this dissertation. The

definitions provided in this chapter are specific to the needs of this dissertation. These concepts have

more general applicability than the situations they are used here, and in a general setting, some have

broader definitions than the ones provided here.

2.1 General Geometric Concepts

A few of the following definitions are taken from [O’Neill97].

Definition: A vector ~v ∈ R3 is defined by a starting point p ∈ R3, commonly known as the origin,

and an ending point q ∈ R3. A vector is represented using a 3-tuple, ~v = q− p, where subtraction of

points is defined as componentwise difference.

Definition: The dot product of vectors ~v = (v1, v2, v3) and ~w = (w1, w2, w3) in R3 is the number

~v · ~w = v1w1 + v2w2 + v3w3

If the dot-product is zero, then the two vectors are said to be orthogonal to each other, or orthogonal

vectors.

Definition: The Euclidean norm of a vector ~v is the number

‖~v‖ = (~v · ~v)1/2

Definition: The Euclidean distance between the points p and q of R3 is the norm of the difference

vector ‖p− q‖.

d(p,q) = ‖p− q‖



Definition: If p is a point in R3 and ε > 0 is a number, then the ε-neighborhood of p ∈ R3 is the set

of all points q of R3 such that d(p, q) < ε.

Definition: A subset B of R3 is open if each point of B has an ε-neighborhood that is a proper subset

of B.

Open sets are used in topology and differential geometry concepts.

2.2 Topology for Surface Reconstruction

The topics in topology required for this dissertation are limited to the concepts that relate surfaces and

its triangulation. Many of the following definitions are taken from [Edelsbrunner01].

2.2.1 Simplices and Complexes

Definition: The n-dimensional half-space is

Hn = {x = (x1, x2, . . . , xn) ∈ Rn | x1 ≥ 0},

or a space that can be transformed to Hn by a rigid transformation.

Definition: An n-dimensional polytope is the intersection of a finite number of n-dimensional half-

spaces with non-empty interior in Rn . The faces of an n-dimensional polytope are (n−1)-dimensional

polytopes.

By definition, a polytope is convex. That is, if points a and b are in the polytope then the line

segment joining a and b completely lies inside the polytope. On the other hand, a polyhedron, whose

faces are also (n− 1)-dimensional polytopes, need not be convex.

Definition: The convex hull, convS, of a set of points S is the smallest polytope that contains all the

points.

Definition: An n-simplex, σ, is the convex hull of n + 1 points in non-degenerate positions in Rm ,

m ≥ n. If S is the set of these n + 1 points, then we write σ =convS.

Thus an empty set ∅ is a−1-simplex, point is a 0-simplex, a line is a 1-simplex, a triangle is a 2-simplex

and so on.

Definition: Let S be a set of n + 1 points in non-degenerate position in Rm , m ≥ n, and σ =convS

be an n-simplex. The l-simplex τ =convT , T ⊆ S consisting of l + 1 points, is called an l-face of σ

and this relationship is denoted by τ ≤ σ.
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a b c a b c a b c

Figure 2.1: Let X = {a, b, c}. To the left, Γ = {∅,X, {a, b}, {b}, {b, c}}. Similarly, Γ is defined in
the middle and the right. Note that Γ is a topology to the left and to the middle but not to the right as
it lacks the set {a, b}.

Definition: A simplicial complex, K, is the collection of faces of a finite number of simplices, any

two of which are either disjoint or meet in a common face. More formally, it is a collection K such

that

(a) if σ ∈ K and τ ≤ σ, then τ ∈ K, and

(b) if τ ∈ K and σ ∈ K, then τ ∩ σ ≤ τ, σ.

Note that ∅ is a face of every simplex and thus belongs to K by Condition (a). A tetrahedron,

or a “book” where the pages are triangles and all pages are connected along one edge at the “rib” of

the book, are examples of simplicial complexes. A collection of triangles along with their edges and

vertices define a simplicial complex as long as no two triangles form an improper intersection.

2.2.2 Topological Spaces

Definition: A topology on a set X is a collection Γ of open subsets of X having the following

properties:

(1) ∅ and X are in Γ.

(2) The union of the sets in any subcollection of Γ is in Γ.

(3) The intersection of the sets in any finite subcollection of Γ is in Γ.

Definition: A set X for which a topology Γ has been specified is called a topological space. Examples

of topologies shown in Figure 2.1 are taken from [Munkres75]. Further, a relevant fact is that a

simplicial complex is a topological space.

Definition: A topological subspace of the pair (X, ΓX ) is a subset Y ⊆ X together with the subspace

topology ΓY consisting of all intersections between Y and open sets of ΓX , ΓY = {Y∩A|A ∈ ΓX}.
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Definition: Let K be a simplicial complex in Rd . Its underlying space is the union of its simplices

together with the subspace topology inherited from Rd ,

|K| = {x ∈ Rd|x ∈ σ ∈ K}.

Definition: A topological space is called a Hausdorff space if for each pair x1, x2 of distinct points of

X, there exist open neighborhoods U1 and U2 of x1 and x2, respectively, that are disjoint.

Definition: A separation of a topological space X is a pair U , V of disjoint nonempty open subsets

of X whose union is X.

Definition: The space X is said to be connected if there does not exist a separation of X.

Another way of formulating the definition of connectedness is as follows. A space X is

connected if and only if the only subsets of X that are both open and closed in X are the empty

set and X itself.

Definition Given points x and y of the space X, a path in X from x to y is a continuous map f :

[a, b] → X of some closed interval in the real line into X, such that f(a) = x and f(b) = y. A space

is said to be path connected if every pair of points of X can be joined by a path in X. Every path

connected space is connected.

2.2.3 Homeomorphisms and Triangulations of Spaces

In this section we will see how two topological spaces can be compared using a mapping between the

spaces. We will also discuss the topological definition of triangulation using these mappings.

Definition: A function f : X → Y is said to be continuous if the preimage of every open set in Y is

open in X . A continuous function is called a map.

Definition: A map f : X → Y between topological spaces is said to be a homeomorphism if it is a

one-to-one and onto continuous function whose inverse is also continuous.

Definition: Two topological spaces X and Y are considered of the same type or homeomorphic if

there exists a homeomorphism between them. This is denoted by X ≈ Y.

Definition: A topological space X is a k-manifold if every x ∈ X has a neighborhood homeomorphic

to Rk .

Definition: A space X is a k-manifold with boundary if every point x ∈ X has a neighborhood

homeomorphic to Rk or to Hk. The boundary is the set of points with neighborhood homeomorphic

to Hk, and is denoted by bdX. The boundary is always either empty or a (k − 1)-manifold.
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A k-manifold in (k + 1)-dimensions has two sides, one in the positive direction of the normal

vector and the other in the negative direction. For example, if we consider a penny as a 2D disk, being

in our 3D world, it has two faces.

Definition: If there exists a path in X from x ∈ X to itself such that the starting point is on one side

and the ending point is on the other side of the manifold, then the manifold is said to be non-orientable.

If no such path exists, then the manifold is said to be orientable.

Definition: A map f : U → Rm, where U is open in Rm, is differentiable of class Cr (or a Cr-map) if

f has continuous partial derivatives of order up to r. It is smooth, or of class C∞, if it has continuous

partial derivatives of all orders. A map f : X → Rm, where X ⊂ Rn is arbitrary, is of class Cr if it

can be extended to a Cr map on a neighborhood of X .

Definition: A differentiable map f : M → N between differentiable manifolds is an immersion if the

derivative df has maximal rank at every point p ∈ M . If, in addition, f is a homeomorphism onto its

image, it is called an embedding, and we say M is embedded in N . In particular, an embedding is a

one-to-one immersion.

No 2-manifold embedded in 3D can be non-orientable. That is, there does not exist a map from

a non-orientable 2-manifold to R3 whose restriction to the image is a homeomorphism. On the other

hand, there are non-orientable 2-manifolds with boundaries that can be embedded in R3 .

Definition: A (topological) triangulation of a topological space X is a simplicial complex K whose

underlying space is homeomorphic to X, X ≈ |K|.
In this dissertation we are concerned only with triangulations of surfaces (defined formally in

the next section) that are Hausdorff, orientable, connected 2-manifolds with or without boundaries

embedded in 3D.

2.3 Differential Geometry for Surface Reconstruction

In this section, we review certain concepts in differential geometry that will be useful in describing the

conditions for sampling a smooth surface.

Surface reconstruction requires definition of surfaces. In our case, as we are considering

surfaces with boundaries, which are space curves in 3D, we need a definition of curves also.

Definition: A real-valued function f on R3 is smooth if all partial derivatives of f , of all orders, exist

and are continuous.

Definition: A curve in R3 is a differentiable function α : I → R3 from an open interval I into R3 .
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Definition: A differential function f : Rn → Rm is called a mapping from Rn to Rm .

We can extend the concepts of open intervals and curves to open regions in R2 and surfaces in

R3 . Before going into the definition of a surface, I would like to informally define tangent vectors.

Tangent vectors to Rm have two components: a vector and a point of application of that vector.

Definition: Let f : Rn → Rm be a mapping. If v is a tangent vector to Rn at p, let f∗(v) be the initial

velocity of the curve t → f(p + tv). The resulting function f∗ sends tangent vectors to Rn to tangent

vectors to Rm , and is called the tangent map of f .

Definition: A mapping f : Rn → Rm is regular provided that at every point p of Rn the tangent map

f∗ is one-to-one.

Definition: A coordinate patch x : D → R3 is a one-to-one regular mapping of an open set D of R2

into R3 .

Definition: A coordinate patch x is a proper patch if the inverse x−1 is also continuous over the range

of x.

Definition: A surface in R3 is a subset M of R3 such that for each point p of M there exists a proper

patch in M whose image contains a neighborhood of p in M .

This differential geometry definition of a surface implicitly defines a parametrization of the

surface. The domain D of the patch x is the parameter space. Further, this definition of M allows us

to consider the parameter space to be open.

As the coordinate patch x is a regular patch, the tangent space of D is mapped into the tangent

space on M . The tangent space at a point p of M ⊂ R3, denoted by Tp(M), is a plane passing through

p called the tangent plane. The vector orthogonal to all the vectors in this tangent plane is called the

normal vector to M at p ∈ M .

As two topological spaces are compared using a map, in general, two surfaces are compared

using a mapping function between them.

Definition: A map π is said to be a diffeomorphism if π is differentiable, one-to-one, and onto, and its

inverse, π−1 is also differentiable.

The topological analogue of diffeomorphism is homeomorphism. The map needs to be

continuous to be a homeomorphism, but for it to be diffeomorphism, the map needs to be differentiable

also. As every differentiable function is continuous, every diffeomorphism is a homeomorphism.
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Figure 2.2: The Darboux Frame

2.3.1 Frenet and Darboux Frames, and Principal Curvatures

Consider a point p on a surface M as shown in Figure 2.2. Let the normal vector to M at p be ~N .

Given a unit vector ~v on the tangent plane at p, define a curve c(t) : [−ε, ε] → M such that c(0) = p

and c′(0) = ~v, where c′ is the derivative of c. The Darboux frame at p is defined as the orthonormal

differential frame ~T = ~v, ~B = ~N × ~T , and ~N . Figure 2.2 shows the Darboux frame on the surface of

a cone. It is easy to see that for surfaces with a well defined tangent plane everywhere, every point on

the surface has a unique Darboux frame associated with it in a given direction ~v in the tangent plane.

Frenet Frame: The Darboux frame is defined for curves on a manifold. If the curves are space

curves that are not restricted to be on the surface, then the normal ~N of the Darboux frame is not

defined. Hence a different but consistent frame has to be defined for space curves. The derivative of

the tangent vector ~T at a point on a curve is orthogonal to the tangent vector. This orthogonal vector is

defined as the normal ~N of the space curve. The bi-normal ~B = ~N× ~T , is as in the Darboux frame. In

our application of surface reconstruction, the boundary curves of the surface can either be considered

as a space curve or a curve restricted by the surface. So we have an option of choosing either Darboux

frames or Frenet frames for our computation. In this dissertation, I consider the boundary curves as

part of the surface and use Darboux frames wherever there is a need for a coordinate frame.

Surface curvature: Associating a local differential frame at every point on the surface allows

us to measure some geometric invariants on the surface. If we walk infinitesimally along a direction

~v, the change of the surface normal in the direction ~v is called the normal curvature, κv. As we

move along different directions in the tangent plane, the normal curvature varies. The directions

with minimum and maximum normal curvatures are called principal directions and the corresponding

curvatures in these directions are called principle curvatures. These principal directions are orthogonal
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Figure 2.3: Quadratic approximation of a surface

to each other. In the rest of this dissertation, I will refer to the principal curvatures as κ1 and κ2 (or

κmin and κmax).

2.3.2 Surface Approximation using Power Series

Consider a 2-manifold M ⊂ R3 and a point p ∈ M as shown in Figure 2.3. Without loss of generality,

we make the following assumptions about p and M .

• p is the origin,

• the tangent plane Tp(M) of M at p is the z = 0 plane, and

• the two principal directions of M at p are the coordinate axes e1 = (1, 0, 0) and e2 = (0, 1, 0).

It is easily seen that these conditions can be achieved by a rigid transformation of M . In order

to proceed further, I make use of a result from classical differential geometry, namely the implicit

function theorem, which I state here without proof.

Theorem 1 [O’Neill97] There exists a small neighborhood Wp of p ∈ M such that the map π :

(x, y, z) → (x, y) is a one-to-one map with its image being an open set Vp ⊂ R2. Moreover the map

π is a diffeomorphism.

The point (x, y, z) ∈ M is a point in the local neighborhood of p and is defined in a local

coordinate system at p.

The fact that π is a diffeomorphism implies that π−1 exists and that π and π−1 are smooth

mappings. Therefore, we can approximate the surface in the neighborhood of p, denoted by Wp, using

a smooth height function h as

Wp = {(x, y, h(x, y)) : (x, y) ∈ Vp}
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Further, the tangent plane of Wp ⊂ M at p= (0, 0, 0) is given by the basis vectors (∂Wp/∂x)p =

(1, 0, ∂h
∂x(0, 0)) and (∂Wp/∂y)p = (0, 1, ∂h

∂y (0, 0)). Since we assumed that the tangent plane at p is

the z = 0 plane, ∂h
∂x(0, 0) = ∂h

∂y (0, 0) = 0.

Shape operator is a familiar concept in differential geometry. For an elaborate study on shape

operators, refer to Chapter 5 of [O’Neill97]. The shape operator at a point p ∈ M (denoted by Sp) is a

linear operator that maps an element of Tp(M) to another element in Tp(M). If vp1 and vp2 are a set of

basis vectors for Tp(M), Sp(avp1 + bvp2) = cvp1 + dvp2 (a, b, c and d are real valued scalars). For the

special case of a vector v being a principal direction, Sp(v) = κv, where κ is the principal curvature.

In our particular case, the tangent plane is spanned by e1 and e2. The shape operator applied to the

vectors e1 and e2 are given by ([O’Neill97], Page 207)

Sp(e1) =
∂2h

∂x2
(p)e1 +

∂2h

∂x∂y
(p)e2

Sp(e2) =
∂2h

∂x∂y
(p)e1 +

∂2h

∂y2
(p)e2 (2.1)

Since e1 and e2 are the principal directions, we can conclude that ∂2h
∂x∂y (0, 0) = 0 and that

∂2h
∂x2 (0, 0) and ∂2h

∂y2 (0, 0) are the principal curvatures (denoted by κ1 and κ2 respectively).

We now use Taylor’s formula to expand h(x, y) around the origin (0, 0). Thus,

h(x, y) = h(0, 0) + x
∂h

∂x
(0, 0) + y

∂h

∂y
(0, 0)

+
1

2
(x2 ∂2h

∂x2
+ 2xy

∂2h

∂x∂y
+ y2 ∂2h

∂y2
)

+ higher order terms

=
1

2
(κ1x

2 + κ2y
2) + higher order terms

∼= 1

2
(κ1x

2 + κ2y
2)

This shows that the shape of M near p is approximately the same as that of the surface

W
′

p(x, y) =

(

x, y,
1

2
(κ1x

2 + κ2y
2)

)

,

and W
′

p is called the quadratic approximation of M near p.

If we use the polar form for the height function h(r, θ), where, r =
√

x2 + y2 and θ is the angle

the vector (x, y) makes with the x-axis, then

h(r, θ) ∼= r2

2
(κ1 cos2 θ + κ2 sin2 θ) (2.2)
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I use the quadratic approximation of the surface and the derivatives of height functions in describing

and proving certain properties of my sampling conditions in Chapter 6 of this dissertation.

2.3.3 Euler Equation

The normal curvature κv at a point p on the surface in a given unit direction ~v on the tangent plane is

defined as the curvature of the intersection curve of the surface with the plane formed by the vectors ~v

and the surface normal at p. Using the shape operator, it can be written as

κv = Sp(~v) · ~v (2.3)

We can represent ~v in terms of the principal directions (~v1 and ~v2) as ~v = cos θ~v1 + sin θ~v2,

where θ is the angle ~v makes with ~v1. Therefore

κv = Sp(cos θ~v1 + sin θ~v2) · (cos θ~v1 + sin θ~v2)

= (κ1 cos θ~v1 + κ2 sin θ~v2) · (cos θ~v1 + sin θ~v2)

= κ1 cos2 θ + κ2 sin2 θ

(2.4)

The above equation is also known as the Euler equation. It expresses the normal curvature

at a point on the surface in terms of the principal curvatures at that point. Using this result on the

expression for h(r, θ) in Equation 2.2, we get

h(r, θ) ∼= κvr
2

2
(2.5)

I use these equations also in Chapter 6.

2.3.4 Frenet-Serret Equations for Darboux Frame

I will now present the equations that govern the behavior of the Darboux frame for curves on a surface

M passing through p. These equations are a modified form of the well-known Frenet-Serret equations

[Koenderink89, O’Neill97].











∂ ~T
∂s

∂ ~B
∂s

∂ ~N
∂s











=











0 g κv

−g 0 t

−κv −t 0





















~T

~B

~N











(2.6)
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The entries in the above matrix define the geometrical invariants at the point in consideration

where κv is the component of the acceleration along the curve tangent (normal curvature), g (or

geodesic curvature) is the component of the acceleration in the tangent plane, and t (also known as

geodesic torsion) measures the twist along the ~N − ~B plane.

It is now possible to describe the behavior of the normal vector along a curve on a surface M

passing through a point p. The equation below can be derived from 2.6.

∂ ~N = −κv∂s~T − t∂s ~B (2.7)

|∂ ~N | =
√

κ2
v + t2∂s (2.8)

The quantity
√

κ2
v + t2 is called the total curvature of the space curve through p. I simplify

the above equation for the special case of curves through p for which t is always zero. Then the total

curvature becomes κv, the normal curvature. (Note that the torsion is zero for the planar curve used

in the definition of normal curvature in the beginning of Section 2.3.3). Hence the modified rate of

change of normal along a particular direction is given by,

|∂ ~N | = κv∂s (2.9)

Let me briefly relate the concepts explained here with the sampling of a surface. The condition

for sampling is related to the rate of change of normal vector, in other words the curvature, around

a point on the surface. Samples should be close to each other in high curvature regions and can be

spread out in low curvature regions. Such a sampling bounds the change of normal between two close

samples on the surface. One way to describe this sampling using the concepts discussed here is as

follows. Define a region around every point on the surface as all points that satisfy the inequality,

κv∂s < constant (2.10)

and enforce “uniform sampling” across these regions, by which we would find equal number of

samples in every region. The regions defined by the above inequality are small in high curvature

areas of the surface and large in the low curvature areas. Uniform sampling across these regions

satisfies our requirement on sampling density mentioned above.

