Secure Spread: An Integrated Architecture for

Secure Group

Communication

Yair Amir, Member, IEEECristina Nita-RotaruMember, IEEE Jonathan StantoMember, IEEE,
and Gene TsudikMember, IEEE

Abstract— Group communication systems are high-availability
distributed systems providing reliable and ordered messag
delivery as well as a membership service, to group-oriented
applications. Many such systems are built using a distribued
client-server architecture where a relatively small set ofservers
provide service to numerous clients.

In this work, we show how group communication systems can
be enhanced with security services without sacrificing robstness
and performance. More specifically, we propose several inie
grated security architectures for distributed client-sewer group
communication systems. In an integrated architecture, segity
services are implemented in servers, in contrast to a layede
architecture where the same services are implemented in elts.
We discuss performance and accompanying trust issues of dac
proposed architecture and present experimental results tht
demonstrate the superior scalability of an integrated arclitecture.

Index Terms— Group Key Management, Secure Communica-
tion, Peer Groups, Group Communication

I. INTRODUCTION

Since many applications are expected to run over the Inter-
net, security becomes a real necessity. To this end, thanese
community has invested significant effort in investigatangl
developing efficient security services. Numerous algorgh
protocols, frameworks and policy languages have been devel
oped to provide security services in point-to-point or grou
based communication models. However, there has not been
enough research into the integration of security techrique
into distributed systems, while maintaining a reasonadblell
of performance. This work tries to fill this gap, by showing
how high-availability systems (such as group communicatio
systems) can be enhanced with security services without
sacrificing robustness and performance.

A. Group Communication Systems

Group communication systems (GCS) are distributed mes-
saging systems that enable efficient communication between
a set of processes logically organized in groups and commu-
nicating via multicast in an asynchronous environment wher

BIQUITOUS information access and communicatiofailures can occur. Examples of group-oriented applicetio
have become essential to everyday life, global busine#sat can take advantage of the services provided by a GCS
and national security. Many activities, including perdpnainclude: peer groups of long-running servers, conferegcin

commercial and international financial transactions, yahgl

distributed logging and mobile state transfer.

and teaching, shopping, or managing modern battlefields havA GCS provides a group membership service as well as re-
fundamentally changed over the last decade as a result of liable and ordered message delivery. The membership servic
expanding capabilities of computers and networks. Mosh su®forms all members of a group about the list of currently
activities are supported by distributed applications Wwhin connected and alive group members (often referred to as a
turn, increasingly rely on messaging systems to providarsecview), and notifies group members about every group change.
and uninterrupted service within acceptable throughpat af group can change for several reasons. In an idealized fault
latency parameters. This is difficult to guarantee in a cemplfree setting, a change can be caused by members voluntarily
network environment that is susceptible to a multitude ¢®ining or leaving the group. In a more realistic environiiyen
human and/or electronic threats, especially, as netwaéakls faults can occur, e.g., processes can become disconnected o
have become more sophisticated and harder to contain. simply crash and network partitions can prevent members fro

A distributed messaging system is essentially an abstractcommunicating. When faults are healed, group members can
layer built on top of an underlying network. It providescommunicate again. These events can also trigger corrédspon
distributed applications with: (1) services not availaflem ing changes in group membership.
the native network, e.g., security, ordered message dglive The core of GCS lies in achieving agreement between mul-
or (2) services that are enhanced, e.g., higher availgbilitiple participants about group membership views and atheut t
improved reliable delivery. Group communication system@rder of messages to be delivered. Many agreement protocols
overlay networks, and middleware are all examples of megere proved to have no solution in asynchronous systems
saging systems serving as infrastructure for applicatismsh Wwith failures [2]. GCS's overcome the problem by using time-
as: web clusters, replicated databases, scalable chateservout based failure detection to sense network (dis-)coivigct
and streaming video. and process faults. One risk of this approach is that alive
and connected members communicating over high-delay,links
may be excluded from the group membership. However, if the
network is stable, GCS membership reflects the currentflist o
connected and alive group members.