These concepts will be elaborated upon in Chapter 6 devoted to sampling conditions.
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Closed Curve

Medial Axis

Figure 2.4: Sampling: Left – Solid lines:Voronoi diagram, Dashed lines: Delaunay triangulation,
Right – Medial axis of a closed curve.

2.4 Voronoi Diagram and Delaunay Triangulation

The Voronoi diagram of a collection of disjoint geometric objects or sites is a partition of space into

cells, each of which consists of the points closer to a particular set of sites than to any others. In the

simplest case, these sites are points in space. Since distances have to be measured and compared, the

concept of Voronoi diagram requires a definition of a distance function. There are various Voronoi

diagrams depending on the distance metric used. In this dissertation, we discuss only the Voronoi

diagram due to the Euclidean metric in 2D or 3D. The boundaries of the Voronoi cell are made up

of Voronoi vertices, Voronoi edges, 2-dimensional Voronoi faces (in 3D and higher dimensions), and

higher dimensional polytopes in higher dimensional spaces. Figure 2.4 shows an example of 2D

Voronoi diagram for a set of point sites.

The Delaunay triangulation is the dual of a 2D Voronoi diagram. In a set of point sites, if two

sites are separated by a Voronoi edge then they are connected by a Delaunay edge. When no four

points are co-circular, the Delaunay triangulation is a triangulation of the given set of points. Figure

2.4 shows an example of Delaunay triangulation in 2D. In 3D, the Delaunay triangulation of a set of

point sites is a tetrahedralization of the points.

2.4.1 An Incremental Algorithm for Delaunay Triangulations

Here I describe one well-known incremental algorithm to compute the Delaunay triangulation of a set

of points. As the Delaunay triangulation is the dual of Voronoi diagram, for every Voronoi vertex there
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Figure 2.5: Recursion over suspect edges. p is the new point. pA, pB, and pD are the new (dashed)
edges. In this figure, edge AB failed the Incircle test and hence this edge has been swapped (dotted
lines). Arrows indicate the propagation of suspect edges.

is a corresponding Delaunay triangle, and for every Voronoi edge, a Delaunay edge. A Voronoi vertex

in 2D is a point which is equidistant from three point sites. In other words, a maximal empty circle

centered at a Voronoi vertex will touch three point sites. These three points form the vertices of the

dual Delaunay triangle. Therefore, a triangle is a Delaunay triangle if and only if its circumcircle does

not contain any vertex. More specifically, it can be shown that [Edelsbrunner01],

Theorem 2 Given a triangulation of n sites such that for every pair of adjacent triangles abc and bcd,

a is not in the circumcircle of bcd, then that triangulation is the Delaunay triangulation.

This forms the basis of the incremental algorithm.

Let us assume that we are given a function Incircle(a,b,c,d), that returns true if the point d is

inside the circumcircle defined by the triangle abc and false otherwise. Let us also assume the point

sites are in non-degenerate positions, that is, no four points lie on a circle. The basic idea behind this

algorithm is to introduce point sites one by one into an already existing Delaunay triangulation and

then correct the resulting triangulation to make it Delaunay again. To start with, assume a big enough

“dummy” triangle that contains all the input points. At the end of this algorithm, this dummy triangle

can be removed and the remaining triangulation of only the input point set would still be Delaunay.
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In the Delaunay triangulation any edge (except the boundary edges, which are dummy edges

in our case) has two triangles incident on it. The vertices of these two triangles, in order, form a

quadrilateral. Consider the recursive function below (and refer to Figure 2.5). This function checks if

an edge AB of the quadrilateral pACB is a valid Delaunay edge based on Theorem 2. If this edge

is not a valid Delaunay edge, then it is flipped to connect pC of the quadrilateral pABC. It can be

proved that by such repeated flipping, Delaunay triangulation can be constructed.

void CorrectSuspect(p, A, B)

{
%COMMENT: Triangles incident on AB: pAB and ABC

C = Vertex of the triangle incident on the edge AB

If (Incircle(p, A, B, C)){
Remove edge AB.

Form edge pC.

CorrectSuspect(p,A, C);

CorrectSuspect(p,C, B);

} else {
return;

}
}

Let p be the new point introduced, and let it lie inside the triangle ABD of the existing Delaunay

triangulation. Form edges pA, pB, pD. It can be proved [Edelsbrunner01] that these are Delaunay

edges. The edges AB, BD, and DA need not be Delaunay edges anymore, and they are called suspect

edges. To “acquit” them from this suspicion, the function CorrectSuspect is called for each suspect

edge AB, along with the newly introduced point p. When the function returns, the triangulation is

again Delaunay. Again, it can be proved that each edge is considered no more than once during this

recursive flipping. Hence the running time of this algorithm is O(n) for p and O(n2) in total, where n

is the number of points.

In Chapter 4, I present a different algorithm to construct Delaunay triangulation locally by

identifying the Voronoi neighbors. This algorithm assumes that all possible Voronoi neighbors of a

point are known and they are ordered around the point by angle.
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2.5 Medial Axis

The Medial Axis of a geometric object in 3D is defined as the set of the centers of spheres that touch

at least two points of the surface of the object. More formally, the medial axis of a shape in Euclidean

space is the locus of centers of maximal inscribed spheres. In general, the 3D medial axis is a collection

of two dimensional surfaces in 3D. Refer to Figure 2.4 for an example of 2D medial axis for a curve.

2.5.1 Medial Axis and Voronoi Vertices

In the Voronoi diagram of a set of sites, the points in the interior of a Voronoi cell are closer to one site

than the other. The points on the boundary between two or more Voronoi cells are equidistant from

two or more sites. Let us consider a 2D curve. If every point on the curve is considered as a site, then

every point on the boundary of Voronoi cells of these sites will be equidistant from at least two points

on the curve, which is exactly the definition of a medial axis. In the limit, the Voronoi vertices which

are equidistant from three points on the curve will lie on the medial axis. This fact is used in curve

reconstruction algorithms presented in the literature [Amenta98a].

In the Voronoi diagram of the sample points of a surface in 3D, there might be Voronoi vertices

close to the surface and away from the medial axis. This is because of the presence of “slivers”. A

sliver is a tetrahedron with bad aspect ratio yet a reasonably small circumradius to shortest edge ratio,

such as the tetrahedron formed by four nearly equally spaced vertices around the equator of a sphere.

The Voronoi center of a sliver can lie arbitrarily close to the surface.

2.5.2 Resting and Passing Circles

Let us consider the 2D curve illustrated in Figure 2.6. The circle of curvature (also called the osculating

circle) of a point a is the smallest circle that touches more than one point in the small neighborhood

around a including a (refer to Figure 2.6). I call a circle that touches points in a small neighborhood

a “resting circle”. Every circle smaller than the circle of curvature at a, touches only a. Hence their

centers cannot lie on the medial axis. But there are exceptions. There may be a circle that touches

points that are not in a small neighborhood, but distributed over different parts of the curve or curves.

I call such a circle a “passing circle”. Its center lies on the medial axis, and it may be smaller than the

circle of curvature at its points of contact. These cases are shown in Figure 2.6. It can be seen that

the resting circles capture the local features and the passing circles capture the global features. The

medial axis captures both local and global features of a curve as it consists of centers of both resting
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Figure 2.6: Circle a is the circle of curvature at p, and its radius is ρ. Centers of a, and b are in the
medial axis.

and passing circles. The distance of a point to the centers of its resting and passing circles, and hence

to the medial axis, is an indicator of the ‘feature size’ at that point. During the sampling process,

the smaller the feature size, the higher should be the density of samples to get a good approximation

of the medial axis by Voronoi boundaries of these samples. These concepts are used by Amenta et

al. [Amenta98a, Amenta98b] as described in Chapter 3. We also use these concepts in Chapter 6 to

compare our sampling with that of [Amenta98a, Amenta98b].

2.6 Summary

In this chapter I introduced various concepts in topology and differential geometry, and the concepts

of Voronoi diagrams, Delaunay triangulations, and the medial axis. The important properties of

topological spaces like connectedness, Hausdorff spaces etc. were defined. Tools to compare two

topological spaces using homeomorphism were provided. Intuition was given on how the concepts

in differential geometry can be used in sampling surfaces. The properties of surfaces, including

orientability, were defined. In the section related to Voronoi diagrams and Delaunay triangulation,

I presented a well-known algorithm to construct 2D Delaunay triangulation. Further, I also detailed

the relationship between the Voronoi vertices and the medial axis and its potential use in designing

robust surface reconstruction algorithms.
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CHAPTER 3

PREVIOUS WORK

The problem of surface reconstruction has received significant attention from researchers in

computational geometry and computer graphics. In this chapter, I discuss the previous work done in

the field. I categorize the reconstruction methods as algorithms if they guarantee correct reconstruction

when the input point samples satisfy some specified conditions, and the heuristics if they do not. The

reconstruction methods, both algorithms and heuristics, use a combination of techniques to do the

reconstruction. A few of the common techniques are described below.

A few surface reconstruction methods use spatial subdivision techniques. In these techniques,

the space bounding the input set of points is subdivided into disjoint cells. Commonly used cell

subdivision techniques include Delaunay tetrahedralization and voxelization. Once subdivided, the

points in the adjoining cells are connected to arrive at the surface. These algorithms differ in the cell

selection strategies for final reconstruction. The approaches of [Algorri96, Hoppe92, Edelsbrunner94,

Bajaj95, Attali97] fall under this category.

A few methods use distance functions to decide on the final connectivity between points.

The distance function might measure the distance of points from a local approximation of a surface

[Hoppe92, Hoppe93], from the medial axis [Roth97], or from any other convenient shape.

A few methods use direct surface reconstruction techniques that interpolate or approximate the

surface directly from the input set of points, without any intermediate representation like the medial

axis or a spatial subdivision like a tetrahedralization or voxelization. Works in this category include

[Boissonnat84, Muller93] and the algorithm presented in the dissertation. I describe below a few of

the methods in the literature.



3.1 Reconstruction Algorithms with Sampling Conditions

The sampling process chooses sample points from the given object as input to the reconstruction

algorithm. Sampling conditions are the restrictions on the sampling process so that the reconstruction

algorithm would work reliably on the given input set of points. Only a few algorithms provide such

sampling conditions.

Voronoi Filtering: One elegant sampling condition provided by Amenta et al. [Amenta98a,

Amenta98b, Amenta99] is based on the medial axis. The underlying technique used in this method is

called Voronoi filtering. Amenta, Bern, and Eppstein [Amenta98a] showed that the Voronoi vertices of

a dense sampling of a curve in R2 approximates the medial axis of the curve. The closest distance of

a point on a curve to the medial axis of the curve is called the feature size of that point. The sampling

condition for the reconstruction algorithm states that for any point a on the curve, there should exist

a sample point p at a distance that is less than a fraction of the feature size of a. If the value of the

fraction is ε, then the sampling is said to be an ε-sampling of the curve. Their reconstruction algorithm

first computes the Voronoi vertices of the given sample points. Then the Delaunay triangulation is

computed for the set of points that is the union of the input set of points and the set of its Voronoi

vertices. Those edges in this triangulation whose end points are in the input set of points form the

reconstructed curve.

This idea does not extend directly to 3D, because the Voronoi vertices of points in 3D do not

necessarily lie near the medial axis of the object. Amenta et al. [Amenta98b] developed heuristics to

remove the Voronoi vertices that lie close to the surface, assuming that those are the Voronoi vertices

that are not near the medial axis. Further, this sampling and reconstruction is applicable only to objects

without boundary. In Chapter 5, I will show that in the case of objects with boundary, not all sections

of medial axis are represented by Voronoi vertices. Improvements to [Amenta98b] are presented in

[Amenta00].

Reconstruction of Curves with Boundaries: There are a few algorithms for curve reconstruction

which guarantees correct reconstruction. One of them is based on the Voronoi filtering as explained

earlier. The work that is relevant to us is the reconstruction of curves with boundaries, that is,

curves with endpoints. Dey et al.[Dey00] developed the conservative crust algorithm and justify

their reconstruction of curves with endpoints. The sampling condition is again based on the feature

size as in the Voronoi filtering algorithm. Instead of prescribing a sampling condition for correct

reconstruction, this method proves that there exists a sampling condition for the curve reconstructed by
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the algorithm. In other words, there need not exist a sampling condition for the required reconstruction,

but there exists a sampling condition for the curve reconstructed by the conservative crust algorithm.

Further, this method reconstructs a family of curves with endpoints from the given sample points.

Conservative crust algorithm can be made to reconstruct the correct (required) and only the correct

curve by providing additional information as input to the reconstruction algorithm. This additional

information can be the value of ε if the sampling is an ε-sampling of the curve with endpoints. This

confirms the thesis presented in this dissertation regarding the sampling requirements for manifolds

with boundaries (refer to Chapter 5).

Power Crust: A new surface reconstruction algorithm called the Power Crust by Amenta et al.

[Amenta01, Amenta] uses the relationship between the Voronoi vertices and medial axis in a different

way. The medial axis is the locus of the centers of largest empty spheres touching any point on the

surface. The power diagram [Edelsbrunner93] is the weighted Voronoi diagram of a set of weighted

points. The weights of points represent the radius of the spheres centered at those points. Combining

these two concepts, the Power Crust method extracts the reconstructed surface as a power diagram

of the largest empty spheres centered at the Voronoi vertices of the given set of sample points. As

before, certain Voronoi vertices which are found to lie close to the surface are considered to be not

on the medial axis and are removed. This is one of the most elegant techniques for reconstructing

surfaces as it covers the space between the algorithms designed to reconstruct interpolatory surfaces

that assume that the sample points do not have noise, and the ones to reconstruct approximating

surfaces that assume that the sample points are probabilistic estimates of the underlying surface. This

property enables the Power Crust algorithm to tolerate noise in the input data set and at the same

time reconstruct the surfaces as faithfully as possible from the given set of points. The drawbacks of

this algorithm are its dependence on heuristics to achieve this goal, its slow speed, and its need for

triangulating the polygons generated by the power diagram. Again, the major limitation of this method

is that it can be used only for surfaces with no boundaries.

Alpha Shapes: The alpha shapes introduced by Edelsbrunner and Mueke [Edelsbrunner94] were

primarily to define shapes of molecules. But this concept was effectively used in surface reconstruction

also. Given a set of points in 3D, a Delaunay tetrahedralization is constructed for this input set of points

in the first step. In the second step, all tetrahedra, triangles, and edges whose radius of the smallest

circumsphere is greater than a fixed parameter α are removed to arrive at the α-shape. In the third step,

the triangles that belong to the desired surface are extracted out of the α-shape using the following rule.
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Consider the two possible spheres of radius α through all three points of a triangle of the α-shape. If at

least one of these does not contain any other point of the point set, then triangle belongs to the surface.

Since α is a global parameter the user is not swamped with many open parameters, but the drawback

is that a variable point density in sampling is not possible without loss of detail in the reconstruction

and hence requires uniform sampling.

There are many reconstruction algorithms based on α shapes that inherit the sampling

requirement from α shapes. Guo et al. make use of α-shapes for surface reconstruction but they

propose a so-called visibility algorithm for extracting those triangles that represent the surface out of

the α-shape. Teichmann et al. [Teichmann98] use density scaling and anisotropic shaping to improve

the results of reconstruction using α-shapes. The Ball Pivoting Algorithm presented by Bernardini

et al. [Bernardini99] again requires uniform sampling of the object, as it uses an algorithm similar to

α-shapes. This algorithm assumes a normal at every vertex, and does not mention how to handle two

close surfaces.

Normalized Meshes: As for α-shapes, again the Delaunay tetrahedralization is used for spatial

decomposition in this approach of Attali [Attali97]. The normalized mesh introduced in this work,

which is contained in the Delaunay graph, consists of the edges, faces, and tetrahedra whose dual

Voronoi element intersects the surface of the object. In two dimensions, given the sample point set

S taken from a curve c, the normalized mesh of c consists of all edges in the Delaunay triangulation

whose Voronoi dual intersects c. If the curve belongs to a class of curves of bounded curvature called

the r-regular shapes then, a bound on the sampling density can be given so that the normalized mesh

retains all the topological properties of the original curve. During the reconstruction of c, all edges

whose two Delaunay circumcircles intersect at an angle less than π/2 are chosen to be part of the

reconstructed mesh. The idea behind this approach is that the Delaunay circumcircles tend to become

tangent to the boundary of the object. If the sampling density is sufficiently high, then the reconstructed

mesh is the same as that of the normalized mesh, which is the same as c topologically.

Though the concept of normalized mesh, also called as the restricted Delaunay triangulation,

can be extended to 3D, the algorithm to construct normalized mesh cannot be extended. The reason

is the same as the one encountered in the Voronoi filtering method of Amenta et al. [Amenta98b]. A

few Delaunay spheres can intersect the surface without being approximately tangent to the surface,

as in the case of sliver tetrahedra. Two heuristics are presented in [Attali97] to accommodate 3D

sample points. The first heuristic is to find the normalized mesh, and then add the Delaunay triangles
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that share two or three edges with the normalized mesh. This approach does not always provide the

expected solution, as mentioned in [Attali97]. The second heuristic is a volume based approach where

the Delaunay tetrahedra are added based on two rules. The first rule prevents adding the tetrahedron

that removes a triangle belonging to the normalized mesh, and the second rule prevents adding of a

tetrahedron that isolates a point inside a volume. The boundary of the volume is considered as the

desired surface. This heuristic has been shown to work reasonably well on a number of models.

Note that the observation that (most of the) Delaunay circumspheres in three dimensions

intersect the surface tangentially is used by Amenta et al. [Amenta01, Amenta] in their power crust

technique for surface reconstruction.

Stable Voronoi Edges: This curve reconstruction algorithm by Weller [Weller97] uses the concept

of stable Voronoi edges. Let S be a finite sequence of points on a plane. The point set S ′ is an

ε-perturbation of S if d(pi, p′i) ≤ ε holds for all pi ∈ S, p′i ∈ S′, i = 1, . . . , n. An edge pipj is

called stable if the perturbed endpoints p′i and p′j in every ε-perturbation are also connected by an edge

of the Delaunay triangulation. It turns out that for a sufficiently sampled curve in the plane, only the

edges connecting the adjacent points on the curve are the stable edges. The stability of an edge can be

checked in time O(|Voronoi Neighbors|).
The extension to this approach to three dimensions is not straightforward again due to the

presence of sliver tetrahedra – an experience similar to that of Attali [Attali97], and Amenta et al.

[Amenta98b].

3.2 Reconstruction Heuristics without Sampling Conditions

Reconstruction algorithms that do not specify the required sampling or prove the validity of the

reconstructed surface are termed as surface reconstruction heuristics. In this section, I give a brief

survey of existing reconstruction heuristics.

Algorri and Schmitt [Algorri96]: This method is based on voxel based spatial subdivision. In the

first step, the rectangular bounding box of the given data set is subdivided by a regular voxel grid. In

the second step, the algorithm extracts those voxels that are occupied by at least one point of the sample

set. In the third step, the “outer” quadrilaterals of the selected voxels are taken as a first approximation

of the surface. These quadrilaterals are subdivided into triangles, and the vertices of these triangles

are warped appropriately based on the position of the sample points, to get a more pleasing surface.

Clearly, identifying an “outer” quadrilateral is the most important step in this method. Unless the
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voxels that contain the sample points are next to each other and bound a volume, “outer” cannot be

defined. Further, we can see that this method is applicable only to data points that lie on fixed grid

points, such as medical imaging data, and the data points have to be sufficiently close to each other

and the size of the voxel appropriately chosen so that the set of voxels bound a volume.

Hoppe et al. [Hoppe92, Hoppe93] also use a voxel-based subdivision method. This method computes

the signed distance of the vertices of the voxel from an estimated surface and chooses those voxels

which have vertices of opposite signs. The surface passes through these voxels. The surface is

then reconstructed using marching cubes algorithm. The distance of the voxel vertices from the

surface is estimated as follows. First the tangent plane at every input point is estimated using the

k-nearest neighbors of the point. Then these normal vectors are consistently oriented by constructing

a Riemannian graph and propagating the direction of the normal vector from one vertex to another in

the graph. Once the tangent planes with appropriate directions of the normals have been estimated, the

signed distance of a query point from the surface is estimated to be the distance to the tangent plane at

the closest data point.

There are a few algorithms that decompose the space into cells, remove those cells that are not

in the volume bounded by the sampled surface and create the surface from the selected cells. Such

works include [Bajaj95, Boissonnat84, Veltkamp95].

Boissonnat’s Volume Oriented Approach [Boissonnat84] starts with the Delaunay tetrahedraliza-

tion of the input set of points. Then the tetrahedra that satisfy certain conditions are removed from the

boundary of the convex hull. The tetrahedra with two faces, five edges and four points, or one face,

three edges and three points on the boundary of the current polyhedron are eliminated. The algorithm

stops when all points lie on the surface. The order of removal of tetrahedron is based on decreasing

decision value which is the maximum distance of a face of the tetrahedron to its circumsphere. The

reconstruction of models with genus greater than zero using this method is not reliable. The method

proposed by Isselhard, Brunnett, and Schreiber [Isselhard97] improved Boissonnat’s method to

reconstruct objects with non-zero genus, by allowing a few more types of tetrahedra to be removed.

The method introduced by Bajaj et al. [Bajaj95], which uses α-solids, is a combination of this

Boissonnat’s method and Edelsbrunner et al.’s α-shapes.

Boissonnat’s Surface Contouring Algorithm [Boissonnat84], which is an example of a direct

reconstruction technique, also uses a locally estimated tangent plane for the surface reconstruction

like Hoppe et al. The algorithm starts with an edge, usually the shortest edge among all possible edges
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between the input set of points. Then a triangle is attached to this edge by choosing the third vertex for

this triangle. The choice of the third vertex is made by projecting the points in the neighborhood of this

edge onto the estimated tangent plane. The point that makes the maximum angle when connected to the

end points of this edge is chosen to be the third vertex of the triangle incident on this edge. This process

continues till there is no free edge. This method can reconstruct only surfaces with no boundaries.

Another method similar to the one described above is the Spiraling-Edge triangulation proposed

by Crossno and Angel [Crossno99]. This approach works by creating a star-shaped triangulation

between a point and its neighbors. Like other heuristics described in this section, this method also does

not provide any theoretical foundation for the actual triangulation computed or express any sampling

requirement a for correct triangulation.

Other notable approaches include Veltkamp’s [Veltkamp95] γ-indicator, Bittar et al.’s [Bittar95]

surface reconstruction by medial axis, Roth and Wibowoo’s [Roth97] voxel based method, Mencl

and Muller’s [Mencl95, Muller93, Mencl98a, Mencl98b] method based on the Euclidean minimum

spanning tree, and Fua and Sander’s [Fua91, Fua92a, Fua92b] method on clustering of points. The

approach of Curless and Levoy [Curless96] is fine-tuned for laser range data. This method is also well

suited for handling very large organized data sets.

Warping-based reconstruction technique deforms an initial surface to give a good approximation

of the input point set. This technique is particularly suited if a rough approximation of the desired

shape is already known. Terzopoulos et al. [Terzopoulos88] use deformable superquadrics to fit the

input data points. A different approach to warping with oriented particles was suggested by Szeliski

et al. [Szeliski92] . By modeling the interaction between the particles (sample points), they construct

the surface using forces and repulsion.

The work presented in this dissertation can be considered as a direct method for surface

reconstruction. I also provide the sampling condition to reconstruct surfaces, and most importantly,

surfaces with boundaries. Sampling conditions not only ensure topologically correct reconstruction,

but also ensure minimum geometric deviation of the reconstructed surface from the original model.

Hence, the sampling condition would at least demand a minimum sampling to ensure topologically

correct reconstruction, and any additional sampling over this minimum requirement would make the

reconstructed model a better geometric approximation of the original model. This is true in case of

models without boundaries. In Chapter 5, we will see more about this philosophy and prove that this

need not be true when considering models with boundaries.

29



CHAPTER 4

LOCALIZED DELAUNAY TRIANGULATION

In the previous chapter we discussed various surface reconstruction algorithms in the literature. In this

chapter I present my algorithm for surface reconstruction called the Localized Delaunay Triangulation.

Unlike existing algorithms, this algorithm works on a manifold with or without boundaries. I show the

efficiency of this algorithm using empirical results. Further, the required sampling conditions to ensure

correct surface reconstruction using this algorithm is detailed in Chapter 6. The algorithm detailed in

this chapter and a preliminary version of the sampling conditions are presented in Gopi et al.[Gopi00].

4.1 Overview of the Algorithm

Our surface reconstruction algorithm takes as input, a set of unorganized 3D points S sampled from a

manifold M with or without boundary, with no other additional information like normal vector . The

output of the algorithm is a set of triangles, which defines a manifold L with or without boundary,

passing through the input set of points. In Chapter 7, I prove that, under certain assumptions, L is

homeomorphic to M .

This reconstruction algorithm uses a projection-plane technique where the neighbors of a vertex

p in the final triangulation are computed by projecting p’s spatially close points onto the tangent plane

at p, Tp. This can be classified as a local triangulation technique as the algorithm does not take into

account all the input points at the time of finding the neighborhood of one sample.

The surface reconstruction algorithm goes through six major steps: collect candidate points for

normal estimation, normal estimation, candidate point selection, projection of candidate points onto

the tangent plane, Delaunay neighbor computation, and finally the triangulation. This section gives a

brief description of each the above steps.
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Figure 4.1: Pipeline of the operations of the Localized Delaunay Triangulation algorithm.

Candidate Points for Normal Estimation: (Step 1 in Figure 4.1) The first step is to find spatially

close neighbors to every sample point. Using these neighbors, the normal vector at every sample is

estimated.

Normal Estimation: (Step 2 in Figure 4.1) The next step is to estimate the unit normal at all sample

points in S. This step also consistently orients the normal vectors of the sample points to get an

orientable manifold. Steps 1 and 2 are performed only if the normal vector information is not part of

the input.

Candidate Points Selection: (Step 3 in Figure 4.1) This step chooses those points that might be possible

neighbors to a vertex in the final triangulation. The candidate point set for every sample p is denoted

by Pp.

Projection of Candidate Points: (Step 4 in the Figure 4.1) Each of the candidate points in the set Pp is

mapped onto the tangent plane at p, Tp. The mapping is done by a simple rotation of the vector from

p to a candidate point about a well defined axis. The axis of rotation for a candidate point q is the line

on Tp that is perpendicular to the vector from p to q. The set of these mapped candidate points on the

tangent plane is denoted by P T
p .

Delaunay Neighbor Computation: (Step 5 in Figure 4.1) In this step, the 2D local Delaunay neighbors

of every sample p is computed from the set P T
p in its tangent plane, Tp.

Triangulation: (Step 6 in Figure 4.1) The final surface triangulation is determined from the Delaunay

neighborhood relationship around each sample determined in the previous step . Care is taken to avoid

certain inconsistent configurations to arrive at the final triangulation.
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4.2 Estimation of Vertex Normal

The first step in our algorithm is to find the unit normal, and thus the tangent plane of the surface, at

every sample point p, if the normal vector information is not part of the input. The normal vector is

computed using the k-nearest neighbors of p (Step 1 in Figure 4.1). The Euclidean metric is used to

measure distances to collect the k-nearest neighbors. Given only a set of points around p, we need to

define a vector that is a good representative of the normal to the surface M at p.

Definition: The normal vector Np is the unit vector that minimizes the variance of the dot product

between itself and the vectors from p to its k-nearest neighbors. If Di is the dot product between Np

and the vector from p to the ith closest neighbor, then Np minimizes

∑k
i=1

(Di −
∑

k

i=1
Di

k )
2

k

Let me justify the above definition of the normal. Let us call the point p at which the normal

has to be found as a reference point. There are two extreme configurations of sample points in the

local neighborhood around the reference point p. One configuration makes p a vertex with very high

curvature, and the other configuration makes p a vertex with zero curvature. If the reference point with

high curvature is the apex of a cone and the neighbors are on the circular rim of the base, the expected

normal at the apex is the direction of the cone axis. If the reference point with zero curvature is part of

a plane then the reference point’s normal is the normal to the plane. Under both these cases, the above

definition of normal vector defines the expected normal. Let us see how to compute such a normal

(Step 2 in Figure 4.1) .

If the k-nearest neighbors are q1 to qk, then the vectors from p to its k-nearest neighbors are

~Vi = qi − p, 1 ≤ i ≤ k. We want to find Np such that it minimizes

∑k
i=1

(Di −
∑

k

i=1
Di

k )
2

k
(4.1)

where Di = Np · ~Vi. Removing the scale factor 1/k, we get

min





k
∑

i=1

(

Np · ~Vi −
∑k

i=1
Np · ~Vi

k

)2


 (4.2)

= min





k
∑

i=1
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~Vi −
∑k

i=1
~Vi

k

)

·Np

)2


 (4.3)
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The vectors ~Vi can be viewed as the coordinates of the k-nearest neighbors with p as the origin. If p

is the origin, the centroid of the k-nearest candidate points is C =
(

∑k
i=1

~Vi

)

/k. Thus, the above

expression can be rewritten as

min

(

k
∑

i=1

((~Vi − C) ·Np)2

)

(4.4)

If A is a k × 3 matrix where ~Vi −C defines the row vectors, then the above expression reduces

to (ignoring the square)

min(‖ANp‖2
) (4.5)

Thus this minimization problem can be solved using singular value decomposition [Golub89].

The eigenvector which corresponds to the smallest eigenvalue of A is the normal vector that minimizes

the above equation. Hoppe et al. [Hoppe92] proposed the use of principal component analysis of a

covariance matrix to determine the normals. Even though our formulation is different, it turns out that

the resulting normal vectors computed by both methods are the same.

4.2.1 Propagation of Normal Direction

The normal vector found by the above process is correct only up to sign. To find a consistent orientation

of the surface, we fix the orientation of one of the normals and propagate this information to the rest

of the points.

We use the technique proposed by Hoppe et al. [Hoppe92] to do the propagation. Hoppe et

al. pose this problem as a minimum spanning tree problem, where the vertices of the model are the

vertices of the graph, and the edges of the model are the edges in the graph. The weight of the edge

between the vertices i and j is assigned to be (1− |Ni ·Nj|), where Ni and Nj are the normals at the

vertices i and j estimated using the method given in the previous section. The minimum spanning tree

of this graph would give the propagation sequence of normals for the consistent orientability of the

model. An arbitrary vertex of the graph is assumed to be the root and the normal is propagated to its

children recursively. When the normal direction is propagated from vertex i to vertex j, if Ni · Nj is

negative, then the direction of Nj is reversed; otherwise it is left unchanged.
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4.3 Candidate Point Selection

This step is similar to clustering steps used by other triangulation schemes [Hoppe92, Heckel98]. The

candidate points chosen for a reference point p are possible neighbors of p in the final triangulation.

Incorrect choice of candidate point set might lead to incorrect triangulation. The sampling conditions

presented in Chapter 5 ensure that the candidate points chosen as described in this section is correct.

This section describes a method to efficiently choose a correct candidate point set.

In the first stage, we use L∞ metric to prune our search for candidate points in the spatial

proximity of p. In this step, our algorithm takes an axis-aligned box of appropriate dimensions

centered at p and returns all the samples inside it. The way we decide the size of this bounding

box, and the data structure used for this pruning are explained later Section 4.3.1.

The second stage uses either a Euclidean metric or another distance function Q to further prune

the result of the first stage to arrive at the final set of candidate points of p, Pp.

Distance Function Q: The distance of q from p, Qp(q), is defined as

Qp(q) ≡ E2(p, q) + T 2
p(q)

where E(p, q) is the Euclidean distance between p and q, and Tp(q) denotes the distance of q from

the tangent plane at p (as determined by the normal vector at p). This distance function is explained

in more detail in Section 6.3.2.

Clearly, the normal vector information is required to compute Q. If the normal vector is not

given as part of the input, then the Euclidean metric (refer to Chapter 6) is used to measure the distance

between two sample points, otherwise Q is used for the purpose. All points less than a particular

distance around p measured using the Euclidean metric will be inside a sphere of influence, and if

Q was used to measure distances, then these points will lie inside an ellipsoid of influence. As we

discussed earlier, the second stage of pruning removes points that lie outside the sphere (ellipsoid) of

influence around p from the candidate set got after the first step of pruning. The following section

discusses the implementation details and the dimensions of the axis aligned bounding box (first stage

of pruning) and the sphere (ellipsoid) of influence (second stage of pruning).

4.3.1 Implementation of Candidate Point Selection

Our data structure for the first stage of pruning is a depth pixel array similar to the dexel structure

proposed in [Hook86]. The dexel data structure consists of a 2D pixel array where in each pixel
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multiple points can be stored in a sorted order. Given the axis aligned bounding box of the complete

input sample set, the dexel array can be considered as the discretization (pixelization) of the face

perpendicular to the z-axis. All data points are orthographically projected in the positive Z direction.

The points mapped on to the same pixel are sorted by their depth (z) values.

By using this data structure, the search for candidate points is limited to the pixels around the

pixel where p is projected. The size of the bounding box for choosing the candidate points using L∞

metric and the radius of the sphere (or ellipsoid) of influence used in the second stage of pruning are

determined by the distance to the closest point from p. Let s be the distance to the closest sample point

from p as measured by a distance function, then the bounding box and sphere(ellipse) should enclose

all points that are at a distance less than m × s from p. The constant m is 2.0 if Euclidean metric is

used, and is
√

5.83 (refer to Theorem 7, Equation 6.27) if Q is used, and this determines the dimension

of the sphere(ellipsoid) of influence. The dimension of the axis aligned bounding box (cube) centered

at p is 2ms.

The points that are inside the sphere (ellipsoid) of influence are possible Delaunay neighbors of

p in the tangent plane of p, Tp.

Note: If the distance function Q (Chapter 5) is used, the candidate set of p is pruned further after

rejecting the points that are outside the ellipsoid of influence around p. A sample point q is rejected

from the candidate set of p if the distance Qp(q) is greater than L2
q + L2

q sin2(φ) + 3

2
L2

p +

2LpLq(sin(φ) + cos(φ)), where L2
p and L2

q are distance to the closest samples from of p and q

respectively, and φ is the angle between the normal vectors at p and q (refer to Equation 6.23).

After the second stage of pruning, there might be a case where a sample p is in the candidate

set of a sample q, but q is not in the candidate set of p. Consistency between the candidate sets is

essential for the consistency of results of subsequent steps in this reconstruction algorithm (also refer

to Theorem 7). To make the candidate sets Pp and Pq consistent, the sample q is added to Pp. The

final candidate set of each sample point is got after this sharing of candidate set information between

the sample points.

4.4 Projection of Candidate Points

The next step is to project the candidate set Pp of each vertex p found in Section 4.3 onto the tangent

plane at p, Tp. The tangent plane Tp is defined by the normal vector estimated in Section 4.2. Let Vi

be the vector from p to the ith candidate point. The mapping of candidate points onto Tp is done by
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Figure 4.2: Let the homogeneous coordinates of q be (x, y, z, 1) with respect to the coordinate system
at the origin O. The coordinate of q with respect to the local coordinate system at p is given by
A · (x y z 1)T , where A is a 4x4 matrix computed as shown in Section 4.4.1.

rotating the vector Vi about p with the line on Tp that is perpendicular to Vi as the axis. The vector Vi

will sweep a sector of a disk on the plane defined by the normal Np and Vi, due to this rotation. The

rotation of Vi retains its length on the tangent plane. The set of all candidate points of p projected in

this way onto its tangent plane is denoted by P T
p .

This rotation operation can be considered as flattening the surface around p onto Tp such that

the distances of points on the surface from p remains the same after the flattening. The inverse of

this mapping is called the exponential map in the Riemannian Geometry literature [O’Neill97]. The

Voronoi diagrams and Delaunay triangulation are defined for Reimannian surfaces [Leibon00]. The

rotation operation (inverse exponential map), instead of an orthogonal projection, makes the Voronoi

diagram of the points in P T
p and p on the tangent plane a better approximation of the projection of the

Voronoi diagram of the candidate points of p on the Riemannian surface described in [Leibon00]. To

be precise, consider the Voronoi curves VC on the surface around p separating p and the points in Pp,

and their mapping onto Tp using the inverse exponential map. Let the mapped curves on Tp be V T
C .

The Voronoi edges on the tangent plane between p and points in P T
p are tangents to V T

C .
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4.4.1 Implementation of Projection of Candidate Points

Let the global coordinate system in which the input set of points is represented be (X, Y, Z) (refer

to Figure 4.2). The first step is to find the local coordinate system, say (X ′, Y ′, Z ′), at the reference

point p. The normal vector at p is the Z ′-axis. Any vector on the tangent plane at p can be chosen

as the X ′-axis, and based on this choice, the Y ′-axis is computed as the cross product of Z ′-axis and

X ′-axis. The X ′-axis is computed as follows.

Let the unit Z ′-vector be (z[0], z[1], z[2]) with respect to the global coordinate system. Let

d = 1/
√

z[0]2 + z[1]2. The X ′-vector (x[0], x[1], x[2]) = (z[1]× d,−z[0]× d, 0). It can be seen that

X ′ is a unit vector, and X ′ · Z ′ = 0.

Any point q with homogeneous coordinates (x, y, z, 1) in the global coordinate system can be

represented in the local coordinates by a linear transformation. The transformation matrix A is given

by

A =

















x[0] x[1] x[2] −(X ′ · p)

y[0] y[1] y[2] −(Y ′ · p)

z[0] z[1] z[2] −(Z ′ · p)

0 0 0 1

















(4.6)

The local coordinates of q are (x′, y′, z′, 1) = A · (x, y, z, 1)T .

Rotating the vector ~pq to the tangent plane of p is same as projecting q onto the tangent plane

of p orthogonally and then scaling the vector from p to the projected point to the length equal to | ~pq|.
The local coordinates of the orthogonally projected point of q onto the tangent plane of p is (x′, y′, 0).

The image of q after mapping onto the tangent plane by rotation is given by

q′ =

√

(x′ y′ z′) · (x′ y′ z′)
(x′ y′ 0) · (x′ y′ 0) (x′ y′ 0)

4.5 Delaunay Neighborhood Computation

The next step is to find the Delaunay neighbors of each vertex that are preferred neighbors in the final

triangulation of the surface. To compute the Delaunay neighbors, first the projected candidate points

P T
p on the tangent plane are ordered by angle around p. Then a fast Delaunay neighbor computation

is done using this ordering. These two steps are described below.
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Figure 4.3: Finding Delaunay neighbors. Given points A, B and C, check whether B is a Delaunay
neighbor of p. The thick edges are the local Voronoi edges around p.

4.5.1 Fast Ordering by Angle

The candidate points are transformed to the local coordinate system and are mapped to Tp as explained

in the previous section. These points have 2D coordinates, with an implicit definition of coordinate

axes. The set P T
p is partitioned on the basis of the quadrant where the points lie on Tp in the local

coordinate system. The points within each quadrant are ordered by angle using a simple method as

explained below.

The square of the sine of the angle can be computed without any use of square-root or

trigonometric functions, as x′2/(x′2 +y′2). Points in each quadrant in the projection plane are ordered

separately using the square of the sine values and finally merged to get the complete ordering of points

around p.