This work was supported by grant F30602-00-2-0526 from tleéebse
Advanced Research Projects Agency (DARPA).
A preliminary version of this article was presented, in pattDISCEX Il

[

The membership and message delivery services were fgreup key. We refer to protocols that generate and maintain
malized in two models: Virtual Synchrony [3] (VS) and Ex-a shared group key agroup key managemerygrotocols.
tended Virtual Synchrony [4], [5] (EVS). The main differenc Desired properties for key management protocols lexg
between the two models lies in the relation between tledependenceperfect forward secrecand backward/forward
views in which messages are sent and delivered. Essentiadlgcrecy Informally, key independence means that a passive
both models guarantee that all group members see the sadeersary who knows any proper subset of group keys cannot
set of messages between two sequential group views afiscover any future or previous group key. Forward secrecy
that the order of messages requested by the applicationgisarantees that a passive adversary who knows a subset of
preserved. The major difference is that while VS guaranteelsl group keys cannot discover subsequent group keys, while
that messages are delivered to all recipients in the sameage backward secrecy guarantees that a passive adversary who
the sending application thought it was a member of at the tirkmows a subset of group keys cannot discover preceding group
it sent the message (also known as Sending View Deliverigys. perfect forward secrecy means that a compromise of a
EVS guarantees that messages will be delivered in the samember’s long-term key cannot lead to the compromise of
group view to connected members (also known as the Saarg/ short-term group keys. For a more precise definition of
View Delivery property). Thus, in EVS, the delivery view carthe above terminology, the reader is referred to [15], [16].
be different from the sending view, while in VS the sending There are two basic architectural approaches to providing
view and the delivery view are the same. security services in a client-server GCS. The first approach

GCS’s have been built around a number of different arch(referred to as as théyered architecturg places security
tectural models, such as, peer-to-peer libraries [6],47hr 3- services in a client library layered on top of the GCS client
level middleware hierarchies [8], [9], modular protocadits library. The second approach (referred to as ittegrated
[10], [11], and client-server [12]. To improve performancearchitecturd entails housing some (or all) security services at
modern GCS’s use a client- server architecture where expéme servers. Potentially an integrated architecture cawige
sive distributed protocols are run between a set of serveasmore scalable design because it can amortize the cost of
where each server provides services to multiple clientthisy security services over several groups.
architecture, the client membership service is implenassa
light-weight” layer that communicates with a “heavy-whij C. New Contributions

layer asynchronously using a FIFO buffer.

The main goal of this work is to investigate scalable
solutions for securing GCS'’s that do not result in the severe
degradation of performance and preserve the fault-toberan

Security is crucial for distributed and collaborative app! properties. In particular, we focus on securing Spread, [a2]
tions that operate in a dynamic network environment and coBCS resilient to process crashes and network partitions. We
municate over insecure networks, such as the InternetcBasfopose scalable and efficient secure architectures faraS8pr
security services needed in such a dynamic peer groupgetiscusing on providing authentication, data confidenijadind
are largely the same as in point-to-point communicatiore Thjata integrity. More specifically, our contributions are:
minimal set of security services that should be provided by Improved scalability of group key generation Con-

any GCS include: tributory key agreement protocols provide strong secu-
« Client authentication authenticate a client when it re- rity properties, which make them appea”ng for secure
quests access to the GCS, e.g., when it connects to & group communication. However, when used in a layered
GCS server. architecture, they scale poorly. We show that by using
« Access controlcheck if a given client is authorized to an integrated approach in a light-weight/heavy-weight
access system resources. Typical group resources that can [17] group architecture, we can improve the performance
be controlled by access control methods are: joining @ of key regeneration, substantially reducing the cost for
group and sending or receiving messages to a group. process group join and process group leave, the most
« Integrity and data source authenticatiomprotect the common group change operations.
contents of the communication from being modified by , Group confidentiality support for EVS semantics: We
an outsider. Data source authentication guarantees that discuss the relationship between group communication
the message was generated by a trusted source and semantics and group confidentiality. Providing confiden-

B. Security Services for Group Communication Systems

protects against injections. Efficient integrity and data
authentication mechanisms (such as. HMAC [13]) require
a shared key between participants. For many protocols
data integrity and authentication is an essential service.
Confidentiality protect the contents of communication
from passive eavesdroppers. Symmetric encryption algo-
rithms (such as AES [14]) require participants to share a
secret key. .

Data integrity, source authentication, and confidenyialit

can be efficiently provided if group members share a secret

tiality in systems supporting the VS model is an easier
task (than in EVS) since the model provides a form
of synchronization between the group membership and
data message delivery. The task is more challenging in
systems supporting the EVS model. However, since such
systems have better performance it is desirable to provide
solutions for them as well.

Experimental evaluation and comparison of secure
group architectures: We proposed three variants of scal-
able integrated architectures for Spread, supporting both

VS and EVS semantics. We discuss the accompanyiagd stability of reliable group communication services ioren
trust issues and present experimental results that offesstile environments — such as wide-area and lossy networks
insights into their scalability and practicality. — by providing probabilistic guarantees about deliverjiare

Roadmap The rest of the article is organized as followspility, and membership.
We survey notable prior work in Section Il. We then describe Other approaches focus on building highly configurable
Spread and the group communication semantics it suppof¥namic distributed protocols. Cactus [29] is a framework
Next’ we Specify our Security assumptions_ We Overviewtaat allows the implementation of Conﬁgurable pl‘OtOCOlS as
layered architecture design in Section Ill and proposeethréomposition of micro-protocols. Survivability of the seity
variants of the integrated security architecture for Spreg&ervices is enhanced by using redundancy. For example, in
in Section V. We demonstrate and discuss the improv&¥0], redundancy of data confidentiality is obtained by gptr
scalability of our integrated architecture in Sections Vida ing data multiple times, each time using a different endoypt
VII, respectively. Finally, we summarize our work and dissu algorithm. This approach is not appropriate for appligzgio

potential future research directions. where throughput is a concern.
Another toolkit that can be used to build secure group ori-

ented applications is Enclaves [31]. It provides group kmnt
and communication (both point-to-point and multicast) and
ESEARCH in GCS's operating in a local area networllata confidentiality using a shared key. The group utilizes a
(LAN) environment has been quite active in the last 1%entralized key distribution scheme where a member of the
20 years. Initially, high availability and fault toleranegere group (group leader) selects a new key every time the group
the main goals. This resulted in systems like ISIS [6], Ti®nschanges and securely distributes it to all members of theggro
[18], Horus [10], Totem [19], and RMP [20]. These system$he main drawback of this system is that it does not address
explored several different models of group communicatidailure recovery when the leader of the group fails.
such as VS [3] and EVS [4]. More recent work in this area A collaborative application can have its own specific secu-
focuses on scaling group membership to wide area networity requirements and its own security policy. The Antigone
(WAN) [21], [22]. policy [32] framework allows flexible application-levelaup
With the increased use of GCS’s over insecure open negecurity policies in a more relaxed model than the one uguall
works, some research interests shifted to securing these gyrovided by GCS's. Policy flavors addressed by Antigone
tems. Research on securing group communication is faiilclude: re-keying, membership awareness, process ézdlnd
new. The only implemented GCS’s that focus on security (#iccess control. The system implements group rekeying mech-
addition to ours) are: the SecureRing [23] system at UCSBpisms in two flavors: session rekeying - all group members
the Horus/Ensemble systems at Cornell [24], [25], and theceive a new key, and session key distribution - the session
Rampart system at AT&T [26]. leader transmits an existing session key. Both schemesrgres
At the core of any GCS is a membership protocol. Sonswme problems: distributing the same key when the group
of the work in securing group communication focused othanges violates perfect forward secrecy, while the sessio
protecting the membership protocol in the presence of Byzamkeying mechanism — although able to detect the leader’s
tine faults. This includes systems such as Rampart [26] afailure — does not attempt to recover from it.
SecureRing [23]. Rampart builds its group multicast ovez-a s Unlike aforementioned systems, we focus on using contribu-
cure group membership protocol achieved via two-party®ecdory group key agreement as a building block for other séguri
channels. SecureRing protects its low-level ring protdmpl services. Contributory key agreement protocols provicenst
using digital signatures to authenticate each token tresssom security properties such as backward/forward secrecy and
and each data message received. Both systems exhibitdimiperfect forward secrecy. Our work investigates trade-offs
performance since they use relatively costly protocols ah@étween security and group communication semantics stippor
make extensive use of public key cryptography.
In addition to the membership service, GCS’'s provide I1l. SPREAD
reliable ordered message delivery within a group. To secq;q_
at