4.5.2 Delaunay Neighbor Computation

This section describes the details of finding the neighbors for the reference point p from the candidate

point set using 2D local Delaunay triangulation. The Delaunay neighbors of p is found from the

angle-ordered candidate vertices around p as follows. The basic function of the algorithm takes the

reference point and three consecutive points in angle ordered set, A, B, and C, to check whether the

middle point (B) could be a Delaunay neighbor of p in the presence of A and C. Figure 4.3 explains

this algorithm pictorially.

bool CheckDelaunay(p, A, B, C)

{
LA = Perpendicular bisector of the line segment pA.

LB = Perpendicular bisector of the line segment pB.
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LC = Perpendicular bisector of the line segment pC.

IAC = Intersection point of LA and LC .

LIB = Line parallel to LB , and passing through IAC .

MB = Mid point of the line segment pB.

If both p and MB lie on the same side of LIB , then

B is a local Delaunay neighbor to p when compared with A and B.

return TRUE.

else

B is not a Delaunay neighbor to p.

return FALSE.

}

If q1 . . . qn are the ordered projected candidate points of p, then the above function is called for

every triplet qi−1, qi, qi+1. If the test passes, then the next triplet qi, qi+1, qi+2 is tested. But, if the

test fails, then qi is rejected, and the algorithm backtracks with the call qi−2, qi−1, qi+1 to re-evaluate

qi−1 for its validity. As the ordering of the vertices is by angle, and hence is cyclic, any point can be

chosen as the first point q1. We choose the closest point to p as q1, as it is always a Delaunay neighbor.

We also use q1 as a terminating condition for the backtracking step. The implementation of the above

algorithm is optimized for speed, and each call to the above function takes less than 35 mathematical

operations.

4.6 Triangulation

The Delaunay neighbors of each vertex are found and stored in a list ordered by angle. Vertices A, B,

and C form a triangle if and only if {B, C}, {C, A}, and {A, B} are consecutive Delaunay neighbors

in the ordered neighbor lists of A, B, and C respectively (refer to Section 7.3.1 for justification and

more detail). There are a few degenerate cases and problems arising out of improper sampling, and

due to the projection onto different, though close, tangent planes.

In the triangulation stage of our algorithm, assume that A, B, C, and D form a quadrilateral

as shown in Figure 4.4. There might be a case where both BD and AC are Delaunay edges forming

overlapping triangles. There might also be a case where neither BD nor AC is a Delaunay edge

forming a hole (refer Figure 4.4).
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Figure 4.4: Left: AC and BD are Delaunay neighbors of each other. Right: Neither AC nor BD
are Delaunay neighbors of each other.

In the first case, a simple contention detection and removal method is used to disambiguate the

triangulation. For example, in our implementation, the triangulation around a vertex with lowest index

(say A) is given preference to complete the triangulation, and hence triangles ABC and ACD are

chosen.

In the second case where the hole is left due to lack of Delaunay edges, we have to justify that

the hole is due to the inconsistent Delaunay neighborhood relationship rather than an actual hole in the

model. The sampling conditions described in Chapter 6 ensures that the non-adjacent points on the

boundary are not candidate neighbors of each other. If the boundary points of the hole are candidate

neighbors of each other, then the hole is due to the inconsistent Delaunay neighborhood relationship.

Such holes are filled using a simple polygon triangulation algorithm after projecting these points along

the boundary to a plane defined by the average of normal vectors at these points.

As the Delaunay triangulation is computed locally in 2D, a dimension lower than the one in

which the surface exists, this method of constructing the triangulation is called the Lower Dimensional

Localized Delaunay Triangulation.

4.7 Results

We ran the implementation of this algorithm on various models, and the results have been documented

in Table 4.1. All timings are measured on an SGI-Onyx with an R10000 processor running at 194

MHz. The color plates at the end of this dissertation show the results of our algorithm on a few

models. The graph in Figure 4.5 shows that the performance of our algorithm is nearly linear with

respect to the number of points in the input set. The computation of normal takes around half the total
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No. of No. of Normal Comp.Time Triangulation Time Total Time

Model points Triangles (in secs) (in secs) (in secs)

Face 12837 25438 1.85 2.55 4.42

Club 16864 33643 2.40 2.30 4.75

Foot 20021 39862 2.88 3.30 6.22

Lower Jaw 25362 49061 3.50 2.70 6.26

Upper Jaw 27830 54458 3.91 2.95 6.92

Oil Pump 30937 61772 4.37 7.30 12.80

Bunny 34834 69630 5.03 5.00 10.64

Skidoo 37974 75364 5.25 4.58 9.85

Phone 83034 165981 12.18 13.40 25.67
Table 4.1: Performance of our algorithm
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Figure 4.5: Graph shows the total computation time and the computation time of the normal vector
with respect to the number of points in the input model.
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time. The candidate point selection process using the dexel array is dependent on the depth complexity

of the model in the projection direction. This has had its effect on the total time (refer to Oil-pump

model) of reconstruction.

The total reconstruction time of our algorithm is in terms of number of seconds, whereas the

running time on a similar platform for other implementations of algorithms that guarantee correct

reconstruction is in terms of number of minutes. Further, our algorithm and implementation are

modular and are suitable for parallelization with minor changes.

It is important to note that none of the models are sampled specially for our algorithm.

Specifically, the inside-looking-out laser scan data of the Car and Room models (Courtesy Lars

Nyland) have a lot of noise and perturbations in the location of the samples. Further, the Car model

is a merged data set of four different laser scans. These models have been reconstructed satisfactorily,

though with a number of small boundaries.

4.8 Summary

I have presented a fast and reliable surface reconstruction algorithm, the Localized Delaunay

Triangulation algorithm. This algorithm can reconstruct surfaces both with and without boundaries.

Further, using empirical results, this algorithm is shown to be efficient and have a near linear

performance. In the ensuing chapters I develop the theory of sampling, and the sampling required by

this algorithm to produce correct results. Further, I prove that the Localized Delaunay Triangulation

presented in this chapter is a correct triangulation.
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CHAPTER 5

THEORY OF GEOMETRIC SAMPLING

5.1 Introduction to Sampling

Sampling is a process of discretizing a continuous surface or a curve into discrete samples. The

reconstruction process uses these samples to reconstruct the original continuous surface. To ensure

correct reconstruction of the original surface, certain restrictions are imposed on the discretization

process. These restrictions are called sampling conditions or criteria.

For example, in signal processing, one of the well known sampling criterion is the Nyquist

criterion to sample a continuous signal, and this is used in digitization of audio, video, and is applicable

to images also. According to the Nyquist theorem [S.84, B.89], the discrete time sequence of a sampled

continuous band limited signal V (t) contains enough information to reproduce the function V (t)

exactly provided that the sampling rate is at least twice that of the highest frequency contained in

the original signal V (t). To develop such a sampling condition for geometric sampling of curves and

surfaces, we have to identify the parameter in curves and surfaces that is equivalent to frequency in

signals.

The reconstruction of a signal that is sampled based on the Nyquist frequency is dependent

on Fourier transforms. By this transform and appropriate band-pass filters, it can be proved that

the reconstructed signal is exactly the same as the original signal, and not an approximation. This

dissertation deals with geometric sampling of a surface and reconstruction of the surface from the

sample points. The reconstructed surface is a correct surface if it is topologically equivalent and

geometrically close to the original surface. In other words, we are not reconstructing exactly the

same original surface, though such reconstruction might be possible under various assumptions about

the surface. Because of these reasons, and the natural differences between signals and surfaces, we

cannot directly relate the Nyquist sampling and Fourier signal reconstruction, with the sampling and
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Figure 5.1: Sampling of a Space Curve.

reconstruction of a surface. Nevertheless, I try to draw an analogy between signals and surfaces. To

simplify further, I use curves instead of surfaces in this analogy.

5.1.1 Signals and Curves

Curvature has been used successfully in differential geometry to study the shape of an object. Hence to

get a geometrically close approximation of the curve, we need more samples in high curvature region

and less samples in low curvature region.

Curvature is an implicit property and does not capture an explicit feature, like self-intersection,

that is due to the space in which the curve is immersed or embedded. Though we assume that the

mapping is an embedding, which eliminates self-intersection, we have to address the issue of capturing

certain explicit features for topologically correct reconstruction.

Reconstruction of a curve connects adjacent samples. Hence adjacency relationships between

samples have to be established unambiguously for correct curve reconstruction. In the case of signals

there is an implicit temporal ordering of samples. In the case of curves, in the absence of explicit

ordering of samples, various heuristics are used to find an ordering using spatial proximity of samples.

When two different parts of the curve are spatially close to each other as in Figure 5.1, these heuristics

might fail if the distance between adjacent samples is greater than the distance between different parts

of the curve. Spatial proximity of different parts of the curve is measured using explicit curvature.

Definition: Explicit curvature at a point p on the curve is defined as the reciprocal of the positive

minimal radius of a circle centered at p whose intersection with the curve is not homeomorphic to

real line. Note the similarity of this definition with the definition of (implicit) curvature which is the

reciprocal of the radius of the osculating circle.
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The sampling density should be proportional to the explicit curvature as well as implicit

curvature at any region of the curve. In summary, the ‘frequency’ of a signal can be considered to

be an analogy to the explicit and implicit curvatures at the points on the space curve.

5.2 Medial Axes and Curvatures

One of the best indicators of local explicit and implicit curvatures is the medial axis of the

curve/surface, since it unifies both these concepts. The closest distance of a point on the surface to the

medial axis is less than the minimum of the reciprocals of the implicit and explicit curvatures at that

point. This fact is exploited by Amenta et al. [Amenta98a, Amenta98b] for providing the sampling

condition for reliable reconstruction of curves and surfaces. The sampling condition of Amenta et

al. says that for every point a on the curve or surface, there should exist a sample point at a distance

less than a fraction of the closest distance of a to the medial axis. This sampling condition yields a

sampling density that is proportional to the maximum of the implicit and explicit curvatures.

During the reconstruction process, the medial axis of a curve or a surface cannot be computed

with just a set of sample points. In their reconstruction algorithm, Amenta et al. use the fact that the

Voronoi vertices of the samples lie close to the medial axis of the densely sampled curve (refer to

Chapter 3). A few more algorithms [Amenta01, Amenta, Amenta00] have been designed recently on

the same lines, but all these algorithms use the same underlying relationship between the medial axis

and the Voronoi vertices. In the next section, I show that there is a class of surfaces for which these

algorithms cannot be used, as the relationship between the medial axis and Voronoi vertices ceases to

exist in these surfaces.

5.3 Medial Axes and Voronoi Vertices

Algorithms that use medial axis for sampling rely on the estimation of medial axis for reconstruction.

The 3D medial axis computation algorithms are so uncommon that there are only a few for polygonal

models [Culver00] and none if only the sample points of the model are given. The only estimation

technique for medial axis from sample points uses Voronoi vertices, and is applicable only when

samples are taken from closed models. In this section I show that this estimation technique is not

reliable when the sample points are taken from objects with boundaries.
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Figure 5.2: Medial axis of a plane: Left – Without Boundary, Right – With Boundary.

All Voronoi vertices of a samples of a 2D curve lie close to the medial axis (MA) if the curve

is sufficiently sampled. For samples of a 3D object, it is shown in the literature that there might be

Voronoi vertices close to the surface of the model and far away from the MA. Based on some heuristics,

such Voronoi vertices are removed by the reconstruction algorithms. These algorithms assume that the

underlying surface is a closed surface, and all sections of the MA are well represented by the Voronoi

vertices (Figure 5.2).

When we consider a surface with boundary, it is not only true that not all Voronoi vertices lie

close to the MA, but also that not all sections of the MA are represented by the Voronoi vertices. For

example, consider a planar region and its sampling (Figure 5.2). The MA of this plane are two parallel

planes at infinity, one above and another below the given plane. If there is a circular hole in the plane,

then a line of the MA passes through the hole connecting the two planes at infinity. However dense the

sampling is along the boundary and the given plane, there will be no Voronoi vertex in this connecting

line. Even if there are a few Voronoi vertices on this connecting line due to perturbation of points

in the boundary, the reconstruction algorithms cannot distinguish these vertices from the ones that lie

close to the surface and far away from the MA, and hence will be removed.

Hence, for a surface with boundary the relationship between the Voronoi vertices of samples

and the medial axis of the surface ceases to exist, and any algorithm relying on this relationship cannot

reliably identify or reconstruct the boundary of the surface. The next section further explores the class

of surfaces with boundaries.
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Figure 5.3: Sampling: Left – Without Boundary, Right – With Boundary.

5.4 Sampling Surfaces with Boundaries

Conditions for sampling a surface depend on the reconstruction algorithm used. The few algorithms

that specify sampling conditions focus on surfaces with no boundaries. In this section I show

that sampling surfaces with no boundaries is mathematically different from sampling surfaces with

boundaries.

Almost all of the reconstruction algorithms designed till today have the “Nyquist philosophy”

that the denser the sampling, the closer the approximation of original surface with the reconstructed

surface. Hence the sampling conditions directly or indirectly specify the maximum distance between

close samples, or the minimum required sampling density.

For different reconstruction algorithms there will be some minimum distance between sample

points on a surface boundary for which the algorithm will correctly reconstruct the boundary. We call

this the boundary size, and its definition is based on the reconstruction algorithm used. For example,

in terms of the sampling conditions prescribed by [Amenta98a, Amenta01], the boundary size is the

minimum distance of boundary points to the medial axis. In terms of alpha shapes, the boundary size

is the minimal value of alpha that cannot reconstruct a topologically correct and geometrically close

surface.

Theorem 3 Conditions on the minimum required sampling density are not sufficient to design reliable

algorithms that reconstruct surfaces with boundaries using only the point samples and normal vectors

as input.

Proof: Let us assume we are given a hypothetical surface reconstruction algorithm A that claims

to reliably reconstruct surfaces both with and without boundaries. Let A be based on a sampling
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condition C that directly or indirectly specifies just the maximum distance between samples in a given

region. Let δ be the maximum distance between the closest samples demanded by C in a specific

region on M (Figure 5.3). If we consider a boundary B on a surface M of size less than δ (and

greater than another constant, say, ε), then the sampling demanded would not be able to capture the

feature B. Hence C is forced to demand a denser sampling in the region around the boundary B.

Let the new limit on maximum distance between closest samples be ε which is less than δ. Since,

by the new sampling condition, the distance between closest samples is less than both ε and δ, the

sampling satisfies the conditions required to sample M both with and without the boundary B. With

no additional information about the presence or absence of boundary, the algorithm A has no way

to find out whether the given set of sample points are of a surface with or without boundary. Hence

conditions on just the minimum required sampling density is not sufficient for reliable reconstruction

of M with B when only the sample points are used during reconstruction. ♦

5.4.1 Analysis of the Algorithm Design Space

Reconstruction algorithms can reliably reconstruct only manifolds (without boundaries) if only the

conditions on minimum required density were used for sampling. Consider the diagram in Figure 5.4.

We need to design algorithms to reconstruct all instances of the class of orientable manifolds with and

without boundaries.

Let us analyze the design space of reconstruction algorithms. There are two stages to the

reconstruction process, the sampling stage and the reconstruction stage. To handle surfaces with

boundaries, either the sampling condition should be strengthened in the sampling stage, or more

information should be provided apart from just the sample points during the reconstruction stage.

In this dissertation we do not allow any additional information other than the sample points to the

reconstruction process, and hence take the approach of strengthening the sampling conditions. But let

us first analyze the option of providing more information to the reconstruction stage.

Trivial (and maximum) additional information for correct reconstruction is the complete

connectivity information, which I do not consider in this dissertation for obvious reasons. A

“medium-sized” additional information can be in the form of tags for all the boundary points.

All tagged points can be used as input to a curve reconstruction algorithm that would reconstruct

closed boundary curves. The rest of the connectivity can be found using present (closed) surface
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Figure 5.4: Solution space for different sampling conditions.

reconstruction algorithms with minor modification. This approach needs further investigation which

this dissertation will not address.

The minimum additional information that can be provided is one number, and let that be the

smallest boundary size, say δ, of the model. A reconstruction solution can use existing (closed) surface

reconstruction algorithms and, as a post processing, remove all edges with length larger than δ. The

sampling should be dense enough such that the required edges are ensured to have length less than δ.

This approach can reconstruct the instances of surfaces both in sets A and B in Figure 5.4. Reducing

the value of δ allows the reconstruction algorithm to handle set B and a superset of set A, but increases

the required sampling density. In the limit, to reconstruct all instances of set C, infinite sampling is

required, making it theoretically uninteresting. Nevertheless, this approach is suitable for data sets

from uniform, minimally controlled, and automatic sampling processes, and where the reconstruction

stage is well controlled. For example, large data sets of rooms and outdoors from laser scanners can

be handled using this approach. Again, this option is not investigated in this dissertation.

In order to change the sampling to dynamically adapt to boundary-sizes, conditions on sampling

should be strengthened. Since we are not allowing any other information other than the sample points

for the reconstruction stage, we encode the presence of boundary using the variation in sampling

density. To accomplish this, here I establish a relationship between the sampling density and the

presence of boundary.
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5.4.2 Sampling Condition for Surfaces with Boundaries

To represent boundaries, we have to prevent the addition of certain simplices (triangles) that close

holes in the final triangulation. Intuitively, we would not connect two points p and q that are “far”

away. The concept of “farness” is relative, and depends on how close other points are to p and q.

This leads us to our proposed solution. The distance to the farthest point that can be connected to,

say, p should be related to the distance to the closest point of p and vice-versa. If the distance to

the farthest and the nearest neighbors are indicators of minimum and maximum sampling densities

respectively, then this argument shows that the boundary can be identified using sampling conditions

which expresses relative minimum and maximum sampling densities. Note in Section 4.3.1 a constant

m, the ratio between the minimum and maximum sampling densities, was used to collect the candidate

neighbors of a reference point. The sampling should ensure that this relation between minimum and

maximum sampling densities is satisfied for correct candidate point selection, and hence a correct

triangulation of the sampled surface.

Non-Monotonic Sampling: A sampling condition for signals or closed surfaces prescribes only

the minimum required sampling density. Any additional sampling over this minimum requirement

would not affect the reconstruction process. For a surface with boundary, let us assume that a

sampling of a model as demanded by the sampling condition is provided. Any additional sample

might violate the relationship between the distances to the nearest and farthest neighbor, and hence

would be a prohibited sample. Prohibited sampling would lead to ambiguity in deciding the presence

of boundary, and hence would trigger the need for more samples to disambiguate the situation. After

the introduction of more points, the sampling again becomes a valid sampling. Since the state of

the sampling may change between valid and prohibited by increasing the number of samples, I call

this sampling condition a non-monotonic sampling condition. Sampling conditions for surfaces with

boundaries require such non-monotonicity.

5.5 Classification of Surface Reconstruction Algorithms

Based on the above analysis of the design space of the surface reconstruction algorithms, here I classify

these algorithms. The classification is based on the changes in the two stages, the sampling stage and

the reconstruction stage, over its basic requirements. In the sampling stage, the basic requirement

for a sampling condition is to specify the minimum required sampling density. In the reconstruction
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Class Change Change Characteristics/Features

Sampling Reconstruction

A No No Cannot reconstruct surfaces with boundaries

B No Yes Imposes uniform sampling density

C Yes No Non-monotonic sampling

D Yes Yes Not explored yet

Table 5.1: Classification of surface reconstruction algorithms.

stage, the basic input is the set of sample points. Changes in these stages include strengthening of the

sampling condition in the sampling stage and providing additional information to the reconstruction

stage. The Table 5.1 enumerates the classification.