this service, group members (senders) must be authemtic : , . : . .
grating security services into Spread. In this section we

and both confidentiality and integrity of client data must . . X
resent an overview of the group communication semantics

be guaranteed. One notable work in this area is the HY ted by S d and d be it hitect
rus/Ensemble work at Cornell [24], [25]. Ensemble achiev@4/PPOrted by spread and describe its architecture.
Spread [12] is a general-purpose GCS for wide- and local-

dat fidentiality b i hared k btained
ata conticentiallty by USINg & Snared group ey obraing ea networks. It provides reliable and ordered deliverpes-

via group key distribution protocols. The key manageme FIFO | total orderi I bershi
protocols in Ensemble provide backward and forward secreéﬁge.s (» causal, total or ering) as well as a membership
rvice. The system consists of a server and a client library

For authentication, Ensemble uses the popular PGP [2] d with th lication. A client btai ® th
method. In addition, the system allows application-degand nked with the application. A client can oblain access te 1
trust models in the form of access control lists which ar@ OUP SEfVICesS by connecting to a server. Any process, tclien

treated as replicated data within a group. Recent reseaf{perVer can fail. If a server fails, all clients connediethat

on Bimodal-Multicast, Gossip-based prOt_OC()ls [28] a_nd thelWe note that contributory key agreement protocols do notigeokey
Spinglass system has largely focused on increasing skiglabindependence when they use static keys.

II. RELATED WORK

HE work presented in this article evolved from inte-

server are also considered failed. When a network partftion | Application |

takes place, Spread servers detect it and continue to grovid v

operation within each connected component. The client and | Secure Spread Library (VS) Key Agreement

server memberships follow the model of light-weight and Client |« »|Key Agreement Selector|« Conedlon.

heavy-weight groups [33]. This architecture amortize scibet GUCL LS , \w‘
: . ” Engine m -

of expensive distributed protocols, since such protocots a

executed only by a relatively small nhumber of servers (as : :

opposed to all clients). This way, a simple join or a leave | Spread (Flush) Library (VS) | Encryption Collection

of a client process translates into a single message, thstea Algorithm 1

of a full-fledged membership change. Only network partiion | Sprea Server BVS) |

incur the heavy cost of a full-fledged membership change. Network L&

In Spread any group member can be both a sender and a
receiver. A client can be a member of many groups. Spreéid- 1. A Layered Architecture for Spread
supports a large number of small- to medium-size groups.
The Spread toolkit is publicly available and is being used by
several organizations in both research and productioimgstt connects to, and another — shared among the group of servers.
It supports cross-platform applications and has been gorfEhe former is used to protect client-server communication,
to several Unix platforms as well as to Windows and Jawshile the latter — to protect server-server communication.
environments. We discuss in more details security architectures for Sprea
Spread supports two well-known group communicatiosupporting VS and EVS in Section V.
semantics, VS [17], [5] and EVS [4], [34]. (See [35] for
a comprehensive survey of group communication models).
The VS service is provided by a client library implemented IV. SECURITY ASSUMPTIONS
on top of the EVS semantics. The two models define the
relationship between group views and message delivery Bot Our goals are protecting client data from eavesdropping
group semantics guarantee that all group members see RigPassive adversaries and preventing impersonation atad da
same set of messages between two sequential group Cha,ﬁ@@@ification/fabrication attacks by active adversaries. ail-
and that the order of messages requested by the applica§Fsary is thus anyone who is not a current group member.
(such as FIFO, Causal, or Total) is preserved. The majorWe do not consider insider attacks in this work. We ac-
difference is that while VS guarantees that messages &rowledge that such threats are significant; some of our on-
delivered to all recipients in the same view as the sendi@ging work focuses on this direction. However, in this detic
application thought it was a member of at the time it sett€ assume that each entity can be directly authenticated and
the message (also known as Sending View Delivery), E\V&ich has an X.509v3 public key certificate that allows it to
guarantees that messages will be delivered in the same gréign messages.
view to connected members (also known as the Same ViewThe method of computing the group key is essential for the
Delivery property). Note that, in EVS, the delivery view carsecurity of the system. An ideal group key management proto-
be different from the sending view. col should providekey independencperfect forward secrecy
The VS semantic is easier to program and understargd backward/forward secrecyThe key agreement protocol
while the EVS semantic is more general and has bettesed in our design is the so-called Tree-Based Group Diffie-
performance. VS is slower, since it requires applicatiorel Hellman [36] (TGDH) protocol. It provides key independence
acknowledgments for every group change in order to guaganand perfect forward secrecy; it was also proven secure with
Sending View Delivery. Moreover, it requires closed group@spect to passive outside (eavesdropping) adversar@s [3
semantics, allowing only current members of a group to sehtl addition, active outsider attacks — consisting of injegt
messages to that group. EVS, in contrast, allows open grow@gdeting, delaying and modifying protocol messages — tbat d
where non-member clients can send to a group. not aim to cause denial of service are prevented by the com-
When securing a GCS providing VS, it is both natural anined use of timestamps, unique protocol message idestifier
efficient to use a shared group key per view (securely reéestand sequence numbers which identify the particular prétoco
upon each membership change to preserve key independeggggution. Impersonation of group members is prevented by
for data confidentiality. In VS, a message is guaranteed to #i& use of public key signatures: every protocol message is
encrypted, delivered and decrypted in the same group vigigned by its sender and verified by all receivers. (Attacks
and, hence, with the same current key. This property do2i§ning to cause denial-of-service are not considered.)
not hold in EVS, because a message can be sent in one view
and delivered in another, and because of the support for open
groups. One possible solution for EVS is to use two kinds of V. SECURE GROUP COMMUNICATION ARCHITECTURE

shared keys: one shared between the client and the server it)) _)
N this section we provide a brief overview of the Spread

2By a network partition we mean connectivity changes due to/orking |a_yered arCh't?Cture_and then describe the new integrated
hardware, routing, or a machine crash. architecture and its variants.

A. Layered Architecture B. Integrated Architecture

Our previous work proposed a layered architecture for Early GCS’s were implemented as libraries, which means

Spread, focusing on robustness and correctness of group ﬂ’%f all distributed protocols_wgre perfo_rmed between all
agreement. The result is a client library [37] that providegI nts,_.per group. A, substantial Increase in performamze a
data confidentiality and integrity. The library is built oopt Sc@lability was obtained by applying a client-server archi
of the VS Spread client library and it uses Spread [38] decture to this model: a smaller number of servers run the

its communication infrastructure and Cliques [39] grouy keEXpensive distributed protocols and, in turn, serve nuoero

management library primitives for group key managemerﬁ],'sntsa Gr(:jup key agre(:]ment protocols are, by r?atubre_,ldo_lls-
To make the present article self-contained and facilithte tlributed and represent the most expensive security bgidin

discussion of different architectures in Section VII, wéeBy b'o‘?"- The-refore, Fo improve the performgnce of the system i
summarize the layered architecture. For further detaitgyd- SEtings with multiple groups (or many clients) we propase t
ing complete formal specifications of the VS semantic mod@{"°rtize the cost of key management by placing the key agree-

and correctness proofs that the layered architecture eamt ment protocols at the servers and having the servers generat
the VS semantics, we refer to [37] client group keys in a “light-weight” manner. This follows

Figure 1 presents the layered architecture for Spread. T.tﬁ'g integrated architecture model where security senaces

library has as main functionalities providing confideritiabf implemented at the server.