All classes of algorithms, except Class A, can reconstruct surfaces with boundaries. The

algorithms of [Amenta98a, Amenta98b, Attali97] belong to Class A. The algorithms based on

α-shapes belong to Class B. The value of α can be used as additional information to reconstruct

surfaces with boundaries. The method used for reconstructing laser scan data of large areas also

belong to Class B, as the boundary size is used as additional information. The algorithm presented in

this dissertation is a Class C algorithm. Algorithms in Class D algorithms are yet to be explored.

5.6 Conclusion

In this chapter, I analyzed the failure of Voronoi vertices in its use in approximating the medial axis of

surfaces with boundaries, and hence concluded that algorithms that use this relationship are less useful

in reconstructing surfaces with boundaries. Further, I also proved that the conditions on minimum

required sampling density are not sufficient to reconstruct surfaces with boundaries reliably. Analysis

of the design space of the surface reconstruction algorithms led to the classification of these algorithms.

In the process, I eliminated the methods that require additional information other than sample points

for reconstruction. If no additional information is provided, a convenient parameter to encode the

presence of boundary is the variation in the sampling density. This encoding can be achieved by

specifying the relative minimum and maximum sampling as a sampling condition. A consequence of

such a condition is that the sampling is non-monotonic. The next chapter discusses one such set of

non-monotonic sampling conditions for a Class C algorithm presented in Chapter 4.
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CHAPTER 6

SAMPLING CONDITIONS

6.1 Introduction

In the previous chapter I argued that sampling conditions for reliable reconstruction of surfaces with

boundaries should not only mention the minimum required density of samples, but also should spell

out the maximum allowed density of samples. If these minimum and maximum sampling densities are

defined using absolute quantities, then the sampling will have two problems. First, the sampling will

not be able to adapt to the changing feature size of the given model. Second, additional constraints are

required to make sure that the minimum required density is actually less than the maximum allowed

density for the conditions to be logically sound. An alternate approach is to describe these bounds in

relative terms. In other words, the maximum allowed density, which decides how close two sample

points can be in a region, should be described in terms of minimum required density which decides

how far two sample points can be in that region. This approach eliminates the above two problems of

absolute definition of sampling densities. In this chapter, I describe one such set of sampling conditions

for sampling surfaces with boundaries.

6.1.1 Sampling Region and Cover Region

The sampling conditions presented in this dissertation are based on two neighborhoods, a sampling

region and a cover region, defined around points on the given surface.

For every point a on the surface, I will define a sampling region S(a). Each sampling region

must contain at least one sample point. This indirectly restricts the maximum distance between

samples and thus imposes a minimum required sampling density in a region.



For every sample point p, I will define a cover region C(p), that must contain no other sample.

Each point of the surface must lie in some cover region. This restricts the (relative) minimum distance

between samples and hence the maximum allowed sampling density in a region of the surface.

The rest of the chapter formally defines the sampling and cover regions using various distance

functions and establishes their properties. I first approximate the local region of the surface using

quadratic patches and develop the required theory behind these distance functions. We rely on some

of the differential geometry background introduced in Chapter 2. Refer to Table 6.1 for the list of

terms and notations used in this chapter.

6.2 Quadratic Approximation F of a Surface M

Let a be a point on the surface M with a well defined normal and, hence, a tangent plane. The normal

at a, together with the principal directions on the tangent plane at a, define a local coordinate system

with a as the origin. I make use of the implicit function theorem (Theorem 1) to express the surface

in the neighborhood of a point a as a height function (Refer to Equation 2.2) in terms of the principal

curvatures (Refer to Section 2.3.2). Let x and y axes be the principal directions and κ1 and κ2 be

the principal curvatures along those directions, respectively. I represent the height function from the

tangent plane to the surface M in this local coordinate system as

z(x, y) =1

2
(κ1x

2 + κ2y
2)+ higher order terms

≈1

2
(κ1x

2 + κ2y
2)

Hence the surface M can be approximated at and around a by the image of

F (x, y) = (x, y,
1

2
(κ1x

2 + κ2y
2)) (6.1)

This is called the quadratic approximation of the surface M at a.

6.2.1 Computation of Normal Vectors

The unit normal at any point F (x, y) on the quadratic approximation of the surface can be computed

using the partial derivatives of F with respect to x and y as follows:
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M Surface

F Quadratic approximation of M

S Sample set

bd(X) Boundary of X

cl(X) Closure of X

a, b, c Points on M

a, b, c Three axes of an ellipsoid

p, q Sample points on M

S(a) Sampling Region around a

C(p) Cover Region around p ∈ S in M

CR(p) Cover Region around p ∈ S in R3

U θ(a) Normal Based Region around a

of angle deviation ≤ θ

UE(a) Curvature Based Region around a

US(a) Sheet Based Region around a

Un(a) Closest samples to a based on the distance function Q

Tp Tangent plane or tangent vector

at p of M or bd(M )

~Tp Tangent vector at p∈ bd(M )

Np Normal vector at p of M or bd(M ). Since

the Darboux frame is used, surface and curve

normal vectors are same for a boundary point

D, Q Distance functions

BX(a, α) Ball of radius α measured using

the distance function X around the point a.

x, y, z Coordinate Axes

κ1, κ2 Principal curvatures (κ1 > κ2)

κv Curvature along the direction ~v.

Table 6.1: Terms used in this chapter.
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FN

a
T

Normal Deviation
Curve of constant Cylinder C

Ellipsoid El

Region of F
Enclosed in El

Figure 6.1: The normal vector at a ∈ F is N and the tangent plane is T . The curve of constant
normal deviation is the intersection curve of an elliptical cylinder (C) and F . Two of the three axes of
the ellipsoid El are defined such that El ∩ T = C ∩ T .

Fx = (1, 0, κ1x)

Fy = (0, 1, κ2y)

Fx × Fy = (−κ1x,−κ2y, 1)

N(x, y) = ‖Fx × Fy‖ =
(−κ1x,−κ2y, 1)
√

κ2
1
x2 + κ2

2
y2 + 1

(6.2)

6.2.2 Curve of Constant Deviation of Normal

We can compute the angle between the normal at the origin and the normal at a point F (x, y) on F .

The unit normal at the origin F (0, 0) = p is (0, 0, 1). The cosine of the angle, θ, between the normal

at F (x, y) and the normal at F (0, 0) is given by the inner product of these vectors.

cos(θ) =
1

√

κ2
1
x2 + κ2

2
y2 + 1

(6.3)

Consider the locus of points on F with the same value of cos(θ). The projection of this locus

onto the xy plane is an ellipse given by

x2

α2/κ2
1

+
y2

α2/κ2
2

= 1 (6.4)

where α = tan(θ).

In other words, this ellipse on F is the curve of intersection of an elliptical cylinder with F

(refer to Figure 6.1). The cross section of the elliptical cylinder is given by equation 6.4, and the axis

of the cylinder is the z-axis (normal at the origin).
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If we assume that |κ1| > |κ2|, the maximum height of F (x, y) from the tangent plane above

the ellipse occurs where this ellipse reaches the maxima at the major axis or minor axis. This can be

computed as

zmax =
1− cos2(θ)

2κ2 cos2(θ)
=

α2

2κ2

(6.5)

Let us consider a solid ellipsoid, Elα(a) around a, defined by the equation

x2

α2/κ2
2

+
y2

α2/κ2
1

+
z2

α2/κ2
1

≤ 1 (6.6)

The half lengths of its three orthogonal symmetry axes are a = α/|κ2|, b = α/|κ1|, and c = α/|κ1|.
When we compare Equations 6.4 and 6.6 we can see that the intersection of Elα(a) and the

tangent plane at a is actually the projection of the constant-normal-deviation curve on the tangent

plane. Further, every point in Elα(a) ∩ F has normal deviation less than θ from the z-axis. We get a

family of such ellipsoids for various values of α. I call these ellipsoids curvature ellipsoids as they are

defined based on the curvature at a point and their shape captures the curvature variation at a. They are

elongated in the direction of low curvature and the minor axis is along the direction of high curvature.

6.2.3 Curvature Ellipsoids and Scaled Ellipsoids

Let us see more about ellipsoids in general, and curvature ellipsoids in particular.

Definition 1 The eccentricity, e, of the an ellipse given by x2/a2 + y2/b2 = 1 is defined as
√

1− b2/a2. For an ellipsoid given by x2/a2 + y2/b2 + z2/c2 = 1 there are two eccentricities,
√

1− b2/a2 and
√

1− c2/a2.

Since, in the curvature ellipsoid, two of the axes have same lengths, we have to consider just one

eccentricity,

e =
√

1− b2/a2 =
√

1− κ2
2
/κ2

1
.

Note that the eccentricity is no longer dependent on α, but only on the principal curvatures at a point.

If κ1 = κ2 , a = b = c and e = 0. For example, the curvature ellipsoids defined on points on a plane,

points on a sphere, sharp corners, or at any umbilic point in general, have the eccentricity e = 0 as

κ1 = κ2 at these points.

Now we have another way of defining an ellipsoid. Instead of representing the ellipsoids using

the half lengths a, b, and c, we can represent the same ellipsoid with a and two eccentricities or, in
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case of the curvature ellipsoid, a (= α/|κ2|), and e. Let a′ be a variable 0 ≤ a′ ≤ a. For various

values of a′, we get a family of ellipsoids with the property that the ellipsoid with larger a′ contains

the smaller one. I call this family of ellipsoids scaled ellipsoids with varying scale factors.

Definition 2 The Scaled ellipsoid Elm with scale factor m, is defined with the axes dimensions a′ =

m, and b′ = c′ = m
√

1− e2.

Note that the curvature ellipsoid is a scaled ellipsoid with m = α/|κ2|. In fact, the curvature

ellipsoids and the scaled ellipsoids are two different representations of the same ellipsoid. In certain

cases where the curvature is zero, curvature ellipsoid is not defined, whereas the scaled ellipsoid is

defined. The scaled ellipsoids, like the curvature ellipsoids, capture the curvature variation at a point.

Curvature and Scaled Ellipsoids for Boundary Curves

We defined scaled and curvature ellipsoids around points in the interior of a surface. As we allow

surfaces with boundaries, we have to define these ellipsoids for curves also. For a curve on a surface,

the standard Darboux frame is used to define the normal. Refer to the definitions of tangent, normal,

and bi-normal of a curve in Chapter 2. Let the derivatives of normal, tangent, and bi-normal of the

boundary curve be Ṅ , Ṫ , and Ḃ respectively.

The dimensions of the curvature ellipsoid Elα(a) around a point a on the boundary of a surface,

are defined by a = α/|Ḃ| along the direction of Ḃ which is in the plane defined by T and N , b =

α/|Ṅ | along the direction of Ṅ which is in the plane defined by T and B, and finally c = α/|Ṫ | along

the direction of Ṫ which is in the plane defined by B and N .

The ellipsoid around a point on a boundary has two eccentricities as all its axes have different

lengths. These eccentricities are e1 =
√

1− b2/a2, and e2 =
√

1− c2/a2. The scaled ellipsoid

Elm with scale factor m, at a point on the boundary, is defined with the axes dimensions a′ = m,

b′ = m
√

1− e2
1
, and c′ = m

√

1− e2
2
. Again, the curvature ellipsoid for a point in the boundary is

one of the scaled ellipsoids.

These definitions of scaled ellipsoids around points on the surface and its boundary are used in

Section 6.4.2.
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6.3 Distance Functions D and Q

In this section I define two distance functions D and Q. The distance function D is related to the

curve around a point p with constant normal deviation, and to the local feature size which is based

on the medial axis, introduced by Amenta et al. The distance function Q is easy to evaluate from the

positional information of points and the normal vectors at these points. In this chapter I show that the

function Q and D are related, and thus justify the use of Q in sampling and reconstruction.

6.3.1 Distance Function D

Let F be the quadratic approximation of the surface M , as before. Let a be the origin. The distance

function D is defined for the points on F at close proximity to the origin a. Let b be a point close

to a, and the direction vector from a to b be ~v. The distance D of b from a is the product of the

normal curvature κv(a) in the direction of the orthogonal projection of ~v on the tangent plane, and the

Euclidean distance E from a to b.

D(b) ≡ |κv(a)E| (6.7)

Note that both ~v and E are dependent on the position of b with respect to a. Further, we can

relate this distance function with Equations 2.9 and 2.10.

Distance Function D and the Curve of Constant Normal Deviation

In this section I show the relationship between the distance function D and the curve of constant

normal deviation explained in 6.2.2. I use a slightly modified distance function D
′

(defined below)

instead of D for this purpose.

Let us approximate the distance E from a to b by r, which is the geodesic distance on F from

a to b. Let this approximated distance function be represented as D
′

. Spherical approximation of

the curve from a to b with curvature κv would show that the arc length distance r = θ/κv, and the

Euclidean distance E = 2 sin(θ/2)/κv. Substituting these values in the equations of the distance

functions, D
′

= θ and D = 2 sin(θ/2). For small values of θ, D < D
′

< 2D. Hence both are

equivalent functions. I use D
′

in this section to relate the curve of constant normal deviation and D.

Let us consider all the points on the surface that are at a distance δ from a point a on the surface

as measured by D
′

. This is a closed curve around a, say Cδ(a).
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Lemma 1 The deviation of the normal vector at points around a inside C δ(a) from the normal vector

at a is bounded.

Proof: I use the equations 2.7–2.9 to show the relationship between C δ(a) and the curve of constant

normal deviation. I repeat those equations here for the sake of completeness. In these equations,

∂ ~N denotes the change of normal between a and b, ∂s denotes the arc length distance between these

points, t is the torsion factor, ~T is the tangent vector of the curve from a to b, and ~B is the bi-normal

vector.

∂ ~N = −κv∂s~T − t∂s ~B (6.8)

|∂ ~N | =
√

κ2
v + t2 |∂s| (6.9)

|∂ ~N | = |κv∂s|. (6.10)

Since Cδ(a) contains all points with distance measured using D
′

being less than δ from a,

|∂ ~N | = |κv∂s| < δ. (6.11)

Substituting this in Equation 6.8 and setting t = 0, as in Equation 6.10 for a planar curve, we get

∂ ~N < δ~T in the direction of ~T . With some algebraic manipulation, we can find that the deviation of

the normal of the points inside Cδ(a) from the normal at a is less than θ = arccos(1/
√

1 + δ2). ♦
Further this shows that all points in Elα(a) ∩ F (Equation 6.6) are in the region bounded by

Cδ(a) where α < tan(arccos(1/
√

1 + δ2)).

Distance Function D and the δ-Sampled Surface

The distance function D captures the curvature variation of the surface and, as explained at the end

of Section 2.3.4, can be used in defining the required sampling of the surface. For example, if we

enforce “uniform” sampling according to this distance function, then indirectly we are enforcing

denser sampling in high curvature regions and sparse sampling in low curvature regions. Under such

a sampling condition, in planar regions almost no samples are required, and in sharp edges infinitely

many samples are required. This is similar to the behavior of the sampling condition of Amenta et

al.[Amenta98b]. Conditions of Amenta et al. also require almost no samples on planar regions and

infinitely many samples at sharp edges. The rest of this section is devoted to formalize this relationship

between the conditions based on D and the sampling condition of Amenta et al.
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Though I have not yet formally introduced any sampling condition, let me give the intuition

behind the use of D by relating a sampling condition based on D with that of Amenta et al. The

sampling condition of Amenta et al. is based on local feature size, and D is based on the radius of

curvature (1/κ). So first I will relate the radius of curvature and the local feature size, before relating

the sampling conditions.

The local feature size, LFS(a), of a point a on a surface is its closest distance to the medial

axis (refer to Section 2.5). As we are trying to compare the radius (of circle) of curvature, (which is a

resting circle), with the LFS, I consider only those curves in which the closest point on the medial axis

to any point a on the curve is the center of a resting circle of a. I call such curves resting curves, and

for all the arguments in this section, I consider only resting curves. For a resting curve, the center of

the circle of curvature is in the medial axis, and hence, LFS(a)= ρ, where ρ is the radius of curvature

at a. We will use this observation to argue that the distance function D has required properties to be

used in sampling, by relating it to the sampling condition of Amenta et al.

Amenta et al.’s sampling: A sampling of a surface is a set of points sampled from that surface.

A sampling of a surface is said to be a δ sampling if for every point a on the surface, there exists a

sample point p such that the Euclidean distance between a and p, E(a, p) < δLFS(a). The definitions

of the LFS and δ-sampling are used in Amenta et al. and are applicable for curves also.

Let a hypothetical sampling condition based on D be the following.

Sampling Condition: For every point a on the curve, there exists a sample point p such that

D(p) < δ from a, where δ is a constant.

In the case of curves, the curvature κ at a is used in the definition of D instead of directional

curvature κv. Though we use this hypothetical sampling condition just to relate the distance function

with the medial axis, we use this condition in a slightly different form as our actual sampling condition

later in this chapter.

Lemma 2 A sampling of a resting curve that satisfies the sampling condition above, is a δ-sampling.

Proof: Let a be a point on the curve, and p be a sample point satisfying the sampling condition around

a. Let E(p, a) denote the Euclidean distance between a and p, κ be the curvature, and ρ be the radius

of curvature at a. By the sampling condition, κE(a, p) < δ, so E(a, p) < δρ < δLFS(a). By

this observation, and the definition of δ-sampling, we conclude that if the sampling satisfies the above

sampling condition, then it is a δ-sampling. ♦
This shows that the above sampling condition based on D captures the local features of a curve in the
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same way as the condition of Amenta et al., which is based on the medial axis and local feature size.

Later in this chapter, we define conditions that capture the global features also.

We proved the usefulness of D in sampling a curve. These arguments can be extended directly

to surfaces, except that the distance function D has to be modified to use the maximum principal

curvature, κ1, instead of κv in its definition. But in this dissertation we use κv instead of κ1 and

hence the sampling conditions are “anisotropic” (different in different directions) as against “isotropic”

(uniform in all directions) sampling conditions of Amenta et al.

6.3.2 Distance Function Q

If I use the distance function D in the sampling process, I might have to use D again in the

reconstruction process to measure the distance between sample points. But this function has normal

curvature components that are difficult to compute with just the sample points. Further, although D

captures the curvature variation of the surface that is required for a good sampling condition, it is

anisotropic and requires theoretically no sample point along the direction of zero curvature. So to

alleviate these two problems I introduce another distance function Q, and establish its relationship

with D.

The distance function Q is defined on a set of sample points with normal vector information

at each point and not on other surface parameters, like curvature, that would have to be estimated or

interpolated.

Let Ta(b) denote the distance of b from the tangent plane at a, Ta(b) = |Na · (b− a)|, where

Na is the unit normal vector at a. Let E(a, b) denote the Euclidean distance between a and b. The

distance function Qa is defined as

Qa(b) ≡ E2(a, b) + T 2
a(b) (6.12)

If a is the origin then, on a quadratic approximation of a surface (equation 6.1) with Na as the

z-axis, Ta(b) is just the z-coordinate of b.

Hence,

Qa(b) = (x2 + y2 + z2) + (z2) = x2 + y2 + 2z2, (6.13)

where b = (x, y, z).

Now I show how the distance functions D and Q are related and thus justify the use of Q instead

of D in the reconstruction process.
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Definition 3 Let X and Y be two distance functions on a space V , and BX(x, ε) denote the set of all

points in V that are at a distance less than ε from x when measured using X . The functions X and Y

are said to be equivalent, in the sense that they generate the same topology, if given any x ∈ V and

ε > 0, there exists δ1 > 0 and δ2 > 0 such that, BX(x, δ1) ⊆ BY (x, ε),and BY (x, δ2) ⊆ BX(x, ε).

Lemma 3 Given any a ∈ F and ε > 0, there exists δ > 0 such that,

BQ(a, δ) ⊆ BD(a, ε)

Proof: Without loss of generality, let us assume that |κ1| > |κ2|. Define δ = ε2/κ2
1.

b ∈ BQ(a, δ) ⇒
(

x2 + y2 + 2z2
)

< δ = ε2/κ2
1

⇒
(

x2 + y2 + z2
)

< ε2/κ2
1

⇒ κ2
1

(

x2 + y2 + z2
)

< ε2

⇒ |κ1

(

x2 + y2 + z2
)1/2 | < ε

⇒ b ∈ BD(a, ε)

⇒ BQ(a, δ) ⊆ BD(a, ε)

For every ε > 0, a δ > 0 is defined, and the above derivation is true for any a. ♦
It can be proved that BD(a, δ) 6⊆ BQ(a, ε), especially when κ1 = 0. We have to find a δ > 0

such that all points in BD(a, δ) are contained in BQ(a, ε) for a given ε > 0. This is not possible as

BD(a, 0) contains all points on the surface when κ1 = 0.

Definition 4 Let G be a distance function. For every point a on the surface, if there exists a sample p

such that G(a, p) < δ, then such a sampling is called a δ sampling of the surface using the distance

function G.

Theorem 4 In a compact surface, δ-sampling using Q yields a δ-sampling of the surface using D.

Proof: The proof follows directly from Lemma 3. One more question that remains to be answered

is the countability of number of samples when Q is used, since a trivial solution of infinite sampling

would prove this lemma. Define represented region of a sample p as all points on the surface from

which p is at a distance less than δ. Assume the represented regions of the sample points are open and
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non-empty. The union of represented regions cover the surface. As the surface is compact, any open

cover of the surface has a finite subcover. Hence a finite number of samples are required to sample the

surface using the distance function Q. ♦
The above theorem shows the usefulness of Q in sampling. Further, as Q can be computed

between any two points in the input set with just their position and normal information, it is a distance

function that can be applied directly on the input set without any further estimation of other parameters

like curvature. Now, I show that Q is equivalent to our familiar Euclidean distance function E.

Theorem 5 The distance functions Q and E are equivalent functions.

Proof: For any positive constant ε, define δ1 = ε2 and δ2 =
√

ε/2. It is now easy to show that

BQ(a, δ1) ⊆ BE(a, ε), and

BE(a, δ2) ⊆ BQ(a, ε)

♦

Lemma 4 El = {b | Qa(b) = β, b ∈ R3} is an ellipsoid.

Proof: Let a be the origin, and the points in space be represented as (x, y, z). From the equation 6.13,

the set El contains all points that satisfy

Qa(b) = β

x2 + y2 + 2z2 = β

x2

β
+

y2

β
+

z2

β/2
= 1 (6.14)

Equation 6.14 represents a “pan-cake” shaped ellipsoid whose cross-section along the xy plane is a

circle. The diameter of this circle is twice its total thickness along the z-axis. ♦

Variations of Q for Distance Between Boundary Points

The distance function Q as given in Equation 6.12 can be used for points in the interior of the surface,

since a tangent plane is defined at these points. For a point in the boundary of the surface, the following

definition of Q is used.

a ∈ bd(M), b ∈ R3, Qa(b) = E2(a, b) + ~T 2
a(b) (6.15)
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Figure 6.2: Square of the distance from the tangent vector is the sum of the squares of the distance
from the tangent plane and the distance from the bi-tangent plane.

where ~Ta is the tangent vector of the boundary curve at a. We have been using Ta to represent both

the tangent plane and the tangent vector. But for this section, we use Ta to represent the tangent plane

and ~Ta to represent the tangent vector.

Let us compare the distance functions Qa defined for a ∈ M and a ∈ bd(M). Since ~T , ~N , and

~B form an orthogonal coordinate system, the tangent vector is the intersection of the tangent plane

Ta defined by the normal vector ~N , and the bi-tangent plane BTa, defined by the binormal vector ~B.

Hence the value of ~T 2
a(b) can be further broken down into two components (refer to Figure 6.2) as

~T 2
a(b) = T 2

a(b) + BT 2
a(b).

Hence, the Q distance of a point b from a point a ∈ bd(M) is always greater than equal to the Q

distance from a if a were considered an interior point of the surface.

Now let us consider variations of Q when normal vector information or tangent vector

information is not given or not known. If tangent vectors at the points on the boundary are not given,

then the points on the boundary are treated as points on the interior of the surface for defining Q, and

Equation 6.12 will be used. If the normal vectors at the points on the surface are not known then the

Equation 6.12 reduces to

Qa(b) = E2(a, b).
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6.4 Distance Functions and Regions

Let us summarize this chapter till now and see where we are going from here. In Section 6.3, we

defined two distance functions D and Q. We also defined two ellipsoids in Equations 6.6 (the curvature

ellipsoid) and 6.14 (ellipsoid due to distance function Q). We discussed three regions, the region of

bounded normal deviation and two regions of bounded distance as measured using D and Q. We

proved the relationship between these three regions (Lemma 1, Theorem 4). We also showed the

relationship between the ellipsoids and these regions (Lemma 4, Section 6.2.2, Lemma 1) as follows.

The region of the surface enclosed inside the curvature ellipsoid of Equation 6.6 is contained in a

region of bounded normal deviation and bounded distance measured by D. Further, the region inside

the ellipsoid of Equation 6.14 is a region of bounded distance as measured by Q.

The relationship between the three regions, bounded normal deviation region and the bounded

distance regions of D and Q, were established only under the assumption that the underlying surface

is a quadratic surface. As most of the real world surfaces deviate from this assumption, I treat these

regions as independent regions and make use of the ellipsoids to define these regions on a surface.

In this section, I formally define the Normal Based Region U θ, the Curvature Based Region UE ,

and the Sheet Based Region US , with additional constraints on the topology of these regions. Using

these regions, I define the Sampling Region S(a), and the Cover Region C(p), that are used to define

the sampling conditions.

In all the following definitions, M is considered as a smooth surface with or without boundary,

and S ⊂ M is the set of sample points. The boundary of M is denoted by bd(M).

6.4.1 Normal Based Region

For every point a on M , the region around a based on the normal deviation is defined as follows.

U θ(a) = {b ∈ M | 6 NaNb < θ}

where Na and Nb are normal vectors to M at a and b respectively. If a ∈ bd(M) then

U θ(a) = {b ∈ bd(M) | 6 NaNb < θ, 6 Ta Tb < θ}

where Ta and Tb are tangent vectors to bd(M) at a and b respectively.

As we use the Darboux frame at the boundary curves, the normal to the curve and the normal

to the surface are same. We fix θ to be less than 12◦ (0.2 radians) for various proofs in this chapter.
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6.4.2 Curvature Based Region

Let us consider the scaled ellipsoids defined in Section 6.2.3, around a point a. Let us intersect these

scaled solid ellipsoids, with various values of the scale factor m, with the surface M , R = M∩Elm(a).

We would like R to contain points that are close to a in terms of having a similar curvature. Naturally,

we expect R to have a single component and not have multiple disconnected components. For

monotonic increase in the value of m, the number of components in R might increase and decrease in a

non-monotonic way. A maximal ellipsoid with scale factor m = l is one whose R is just one connected

component, and for all scale factors l + ε, with ε → 0, R has multiple disconnected components.

There might be many such maximal ellipsoids in this family of ellipsoids for varying values of m. The

smallest of them all is defined as follows. The shrink factor t used below is a fraction that shrinks the

smallest maximal ellipsoid.

Definition 5 Let a = α/|κ2| = tan(θ)/|κ2|. The Limit ellipsoid is a scaled ellipsoid with the scale

factor

a ∈ M, l1(a) = sup{n | 0 ≤ n ≤ a, ∀m <
n

t
, Elmα (a) ∩M ≈ ⊕}

where ≈ ⊕ means homeomorphic to an open disk or half disk.

Here we limit the maximum value of m to be a, the major axis of the curvature ellipsoid (refer to

Equation 6.6). The value of θ is same as the one used in Section 6.4.1. We have to define the scale

factor of the Limit ellipsoid for points on the boundary also. The scale factor is,

a ∈ bd(M), l1(a) = sup{n | 0 ≤ n ≤ a, ∀m ≤ n

t
, Elmα (a) ∩ bd(M) ≈ ⊕}

where ≈ ⊕ means homeomorphic to an open interval. The shrink factor t, 0 ≤ t ≤ 1 will be fixed at

the end of this chapter.

Definition 6 The Curvature Based Region UE is defined as

UE(a) = {b | b ∈ Ell1α (a) ∩M} if a ∈ M, and (6.16)

UE(a) = {b | b ∈ Ell1α (a) ∩ bd(M)}, if a ∈ bd(M). (6.17)

6.4.3 Sheet Based Region

The region RS around a point a ∈ M (or bd(M)) is defined as follows.

Rm
S (a) = {b ∈ M | Qa(b) ≤ m}
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Similar to the previous section, where we defined the limit ellipsoid as the smallest maximal ellipsoid

containing just one component of the region, we again define such a limit region based on the distance

function Q.

The limit region around a point a ∈ M is Rl2
S (a) where

l2(a) = sup{n | ∀m <
n

t
, Rm

S (a) ∩M ≈ ⊕}

The value of t is the same as used in the definition of the limit ellipsoid, and will be fixed at the end of

this chapter. Here again, M is substituted by bd(M) if a ∈ bd(M).

Definition 7 The Sheet Based Region US is defined as,

US(a) = {b | b ∈ Rl2
S (a) ∩M} if a ∈ M, and (6.18)

US(a) = {b | b ∈ Rl2
S (a) ∩ bd(M)} if a ∈ bd(M). (6.19)

6.4.4 Sampling Region

Definition 8 The sampling region is an open influence region around any point a ∈ M (or bd(M))

and is defined as

S(a) = U θ(a) ∩ UE(a) ∩ US(a) (6.20)

For the purpose of enabling our proofs, θ < 0.2 radians.

The closure of S(a) is denoted by cl(S(a)).

6.4.5 Cover Region

Given the sampling S of M , the nearest neighbor set, Un(a), of any point a ∈ M is defined as the set

of closest samples p ∈ S − {a} as measured using the distance function Q.

Un(a) = {p ∈ S − {a} | ∀q ∈ S − {a}, Qa(p) ≤ Qa(q)}

Note that this definition is valid for all samples in S also, and Un(p), for any p ∈ S is the set

of closest neighbors of p in S.

The distance from a to Un(a), Qa(Un(a)), is the closest distance of a to any of the elements of

Un(a).
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Figure 6.3: The samples a, b, and c are visible from each other, whereas a and d are not visible from
each other even though their cover regions intersect.

Definition 9 The cover region, C(a), of a point a ∈ M is defined as

C(a) = {b ∈ M | Qa(b) ≤ Qa(Un(a))}

Similarly, the closest region in R3 that is closest to a is defined as

CR(a) = {b ∈ R3 | Qa(b) ≤ Qa(Un(a))}

Even though we have defined the cover region for any point in M , we will be primarily using cover

regions for sample points in S. In the next section, the sampling and cover regions defined here are

used to develop the sampling conditions.

6.5 Sampling Conditions

In this section, I develop the conditions for sampling surfaces with boundaries. These conditions

exhibit the required properties for sampling surfaces with boundaries that were introduced in Chapter

5. In other words, the conditions restrict the maximum distance and relative minimum distance

between samples in a region. Further, these conditions enable the reconstruction algorithm to

reconstruct surfaces that are topologically equivalent, and geometrically close to the underlying

sampled surface.

Given the samples that satisfy the sampling conditions, the reconstruction process constructs

a piecewise linear interpolation of these points to approximate the underlying surface. There might
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be cases when the reconstructed surface is topologically equivalent but is not in any way close to the

surface both in geometry and appearance. Verification of geometric closeness can be done using

operations like containment and intersection. For example, it is easy to check in 2D whether a

line segment is contained completely within a region, or whether two line segments intersect. By

repeating such operations we can verify whether the reconstructed surface is close to the original

surface geometrically. These operations might not make sense in case of a 2D surface embedded in

3D. For example, containment of a line segment in a surface embedded in 3D, and intersection of two

line segments in 3D are more of a chance than of a rule. Hence these operations have to be redefined for

curves on surfaces (rather than line segments) for their applicability on 2D surfaces embedded in 3D.

This redefinition makes these operations less useful for verification during the reconstruction process,

as no definition of surface exists during this process. For this reason, I use projection of regions of the

surface onto a 2D plane for one of the definitions below, and extensively in the reconstruction stage.

Definition 10 Let Pa(b) denote the orthogonal projection of b onto the tangent plane at a. Sample

points p, q ∈ S are said to be visible from each other, if the projection of the line segment pq,

Pp(pq) ⊂ Pp(C(p) ∪ C(q)) and Pq(pq) ⊂ Pq(C(p) ∪ C(q)).

Further, if p, q ∈ bd(M), then p and q are said to be visible if they are visible as per the above

definition or if there is a path between p and q along bd(M) ∩ (C(p) ∪ C(q)) that does not pass

through any other sample point (Refer Figure 6.3).

Condition 1: Every sampling region has a sample:

∀ a ∈ M, S(a) ∩ S 6= ∅

Condition 2: If the sampling region S(a), a ∈ M , has non-empty interior (that is, a is not a sharp

corner) then the closure of S(a) contains the nearest samples of a.

Un(a) ⊂ cl(S(a))

Condition 3: The cover regions of the samples cover the surface:

⋃

p∈S

C(p) = M

Condition 4: If the 3D cover regions of boundary points intersect, then they are visible from each

other (Refer Figure 6.3). That is, if p, q ∈ bd(M) and CR(p) ∩ CR(q) 6= ∅ then p and q are visible

from each other.
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Cover Region of q

Cover Region of p

M = C(p) U C(q)

cover regions of p,q, or r, but by the
cover regions of boundary points.

Region of M not covered by the 

Figure 6.4: In this example, the interior samples p and q are not visible from each other even though
their cover regions intersect. Any triangulation that connects p and q might be a topologically correct
triangulation, but might not be a visually pleasing triangulation. One solution is to introduce another
point, say r, as shown in the right.

Condition 5: If the cover regions of two interior samples, p, q∈ M , intersect, then p and q are visible

from each other.

The condition 2 is useful when the objects have sharp edges between faces. By this condition,

the nearest sample point of any point in one face is in that face or in the boundary (edge) between

faces.

We know that all the given sample points belong to a 2-manifold. We can make use of the fact

to avoid forming higher dimensional simplices while reconstructing the surface. This allows us to

impose fewer restrictions on the intersections of the cover regions C(p) for the interior of the surface.

But for the boundary of the surface, if additional details, like the binormal or the tangent vector or

a tag indicating whether a sample point belongs to boundary, are not given, then we have to impose

additional restrictions on sampling the boundary, like Condition 4 above.

Let me illustrate a case where Condition 5 is used. Let us consider a hypothetical situation

illustrated in Figure 6.4. The surface with boundary, M , is just the union of the two cover regions

of p and q. There are additional samples along the boundary such that no two cover regions of two

non-adjacent boundary samples intersect. Further, the samples p and q are not visible from each other.

If any triangulation of M connects p and q, the edge would cut across the boundaries in the projection.

Though this triangulation would be topologically equivalent to M , it would not have the same visual

quality as that of M . So, to improve the geometric closeness of triangulation to M , I introduce

Condition 5 as one of the sampling condition. Further, the reconstruction algorithm introduced in
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Chapter 4 relies on the non-intersection of edges in the projection to arrive at a triangulation of M .

Hence, Condition 5 can also be considered as an artifact of the reconstruction algorithm used in this

dissertation.

If the sampling does not satisfy Condition 5, a solution would be to introduce new sample points

in the region of intersection of the cover regions (of p and q in Figure 6.4) and still satisfying all the

sampling conditions. For example, in Figure 6.4, after introducing the sample r, the cover regions of

p and q shrink. The union of p, q, and r no longer covers M , but the union of cover regions of all

samples including the boundary samples covers M , thus satisfying Condition 3.

6.6 Analysis of the Sampling Conditions

In this section, I analyze the effects of the definitions of sampling and cover regions, and the sampling

conditions. In the previous chapter, I proved that to reliably reconstruct surfaces with boundaries, the

sampling condition should specify the minimum required sampling and also the relative maximum

allowed sampling. In other words, the conditions have to impose restrictions on maximum distance

between samples and relative minimum distance between samples. In this section I argue that the

definition of sampling region and Condition 1 of the sampling conditions restrict the maximum

distance between samples, and the definition of cover region and Condition 3 restrict the relative

minimum distance between samples.

6.6.1 Sampling Regions and the Maximum Distance Between Samples

Let us assume that the surface M is bounded and hence all regions, including the sampling and cover

regions, are bounded. Consider a sample point p that lies inside the sampling region of a ∈ M , thus

satisfying Condition 1 of the sampling condition for the point a (refer to Figure 6.5). The point p

might lie in many other sampling regions of points close to a on M . Let us consider all such points on

M , in whose sampling region p lies. This defines a region around p, and let us call this the represented

region of p (for which p is a representative sample point). Note that p belongs to the represented region

of p. Since the sampling regions are bounded, the represented region is also bounded. Let us consider

a point, say c, arbitrarily close to, but outside the represented region of p. To satisfy Condition 1, there

exists a sample point q in the sampling region of c. Since both sampling and represented regions are

bounded, the distance between p and q are bounded and restricted by the size of sampling regions. The

size of the sampling region depends on the local curvature variation on M and hence the maximum
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Figure 6.5: The sample p lies in the bounded sampling regions of a and b. The represented region of p
is bounded. The sampling region of c is represented by another sample q. Bounded sampling regions
bounds the maximum distance between the samples p and q.

distance between samples is determined by local curvature variation. This analysis again justifies

our intuition behind the sampling conditions and the sampling region that in low curvature region the

sample points can be spread out and in high curvature region the samples are close together.

6.6.2 Cover Regions and the Relative Minimum Distance Between Samples

Consider a 2D problem of sampling a curve as shown in Figure 6.6. Assume we have a set of samples

satisfying the sampling condition as shown in the top of the figure. An additional sample point, r,

arbitrarily close to p makes the cover region of p shrink, uncovering a portion of the surface. This

violates Condition 3 which requires covering of the surface by cover regions. Due to this violation,

the reconstruction algorithm does not connect samples p and q as their cover regions do not intersect,

thus leaving them as boundary points.

Analysis of this situation leads to the following question: how close can the sample r be to

p so that q is considered close enough to be a neighbor of p in the reconstructed curve? The answer

depends on how far q is from p, and the sizes of cover regions of p and q. Whatever may be the answer,

the question by itself reveals the fact that r cannot be arbitrarily close to p, and it has to maintain a

minimum distance from p based on (or relative to) the distance between p and q and the sizes of the

cover regions. Thus the Condition 3, along with the definition of cover region, impose restrictions on

relative minimum distance between samples for correct reconstruction of the surface.

Recall from Section 5.4.2 that non-monotonic sampling is needed for surfaces with boundaries.

The example illustrated using Figure 6.6 shows that the sampling conditions discussed in the chapter
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Figure 6.6: The top picture shows that the cover regions of sample points cover the surface. An
additional sample (r) arbitrarily close to p uncovers some of the surface and thus violates the sampling
condition. Resulting reconstructed surface leaves p and q as boundary points.

are non-monotonic sampling conditions. In summary, any sampling condition for Class C surface

reconstruction algorithms for reliable reconstruction of surfaces with boundaries will be characterized

by non-monotonicity.