. ; . . Since the server population is smaller and more stable than
the data by encrypting/decrypting client data using a 9rOURAt of clients, server-based key agreement is both fasidr a

shared key and managing the shared key for each group dis frequent. Specifically, the servers’ shared secretikey

the system. A client that desires to communicate securely | L
: o refreshed only when network connectivity changes, and not
required to connect to a server and then join a group befor g ; .
. . o . . when some client group changes. This results in fewer costly
proceeding with the communication. The library provides gf

API interface very similar with the Spread interface allogi ey refreshes in contrast to client-based key agreement, be

.) i cause network connectivity changes are far less frequant th
a client to connect/disconnect to a server, to join and leave .

. hormal client group changes. The shared server key can be
group, and to send and receive messages.

_) . vulnerable if it changes very infrequently and a securitligyo
At the core of the Secure Spread library is the Clie

; hich follows: ould impose additional refreshing operations, trigdefer
Agreement Engine (CAE) which operates as follows: upQQample by elapsed time between successive key changes
every group membership change, the CAE receives notificaqe_ouf) or volume of data exchanged (data-out).
tions from the membership service about the change. Th

N . . NGenerating client group keys is much less costly in the
the CAE initiates the refresh group key by starting an instan;.oqrated architecture, since, if no change occurs in¢heess

of the group key agreement protocol and ensuring its Correnfiguration, our scheme reduces the cost of generating a
execution (rnak_ing sure that the messages are sent to the, key for a group amounts to one keyed MAC (HMAC
correct destinations in the right order, and that all the i@ |13}y gneration. When network connectivity does changel (an
make consistent quISIOI’]S W|th respect to ms_talllng the Ng, yoes the membership of the servers’ group), the group key
secure membership). When this protocol terminates, & 8eCUfareq by the servers is refreshed using a full-blown greyp k
group membership change is delivered to the applicatigyeement protocol. For this, we use the TGDH [36] protocol
and the new group key is ready for use. Applications a5 se of its good performance and strong security piepert
not allowed to send any messages while the key agreemente yse of encryption for bulk data confidentiality results
protocol is _executed. In addition, the library ensures that ;, qecreased throughput due to the extra consumption of CPU
VS semantics are preserved (see [37] for formal proofs). egources. Regardless of the location and particularsdie

A client can be a member of multiple groups, each groyganagement, data encryption can be done by either clients
managing its shared key with its own key agreement protocg}. servers. Below we describe three integrated architectur
A Key Agreement Selector and an Encryption Selector moglariants that trade off encryption cost for complexity, head
ules are used to identify a group-specific key management afilf group communication model support.
encryption algorithms. The CAE is the one that manages the1) Three-Step Client-ServefThe most intuitive architec-
key agreement protocol for each group. ture is one derived from the the client-server model of the

The layered architecture currently supports five key magroup communication system. The architecture can support
agement protocols. One of them implements centralized keyth VS and EVS semantics at the expense of decreased (due
distribution and is referred to as the Centralized Group Key encryption) throughput. We refer to it akiree-Step Client-
Distribution (CKD) protocol. It is adapted to provide thesa Server
security properties as the other four key agreement proto-The communication taking place in the system can be
cols. The other four are key agreement protocols: Burmestelassified in two logical channels: client-server and intra
Desmedt (BD) [40], Steer et al. (STR) [41], Group Diffieservers. The goal is to protect these two channels. Spread’s
Hellman (GDH) [16] and Tree-Based Group Diffie-Hellmararchitecture uses a TCP connection when a client connects
(TGDH) [36]. Each of the latter four protocols are basetemotely to a server. In this case, the best approach toqgtrote
on various group extensions of the well-known (2-partythe client-server communication is using a standard twypa
Diffie-Hellman key exchange [42] and provide similar seguri secure communication protocol, such as SSL/TLS [43]. If a
properties: key independence and perfect forward secrecy.client connects to a server running on the same machine,

membership algorithm and their small size, ensures that the

Encryption Collection overhead of public-private encryption can be tolerated.