6.6.3 Existence of Sampling Satisfying the Sampling Conditions

The sampling conditions presented in this chapter are valid only if there exists a sampling that satisfies

these conditions. Let us assume that the surface M is compact and piecewise smooth. There are finite

number of smooth patches in M and these patches are attached to each other on the boundaries. Hence

the boundaries are considered to be part of both the patches. A “dent” on a smooth surface may be

a sharp edge or a vertex in the interior of a smooth patch and not necessarily a closed curve between

patches. The dents are considered to be in the “closure” of the smooth patch in which it resides. Each

smooth patch is considered as a closed set along with their boundaries and “dents”. For this setting,

let us prove the following theorem.

Theorem 6 There exists a finite sampling of M that satisfies the sampling conditions.

Proof: This proof uses the definition of represented region given in Section 6.6.1. Each patch is a

closed subset of M , and hence compact. Each patch is sampled satisfying condition 1, assuming
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that the boundaries and dents are part of a smooth surface and not curves. Let us assume that the

represented region of a point is an open set.

The union of all represented regions cover M . Since M is compact, there exists a finite

number of represented regions that cover M . The corresponding sample points satisfy the sampling

condition 1. Now the boundary curves, edges, and dents are sampled using the theory developed for

curves in this chapter. This set of curves is a closed subset of M and hence compact, except that the

constituent curves have lower dimension. Again the same argument can be used to choose a finite

number of sample points to cover the boundary curves, edges, dents, and vertices. The union of these

two finite sets of sample points is finite and they satisfy condition 1 of the sampling conditions. Let

this finite set of samples be S1.

Now the above sample points should satisfy condition 2 where for every point in M , the closest

sample point is in the closure of its sampling region.

Define the closest sampling region of a∈ M as Cs(a) = C(a) ∩ S(a), where C(a) and S(a)

are the cover region and sampling region of a respectively. (Note even though we use cover regions

for sample points, it is defined for any point on the surface).

Let N = {a ∈ M |6 ∃p ∈ S ∩ cl(Cs(a))}. The set N contains those points in M for which

sampling condition 2 is not satisfied. Let M2 = cl(∪a∈NCs(a)). M2 is compact, and does not contain

any sample point from S1. Assuming Cs(a) as the sampling region, finite number of samples are used

to sample M2 in the same way as M was sampled. Let this finite set of samples be S2. The samples

in the union of the sets S1 ∪ S2 satisfy Conditions 1 and 2.

If the cover regions of the sample points S1 ∪ S2 cover the surface then the proof is done.

Assume that the cover regions of the above sample points do not cover the surface. Place a sample

point q in the uncovered region. Since q is not in any cover region, no cover region is affected (no

cover region shrinks). Point q has its own cover region. Repeat the above operation till no part of M

is uncovered. Since cover regions are open, the union of cover regions cover M , and M is compact,

there are finite number of cover regions that cover M , and hence finite number of sample points that

sample M according to the sampling conditions 1-3. It is difficult to prove the finiteness of sample

points with conditions 4 and 5 as they involve projections of the cover regions to the tangent planes.

So I ignore the last two conditions in this proof. ♦
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6.7 Tools for Reconstruction

In this section, I develop a few mathematical tools that can be used during the reconstruction process.

In the Localized Delaunay Triangulation algorithm presented in Chapter 4, we collected the candidate

neighbors for each sample point. Neighbors of a sample point in the final triangulation are chosen

from these candidate points. Hence choosing candidate points is an important step in the algorithm.

The following is the formal definition of candidate neighbors.

Definition 11 If the cover regions of two sample points p and q intersect, then they are candidate

neighbors of each other.

Hence the core of the reconstruction algorithm is to detect intersection of cover regions. But the

cover regions, and hence their intersection, are described using the surface definition, whereas, we have

to use the intersection of cover regions to find the surface definition. To break this inter-dependency,

we assume that if the ellipsoids that contain the cover regions, CR, intersect then the cover regions,

C, intersect. The other direction holds because C(p) ⊂ CR(p).

Lemma 5 If C(p) ∩ C(q) 6= ∅ then CR(p) ∩ CR(q) 6= ∅.

Assumption 1 If CR(p) ∩ CR(q) 6= ∅ then C(p) ∩ C(q) 6= ∅.

Now the problem is to find if two ellipsoids intersect. We can compute the intersection using

classical variable elimination theory. By most of the techniques, the problem of finding whether two

ellipsoids intersect boils down to finding the actual intersection curve, or at least a point of intersection.

This is time consuming, and we prefer to find fast, even if approximate, way to determine if two

ellipsoids intersect.

For the sake of brevity in notation, in the following theorem, I use Lp to denote
√

Qp(Un(p)),

the distance to the closest sample point from p.

Theorem 7 Let p and q be two sample points with Lp and Lq as their distances to their respective

closest sample point. These distances define the ellipsoids CR(p) and CR(q). If CR(p)∩CR(q) 6= ∅
then

Qp(q) ≤ 3

2

(

L2
p + L2

q
)

+ 2
√

2LpLq, or (6.21)

Qq(p) ≤ 3

2

(

L2
p + L2

q
)

+ 2
√

2LpLq (6.22)
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Figure 6.7: Configuration to find the maximum Qp(q) when CR(p) and CR(q) intersect.

Proof: Let us assume a conservative configuration of the ellipsoids around p and q such that the

distance Qp(q) is maximized. For ease of computation, I consider a rectangular box around the

ellipsoid around p and assume that the ellipsoid around q touches the box as shown in Figure 6.7. The

Qp(q) is maximized at this configuration for a particular value of φ. Without loss of generality, let us

assume that Lp > Lq.

Qp(q) = T 2
p(q) + E2(p, q)

=

(

Lq sin(φ) +
Lp

2

)2

+

(

(

Lp + Lq cos(φ)
)2

+

(

Lq sin(φ) +
Lp

2

)2
)

= L2
q + L2

q sin2(φ) +
3

2
L2

p + 2LpLq(sin(φ) + cos(φ)) (6.23)

The right hand side of 6.23 maximizes at φ = π/4, when

Qp(q) ≤ 3

2

(

L2
p + L2

q
)

+ 2
√

2LpLq. (6.24)

♦
Let the angle between the normal vectors at p and q be θ. The minimum value of θ is φ in the

above equation. In the equation 6.23, if we substitute θ = φ = 0.2 radians, the value we assumed in

Section 6.4.1, then we get

Qp(q) <
(

1.22
(

Lp + Lq
))2

. (6.25)

If the ellipsoid around q was actually touching the right end of the ellipsoid around p, instead

of the tip of the rectangular box, then we get a better bound as,

Qp(q) ≤
(

Lp + Lq
)2

. (6.26)

If the cover region was a circle on a plane, then we get exactly the same bound as above.
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6.7.1 The Shrink Factor t

We used the shrink factor t in Sections 6.4.2 and 6.4.3 to shrink the curvature based region and sheet

based region of M . The neighbors of a sample point in the final triangulation lie in these regions of

M . These regions, and hence the neighbors, are found during the reconstruction process by estimating

the distance to the farthest neighbor. Incorrect estimation of farthest distance leads to incorrect choice

of neighbors, which in turn will lead to incorrect triangulation of M . The shrink factor t can be viewed

as a safety factor in searching for neighbors such that even with the worst case estimate of distance to

the farthest neighbor, the correctness of the triangulation is not affected. In this section I fix the value

of t for its use in the sampling process.

Lemma 6 The space covered by the set
{

a | a ∈ M, Qp(a) < L2
p/t
}

is homeomorphic to a disc.

Proof: Follows from the sampling condition 2 and the definition of the sampling region. ♦
As we discussed in the previous section, finding the intersection between ellipsoids is expensive.

Hence, we are going to assume that the converse of the Theorem 7 is true. In essence, we are assuming

that if the distance of q from p is less than 3

2

(

L2
p + L2

q
)

+ 2
√

2LpLq then the ellipsoids CR(p) and

CR(q) intersect. Such samples like q are possible neighbors of p in the final triangulation. Assuming

Lp > Lq as before, Equation 6.24 becomes

Qp(q) ≤ 5.83 L2
p (6.27)

Lemma 7 If a shrink factor 0 < t < 0.17 is used in the sampling process, then the reconstruction

will be reliable.

Proof: All points within the distance of 5.83 L2
p from p are possible neighbors in the final

triangulation. Hence the region covered by them need to be homeomorphic to a disc. Further, by

Lemma 6, all points within a distance of L2
p/t are homeomorphic to a disk. Hence,

5.83 L2
p < L2

p/t (6.28)

t < 0.17 (6.29)

Further t has to be positive to avoid the need for infinite number of samples. ♦
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6.8 Summary

In this chapter, I introduced the curvature ellipsoids at a point a on the quadratic approximation of a

surface. The region of the surface enclosed within this solid ellipsoid has bounded normal deviation

from the normal vector at a. Based on the curvature ellipsoids, I defined a family of ellipsoids called

scaled ellipsoids. These ellipsoids were used in defining the curvature based region.

This was followed by the introduction of a distance function D. Relationship between the

region of bounded normal deviation around a and the distance function D was established. Further,

to justify this distance function, a hypothetical sampling condition based on D was shown to have the

same properties as the sampling conditions due to Amenta et al.[Amenta98b].

Computation of D requires the knowledge of normal curvature and principal directions at every

sample point. As this is not practical, another distance function Q was introduced and its relationship

with D was established. The distance function Q was used to define three more regions, the sheet

based region, the sampling region, and the cover region. Apart from the above four regions, normal

based region, which is based on angle between normal vectors was also introduced.

Based on these five regions, five sampling conditions were developed and analysis of these

sampling conditions were presented. Tools were developed for the reconstruction process to make

use of the results and effects of the sampling conditions. These results ensure that the reconstruction

process indeed produces geometrically close and topologically correct triangulation of the surface.

The proof of this correctness is presented in the next chapter.
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CHAPTER 7

THEORY OF SURFACE RECONSTRUCTION

In the previous chapter, I defined conditions for sampling that satisfied the requirements for sampling

surfaces with boundaries presented in Chapter 5. In this chapter I define triangulation, properties of

triangulation, and the relationship between the triangulation generated from the sample points and the

surface.

In this chapter, the following notation is used. The surface that is sampled is denoted by M and

the set of sample points by S. Let M be a 2-manifold for initial arguments. Later I will extend the

discussion to 2-manifold with boundaries. Triangulation of M is denoted by L ⊂ K, where K is a

simplicial complex whose vertices are in S. The tangent plane at a point a will be denoted by Ta.

Outline of this chapter: In this chapter, I define triangulations, topological and geometric

triangulations, of M . I also define a multicovering of M , and derive conditions when this

multicovering can be a triangulation of M . Then I construct a function f from the Localized Delaunay

Triangulation, L, to M that satisfies these conditions, to prove that L is homeomorphic to M . Finally,

I relate a few concepts and results presented in the literature related to the triangulation with the

concepts presented in this dissertation. This includes the cover region, nerve, and the extraction of

triangulation.

7.1 Definitions

Definition: A triangulation L of a surface M is a piecewise linear representation of M using triangles,

whose topology is same as that of M .

For L to have the same topology of M , there should exist a homeomorphism between L and M .

Definition 12 A topological triangulation of (M, S) is a triangulation of M with vertex set S.



For our application, the triangulation vertices are exactly the points sampled from the surface. This

definition of topological triangulation allows certain representations of the surface that are undesirable

as a faithful representation of the shape or geometry for its use in visualization applications. The

following example shows such a case.

For the sake of simplicity, let us discuss an example in two dimensions. Consider the sampling

of a circle, and let there be odd number of sample points. “Triangulation” of the circle is a piecewise

linear representation of a circle, which is a closed polygon with the sample points as its vertices

(refer to Figure 7.1a without the vertex V and its incident triangles). If we connect alternate sample

points, we can go around the circle twice and still can construct a closed polygon, though not a simple

polygon. This non-simple polygon is homeomorphic to the circle, making it a valid topological

triangulation of the circle. The same example in 3D would be the triangulation that covers a torus

more than once, and still is homeomorphic to a torus. As such a triangulation covers an object multiple

times, it is called a multi-covering of an object. This is not a good representation of the shape of the

object for visualization applications. I define triangulation in a different way, which I call a geometric

triangulation, to eliminate such undesirable cases.

Definition 13 Let L be a simplicial complex whose vertex set is S. If there exists a homeomorphism

g : |L| → M such that g(p) = p for all p ∈ S, then L is a geometric triangulation of M .

The known geometric relationship between L and M is that the vertices in L are the sample

points on M . A geometric triangulation is a topological triangulation where the homeomorphism

takes the vertices of L to itself, as they are also elements of M . In the rest of the chapter by

“triangulation” we mean “geometric triangulation”.

Definition 14 A multicover is a simplicial complex L and a map f : |L| → M such that the restriction

of f to the star of every vertex p ∈ S is an embedding.

Definition 15 A multicover (L, f) is called a geometric multicover if f(p) = p, ∀p ∈ S.

Definition 16 Let abc ∈ L be a triangle and d ∈ S, d 6= a, b, c be a vertex in L. Hence d ∈ M . If

d ∈ f(abc), then d is called the internal vertex of the triangle abc.
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(a) (b)
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3
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25
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Figure 7.1: (a) If a function f maps the star of the vertex V to the plane of the paper retaining the
order of edges around V as shown above, then f is not a multicover as the mapping of a star is not
an embedding. (b) Piece of multicovering triangulation of a sphere. If the mapping function is f as in
(a), note that many triangles have interior samples.

7.2 Multicovering and Geometric Triangulation

In this chapter, we prove the following theorem.

Theorem: If f : |L| → M is a geometric multicover with no internal vertex, then f is a

homeomorphism, and hence L is a geometric triangulation of M .

The following are the assumptions and notations used in this proof.

1. L is a finite simplicial complex, |L| is a compact, connected manifold.

2. M is a compact, connected manifold.

3. |L| and M are Hausdorff spaces. (Refer to Section 2.2.2 for the definition of Hausdorff spaces).

4. f : |L| → M is a continuous map.

5. S ∈ M is a set of sample points and is the vertex set of L.

6. Points x and y are in |L|, points a and b are in M , points p and q are sample points belonging

to both |L| and M .
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The following is the outline of the proof. I prove in Lemma 9 that there exists an open set Ba

around every point a in the image of |L| in M such that the number of pre-images of any point in

the set is greater than or equal to the number of pre-images of a. In Lemma 11, I prove that within

this open set Ba, the set A containing the points with strictly greater number of pre images than of

a is closed in Ba. This leads to the result in Lemma 10 that the multicover map f from |L| to M is

onto. Then in Theorem 8, I prove that A is empty and hence all points in M have same number of

pre-images. The multicover f is a homeomorphism if and only if the number of pre-images is one

(Lemma 12). The relationship between the internal vertex, and the number of preimages is established

in Lemma 13. All these results are put together to prove the final theorem, Theorem 9, that ties the

concepts of geometric triangulation, geometric multicover, and the internal vertex.

7.2.1 Theorems and Proofs

Lemma 8 Let f : |L| → M be a multicover. There exists ε > 0 such that ∀x ∈ |L|, f(B(x, ε)) is an

embedding.

Proof: For all p ∈ S, Star(p) is open. Since f is a multicover, f(Star(p)) is an embedding and

hence open. For every x ∈ |L|, there exists p ∈ L such that x ∈ Star(p), since the union of stars

covers |L|. For every x ∈ |L|, there exists δx > 0 such that B(x, 2δx) ⊆ Star(p) for some p ∈ L,

since a star is open. Further, the union of open sets ∪x∈|L|B(x, δx) covers |L|. Since |L| is compact,

there exists finite number of x such that ∪x∈finite setB(x, δx) covers |L|. Further, we can choose

open sets such that no open set is contained in another. Let the chosen x be {x1, x2, . . . , xn}. Let

ε = minx∈{x1,x2,...,xn}{δx}.

For every y ∈ |L|, there exists xi such that, B(y, ε) ⊆ B(xi, δxi
+ ε) ⊆ B(xi, δxi

+ δxi
) =

B(xi, 2δxi
) ⊆ Star(p), for some p ∈ L. Hence ∀y ∈ |L|, f(B(y, ε)) is an embedding. ♦

Definition 17 The pre-image index of a ∈ M , denoted by PI(a), is the number of distinct pre-images

of a in |L| under f . That is, PI(a) = |f−1(a)| where f−1(a) = {x ∈ |L| | f(x) = a}.

The above definition is valid only if the number of pre-images of any a ∈ M is finite which is true as

L is a finite simplicial complex, and the image of a star is an embedding.

Lemma 9 For every a ∈ f(|L|), there exists δa > 0 such that ∀b ∈ B(a, δa), PI(b) ≥ PI(a).
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Proof: For any point a ∈ f(|L|) there is a finite number of pre-images. Let f−1(a) =

{x1, x2, . . . , xn}, so xi ∈ |L| are the distinct pre-images of a. By Lemma 8 there exists ε > 0

such that f(B(xi, ε)) is an embedding in M . Further, as |L| is a Hausdorff space, there exists open

sets U1, U2, . . . , Un such that xi ∈ Ui ⊆ B(xi, ε), and for every i 6= j, Ui ∩ Uj = ∅. The set

∩1≤i≤nf(Ui) 6= ∅ since it contains a = f(xi). This intersection set, ∩1≤i≤nf(Ui), is open as there

are finite number of Uis and f(Ui) are open as f is an embedding. This shows that there exists δa > 0

such that ∀b ∈ B(a, δa) ⊆ ∩f(Ui), P I(b) ≥ PI(a). Further, as the Ui’s are disjoint, the pre-images

of b are distinct. ♦

Lemma 10 Multicover f : |L| → M is onto.

Proof: The spaces |L| and M are compact, connected manifolds. A topological space M is said to be

connected if there does not exist nonempty disjoint open sets that cover M . Since |L| is compact, and

f is a map, B= f(|L|) ⊆ M is also compact and hence closed and bounded. The set C= M−B is

open since B is closed and M is compact. For all b ∈ B, PI(b) > 0, and for all c ∈ C, PI(c) = 0.

By Lemma 9, for every b ∈ B= f(|L|), there exists δb > 0 such that for all d ∈ B(b, δb), PI(d) ≥
PI(b). Hence, for all b ∈B, B(b, δb)∩ C = ∅. The set D= ∪b∈BB(b, δb) is open, B ⊆ D, D ∩ C

= ∅, and D ∪ C = M implying that M is not connected, a contradiction. Hence either D = ∅ or C

= ∅. As |L| 6= ∅ in general, f(|L|) = B ⊆ D 6= ∅ and hence C = ∅. Therefore, there exists no c ∈ M

such that PI(c) = 0, and every c ∈ M has a pre-image. The map f is onto. ♦

Lemma 11 Let a ∈ M and δa > 0 such that for all b ∈ B(a, δa), P I(b) ≥ PI(a) as given by

Lemma 9. The set A = {b | PI(b) > PI(a), b ∈ B(a, δa)} is closed in B(a, δa).

Proof: As given in the proof of Lemma 9, let f−1(a) = {x1, x2, . . . , xn}, xi ∈ |L| be distinct

pre-images of a. Note that f−1(a) is non-empty for any a ∈ M as f is onto by Lemma 10. There

exist open sets U1, U2, . . . , Un such that xi ∈ Ui ⊆ B(xi, ε), Ui ∩ Uj = ∅, i 6= j. Further, B(a, δa) ⊆
∩1≤i≤nf(Ui). Consider the closed set X = |L| − ∪1≤i≤nUi. The image of X , f(X) ⊂ M is

closed as the image of a closed set is closed under a continuous function. All points c ∈ B(a, δa)

with PI(c) = PI(a) will now have PI(c) = 0 in f(X), and other points b ∈ A ⊂ B(a, δa) with

PI(b) > PI(a) will now have PI(b) > 0. By definition, A = B(a, δa) ∩ f(X). The set f(X) is

closed, B(a, δa) is open. Therefore, B(a, δa)− f(X) is open, and B(a, δa)− (B(a, δa) ∩ f(X)) is

open. As B(a, δa)−A is open and A ⊂ B(a, δa), A is closed in B(a, δa). ♦
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Theorem 8 Let L be a finite simplicial complex, and |L| and M be compact, connected manifolds. If

f : |L| → M is a map in which the image of every open star of L is an embedding in M , then every

a ∈ M has same number of pre-images in |L| under f .

Proof: By Lemma 9 every a ∈ f(|L|) has a δa > 0 such that ∀b ∈ B(a, δa), P I(b) ≥ PI(a),

and by Lemma 10, f(|L|) = M . Further by Lemma 11, A = {b | PI(b) > PI(a), b ∈ B(a, δa)}
is closed in B(a, δa). The set B(a, δa) − A 6= ∅ as a ∈ B(a, δa) and a /∈ A. If A 6= ∅, then

B(a, δa) ∩ A 6= ∅ and this implies that there is a point c ∈ B(a, δa) ∩ A that is a limit point of

B(a, δa) − A. There exists t ∈ B(c, δc) ∩ (B(a, δa) − A) and hence PI(t) ≥ PI(c) which is

a contradiction as PI(t) = PI(a) < PI(c). This shows that there does not exist c with the above

criterion, and hence A = ∅. Therefore all points in B(a, δa) have same number of pre-images. Further,

due to Lemma 10, Lemma 9 can be reworded as follows. For every a ∈ M there exists a δa > 0 such

that for all b ∈ B(a, δa), PI(a) = PI(b).

Consider all open sets B(a, δa), for all a ∈ M . The union of all these open sets, ∪a∈MB(a, δa),

covers M . Since M is compact, there exists a finite number of open sets whose union, say,

∪1≤i≤nB(ai, δai
), ai ∈ M , covers M . Denote Bi = B(ai, δai

). If Bi ∩Bj 6= ∅ then all b ∈ Bi ∪Bj

have same number of pre-images. Define an equivalence relation between these open sets as follows.

The open sets Bi and Bj are related to each other, denoted as BiRBj , if and only if Bi ∩ Bj 6= ∅ or

there exists an l such that BiRBl and BlRBj . This shows that all points belonging to open sets in one

partition have same number of pre-images. Now it remains to be shown that there is only one partition

of M under this equivalence relation. Suppose there are k partitions, say, P1, P2, . . . , Pk of M due to

this equivalence relation. Then for s 6= t, the intersection of any two open sets Bi ∈ Ps and Bj ∈ Pt,

is empty. Let the union of all the open sets in one partition Pi be Vi. Then the set Vi = ∪Bj , Bj ∈ Pi

is open. Further, ∪Vi = M and for i 6= j, Vi ∩ Vj = ∅. This shows that M is not connected, which is

a contradiction. Therefore, there is only one partition of M due to this equivalence relation, and hence

all points in M have same number of pre-images. ♦

Definition 18 The Multicover Index of a multicover f : |L| → M , MI(f) is the number of pre-

images of at least one point x ∈ M .

The above definition is justified by the fact that all points in M have pre-images (by Lemma 10) and

all these points have same number of pre-images (by Theorem 8).
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Lemma 12 A function f : |L| → M is a homeomorphism if and only if f is a multicover with

MI(f) = 1.

Proof: (⇒) Since f is a homeomorphism it is an one-to-one and onto continuous function whose

inverse is also continuous. Hence f is a map where the image of a star in |L| is an embedding in M

and every point in M has only one pre-image. Hence f is a multicover with MI(f) = 1.

(⇐) By Lemma 10, f is onto. By Theorem 8, if MI(f) = 1, then every point in M has

a unique pre-image and hence f is one-to-one. Since f is a map, f is continuous. |L| is compact

and M is a Hausdorff space. A continuous function from a compact space to a Hausdorff space is a

homeomorphism [Munkres75]. Therefore, f is a homeomorphism. ♦

Lemma 13 A geometric multicover f : |L| → M has no internal vertex if and only if MI(f) = 1.

Proof: (⇒) Let f be a multicover with no internal vertex, and let MI(f) > 1. Since f is a geometric

multicover, f(p) = p for all sample points p ∈ S. Let f−1(p) = x, x 6= p, x ∈ |L| be one of the

pre-images of p. There exists a q ∈ S such that x ∈ Star(q). This shows that there exists a triangle qrs

in the star of q such that x is in the interior of this triangle or on the edges qr or qs, or x is the vertex

q. (If x is on the edge rs or is the vertex r or s, then x belongs to the star of r and/or s and not of q).

Let x = q, and by assumption earlier x 6= p and hence q 6= p. Since x = q, f(x) = q and f(x) 6= p,

which is a contradiction. Therefore, x 6= q. As f has no internal vertex, x cannot lie on the interior of

any triangle or edge. Hence there exists no x 6= p such that f−1(p) = x. Therefore f−1(p) = {p}
which implies that PI(p) = 1. By Theorem 8, this implies that for every a ∈ M, PI(a) = 1 and by

the definition of multicover index, MI(f) = 1.

(⇐)The function f is a geometric multicover implies that f(p) = p ⇒ p ∈ f−1(p). As

MI(f) = 1, p does not have any other pre-image other than p itself and hence p is not an internal

vertex of any triangle. Since p is an arbitrary sample point, no sample point is an internal vertex under

f . ♦

Theorem 9 Let L be a finite simplicial complex, and |L| and M be compact, connected manifolds.

Further, let the vertex set of L, S, be a subset of M . (L,f) is a geometric triangulation of M if and only

if f : |L| → M is a map with the following properties:

i. the image of every open star of L is an embedding in M ,

ii. f(p) = p, ∀p ∈ S, and
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iii. f has no internal vertex.

Proof: (⇒) Since (L,f) is a geometric triangulation, property (ii) is satisfied, and f is a

homeomorphism. Since f is a homeomorphism, by Lemma 12, f is a multicover with MI(f) = 1.

Further, f is a geometric multicover due to property (ii). Since f is a geometric multicover with

MI(f) = 1, it satisfies property (i) (by the definition of multicover) and property (iii) (by Lemma 13).

(⇐)Due to properties (i) and (ii), f is a geometric multicover and due to property (iii) and by

the Lemma 13, MI(f) = 1. By Lemma 12, if MI(f) = 1 then f is a homeomorphism. As the

homeomorphism f satisfies property (ii), (L,f) is a geometric triangulation of M . ♦

7.3 Geometric Triangulation and Localized Delaunay Triangulation

In this section, I prove that the Localized Delaunay Triangulation is homeomorphic to the underlying

surface. I define a few terms used in this section and state an assumption before proving this result.

Definition 19 “Projection” of a point b means the following operation. A point b is projected

orthogonally to the plane fixed at an origin, say a. Let the projection of b be b′. The vector ab′

is scaled to the length of the vector ab.

The length is measured using the Euclidean metric.

Assumption 2 The projections of a triangulation of M around a vertex a ∈ S and the neighborhood

of a in M to the tangent plane Ta are one-to-one and continuous.

Definition 20 Let abc be a triangle, and d ∈ S − {a, b, c} be in a candidate neighbor of a. Consider

the projection of abc and d to Ta. If d projects to the interior of the projection of abc then d is called

an interior sample of the triangle abc.

Theorem 10 The Localized Delaunay Triangulation, L, is homeomorphic to the underlying surface

M .

Proof: The Localized Delaunay Triangulation algorithm chooses the candidate point around the

reference point using the sampling conditions presented in the previous chapter. These sampling

conditions ensure that the triangulation around a reference point using these candidate points is

homeomorphic to a disk. Further, the Delaunay triangulation on the tangent plane of the reference
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p

Figure 7.2: The line segments connecting the centroids of the triangle with the midpoints of the edges
define a region around a sample. The planes are constructed perpendicular to the triangles, and
passing through these line segments. These planes intersect the surface above and define another
region on the surface around the sample point.

point ensures that the projection of the star of the reference point to its tangent plane is one-to-one and

there is no interior vertex in the projection of this star.

Choose the mid points of the edges and the centroids of the triangles incident on each reference

point. Connect these centroids and mid points around each sample point, p, in order using straight

lines. This results in a closed polygon on the triangulation enclosing a region containing p (Figure 7.2).

Let this region be Rp. Note that there is no sample point in Rp other than p, and ∪p∈SRp covers the

triangulation. Further, the intersection of the interiors of any two regions Rp and Rq, p 6= q is empty.

Consider the boundary of the region Rp. This is made up of two edges on each triangle incident

on p (Figure 7.2). For each edge, construct a plane passing through it and perpendicular to the triangle

in which the edge lies. Since the projection of the triangulation to the tangent plane is one-to-one,

these planes intersect the tangent plane of p and this intersection yields a simple polygon on the

tangent plane. Further, since the projection of the neighborhood of p in surface M to the tangent plane

of p is one-to-one, these planes intersect M and form a simple closed curve on M . Let the region

defined by this closed curve be Pp. Clearly Pp contains p. There is a one-to-one correspondence

between the edges of Rp on the triangulation and curve segments of Pp, and the order of edges of Rp
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Hole in the triangulation
not in the surface

Hole in the triangulation
and in the surface

Figure 7.3: (a) A boundary in the middle of the object is allowed by the properties of the triangulation
even though there is no boundary in the actual model. This is avoided by considering a triangle abc if
there exist edges ab, bc, and ca. (b) If there were an actual hole abc in the model, then according the
sampling conditions, there needs to be a sample point representing each edge of this triangle. Final
triangulation with these vertices on edges is also shown, which retains that hole.

around p is preserved in Pp. Further, there is no sample point other than p in Pp. By construction, the

intersection of the interiors of any two regions Pp and Pq, p6= q, is empty.

Construct a map f : |L| → M such that f(Rp) = Pp and f(p) = p ∀p ∈ S. The map f

embeds Star(p), ∀p ∈ S. By construction, f does not have any interior vertex and maps every sample

point to itself. By Theorem 9, f is a homeomorphism between |L| and M , and hence the Localized

Delaunay Triangulation, L, is a geometric triangulation of M . ♦

7.3.1 Triangulation for Surfaces with Boundaries

The results presented in the previous chapter hold for triangulation of manifolds. We have to extend

these results to manifolds with boundaries also. By the sampling conditions presented in the previous

chapter, the cover regions of the boundary sample points do not intersect if they are not visible from

each other. Hence, in general, there will be only one triangle incident on an edge connecting two

boundary points, leading to missing triangles in the disk around a boundary sample. Using this feature,

we can identify all the boundary points. There might be cases when an edge connecting two boundary

points has two triangles incident on it, when the boundary points are connected using an internal edge

(Edge ac in Figure 6.3). Let us analyze this case.

Consider a hypothetical case as shown in the left of Figure 7.3. Assume that there is no hole

abc in the actual model. During triangulation, this hole is allowed as the edges ab, bc, and ca connect

boundary points, and there can be a missing triangle along these edges. To avoid this situation, we
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assume the presence of a triangle abc if there exist edges ab, bc, and ca irrespective of whether they

are boundary samples or not. This may lead to a conclusion that we cannot have a triangular hole

as in Figure 7.3. But according to the sampling condition, if there was a triangular hole, there need

to be samples on each edge due to the following reason. The sampling region of any point on the

edge does not include the vertices of the triangle as angle between the tangent vectors along the edge

and the vertex is more than the tolerance. The sampling under this condition, and its corresponding

triangulation is shown in the right of Figure 7.3.

Thus, the boundary points and the triangulation of boundary can be identified consistently, and

is supported by appropriate sampling conditions presented in the previous chapter. Once the boundary

samples, and the edges connecting them are identified, the results of the previous section can be

directly extended to surfaces with boundaries.

7.4 Cover Regions, Nerve, and the Triangulation

In this section I will discuss about other related work on triangulations that can be used for proving

the homeomorphism between the triangulation and the surface. I will also discuss about a few gaps

that have to be filled for their applicability to our problem.

In the previous chapter we defined the cover regions of the sample points and the ellipsoids

CR(p) around a sample point p based on distance function Qp. Further in Section 6.7 we showed

the importance of estimating the intersection of cover regions for the final triangulation. We also

developed theory to approximately find the intersection of ellipsoids. In this section, I use these

intersection patterns to construct a simplicial complex K, which is also called the nerve of the

ellipsoidal intersections.

The complex K has the set of samples S as its vertex set. An edge is constructed between two

samples if their ellipsoids intersect, and a triangle is formed if the ellipsoids of three sample points

intersect in a common region. Any higher dimensional simplex is removed as they are not of any

interest to us with respect to surface reconstruction. The resulting complex is called the nerve induced

by the intersection pattern of the ellipsoids.

We also assumed in the previous chapter that when two ellipsoids CR(p) and CR(q) intersect

their cover regions C(p) and C(q) also intersect. So the nerve can be assumed to be induced by the

intersection pattern of the cover regions in R3 .
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Once K is constructed, the next step is to find the geometric triangulation L of M that is

a subset of K. Before finding a triangulation, we have to talk about the existence of a triangulation.

Edelsbrunner and Shah [Edelsbrunner97b] showed that if the (cover) regions intersect in a pseudo-disk

configuration, where the boundaries of two regions intersect either at zero or two points, there exists a

triangulation of the underlying space in the nerve. In our case, I conjecture that the cover regions on a

smooth surface intersect in a pseudo-disk configuration, and the above result holds good on surfaces.

Assuming that the triangulation L exists in K, we have to extract L from K. But this problem,

in its general setting, is proved to be NP-Complete.

Theorem 11 Lloyd [Lloyd77] has proved that the following triangulation extraction problem is NP-

complete. The triangulation existence problem is: Let V be the set of vertices. Let P be the set of all

straight line segments between the vertices in V . Given V , and the set of edges E ⊂ P , does there

exist a subset Es ⊂ E, such that Es is a triangulation of V ?

Lemma 14 The triangulation problem ”Let V be the set of vertices. Let K be the set of all triangles

between the vertices in V . Given V , and the set of triangles T ⊂ K, does there exist a subset L ⊂ T

such that L is a triangulation of V ?” is NP-complete.

Proof: Problem as stated in Theorem 11 can be reduced to the problem specified in this lemma. Given

the set of edges, the input set is converted to the set of all possible triangles formed by the given set of

edges in O(n3) using an exhaustive search algorithm. Then, once the set of triangles that triangulate

V is found, its edge set defines the solution to the original problem. Further, given a set of triangles,

it can be verified in polynomial time whether this set is a solution to the given problem or not. Hence,

given the vertex set V , and the set of triangles T , the problem of finding a subset L ⊂ T such that L

is a triangulation of V , is NP-Complete. ♦
But this result has been proved in a general set of edges (triangles). It still remains open to

see whether the problem of finding the triangulation from a special set of edges with properties, for

example if the edges are from a nerve complex, is NP-complete.

As verification of a solution for an NP-complete problem can be done in polynomial time,

I presented a direct method, the Localized Delaunay Triangulation, to construct a triangulation in

Chapter 4, and earlier in this chapter, verified that this triangulation is a geometric triangulation of M .
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7.5 Conclusion

I presented the definition of a geometric triangulation and multicovering. The definition of

multicovering is based on a local property that the mapping of a star of a sample is an embedding.

Based on this local definition, I proved a few global results on the sufficiency conditions for

a multicovering function to be a homeomorphism. I also established the relationship between

multicovering and geometric triangulation.

Above results were effectively used in constructing a homeomorphism f with the required

properties, between the Localized Delaunay Triangulation, L, and the surface M , thus leading to

the conclusion that L is a geometric triangulation of M . I also justified the approach of directly

constructing the triangulation, rather than extracting a triangulation from the nerve due to the

intersection of cover regions, using the existing results like [Edelsbrunner97b] and [Lloyd77].
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CHAPTER 8

CONCLUSION

The main contribution of this dissertation is the analysis of the problem of sampling and reconstruction

of surfaces with boundaries. This analysis led to the classification of surface reconstruction algorithms

and to the realization that the conditions on minimum required sampling density are not sufficient for

correct reconstruction of surfaces with boundaries. Till now the variation in the sampling density

was used to maximize the number of samples to capture the complex geometric features where ever

needed, and minimize the number of samples in featureless regions. Hence the variation in sampling

density is seen as an optimization of the sampling and reconstruction method rather than a necessary

requirement. In this dissertation, a novel way of using the variation in sampling density to encode the

boundary was presented. This sampling approach captures both the geometric and topological features

of the surface and requires no additional information other than sample points for the reconstruction

process. Based on this analysis and results, an efficient algorithm called the Localized Delaunay

Triangulation algorithm was also introduced.

Many fundamental and interesting results in topology were presented in this dissertation.

This includes the definition of geometric triangulation, global properties of multicovering functions

using just the local definition of multicovering, and relationship between geometric triangulation

and multicovering. Using these results, it was proved that the Localized Delaunay Triangulation is

homeomorphic to the sampled surface.

8.1 Open Problems

This dissertation also opened up a few interesting problems in geometry and topology. I list a few of

the problems here.



1. The example of a surface with boundary in Section 5.3, prove that the Voronoi vertices that lie

close the connecting line will be removed by the pole algorithm from consideration. [Probably

use perturbation of sample points along the boundary].

2. What are the conditions in which the intersection of cover regions form a pseudo-disk

configuration?

3. There exists a triangulation in the nerve of a pseudo-disk configuration on a plane

[Edelsbrunner97a]. Does there exist a triangulation when the pseudo-disk configuration is on a

2-manifold?

4. Is there any polynomial time algorithm to extract a triangulation from the nerve?

8.2 Future Work

This dissertation has opened up the field of sampling and reconstruction of surfaces with boundaries for

further research. At the same time, this has laid the theoretical foundation and introduced a framework

for various algorithms to be developed. The idea of using variation in the sampling density as an

encoding mechanism can be used in information encoding on geometric objects for visualization and

analysis.

The sample points obtained by the present geometric sampling devices are probabilistic

estimates of the positions of the points, and hence noisy. Interpolatory surface reconstruction

algorithms (where the surface passes through the samples) fail to reconstruct the correct surface,

and the refuge is to rely on approximating surface reconstruction algorithms (where the surface is

guided by the samples). Since approximating algorithms assume that the samples are probabilistic

estimates, conceptually, the “information content” of each sample is also reduced to a fraction of its

value. Amenta et al.[Amenta01, Amenta] have proposed the Power Crust algorithm to handle samples

of manifolds (with no boundaries) with noise. This is the best combination of interpolatory and

approximating algorithms designed till now. In my opinion, this algorithm can be seen as dynamically

assigning varying “probabilistic information content” to each sample to decide whether the surface

should pass through the sample or guided by the sample.

There are a few problems due to noise when surfaces with boundaries are considered. The

sampling density is based on the positions of points. As the positions are inaccurate due to noise,

the estimates of sampling density will not be accurate. If the approach of encoding the presence of
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boundary using the variation in sampling density is used, the sampling and reconstruction should take

into account the inaccurate sampling density estimates also. Another problem is when the size of the

boundary is comparable to the noise level. Hence the field of sampling and reconstruction of surfaces

with boundaries in the presence of noise is open for future research. I believe that Class D algorithms

(refer to Section 5.5) will be useful in addressing this problem.

Boundaries are features of a model, and more information has to be provided to preserve these

features. Noise is a “feature” of the sampling process, and more information has to be provided to

nullify this “feature”. The following question is worth investigating. Can a feature of a model be

substituted by a feature of the sampling process using the techniques discussed in this dissertation?

In other words, can new algorithms be designed for surfaces with no boundaries but with noise in the

samples, using the framework given in this dissertation?
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