Spread Library : > The Three-Step Client-Server architecture allows indiaid

38 T o policies for rekeying the server group key and the per-tlien
i SSL keys, as each is handled separately.
Secure Spread —— . Once the master server group key is generated, the servers

Client-Server Encryption [« A . K . . ! .
Sorver (EVS) | | O e communication is protected by encryption using a key defrive
Servers |«_»| Servers Encryption Selector | from it. The default protocol to encrypt communication be-
A%reerment 5 tween servers is Blowfish in CBC mode [44]; however, the
ngine |«—»| Key Agreement Selector |« system supports any encryption algorithm in the OpenSSL. [45

Network % library, including AES [14], while integrity and autherdition

are performed using HMAC-SHAL1 [13]. Two different shared
keys are derived, one used for encryption and one for the
HMAC computation. The system can also be configured to
use only HMAC and no encryption.

Spread architecture uses IPC. In this case, no data panecti 1he total end-to-end cost of sending an encrypted data
is needed and client-server communication is not encryptedh€ssage from one client to another (both are connected to
The intra-server communication channel is provided by &SPread server remotely) includes six encryption and gecry

multicast protocol developed on top of UDP. Using a protocgPn operations: client encrypts the message and sendgit ov
like SSL/TLS for confidentiality, integrity and authentizan SSL o the server; server decrypts it and then re-encryjig us
is extremely expensive in this case since SSL/TLS is a twhi€ Server group key; servers that receive this messaggmlecr
party communication protocol and will require a number df @nd then re-encrypt it again using SSL for the receiving
encryption operations scaling linearly with the number gilient; finally, each receiving client decrypts the message
servers. In this case, the desired security services avided ~ The receiving servers need to encrypt the message sepa-
using a block cipher encryption scheme for confidentialitgt a rately for each remote client who needs to receive it. This is
the HMAC [13] algorithm for integrity and authenticationspotentially a large number since each server can suppoutabo
both based on a key shared by the servers. 1,000 client connections. Thus, if more than one receiver
Figure 2 presents such an architecture. The Servers Agrfeconnected remotely on the same server, the load on that
ment Engine detects changes in the server group conngctifigrver will increase Ilnearly_W|th each remote receivarcsi
and for each connectivity change performs a key managem@@€h remote receiver receives the same message encrypted
protocol between the servers. In addition, time-based ta-daSeParately on its own SSL connection. Local receivers do
based key refresh can be enforced. As mentioned above, W require client-server encryption. We note that several
use the TGDH [36] protocol for key management. squ'uo_ns can be_ defined to decrease the number of encryption
One of the challenges with integrating a key agreemeﬂ'?erat'ons' particularly for the server that need_s to q:c_icry_
protocol into a group communication system is the intecasti 21d re-encrypt all the messages under the SSL client pag-wi
between the former and the membership protocol. Until t&YS- We discuss them in more details in Section VII.
membership protocol completes, the key agreement protocolf two clients (sender and receiver) are executing on the
cannot run, since there is no fixed group of servers amofigMe machine as the server that they connect to, then the
which to perform key agreement. While the membershfgst of encryption under the Three-Step Client Server model
protocol is running, the set of known servers may changenagégduces to one encryption by the sending server and one
(referred to asascaded membershijpand basic communica- decryption by the receiving server.
tion services between them may become unavailable. The described architecture maintains all of the traditiona
To cope with this issue, the group key is provided onlfCS membership semantics (such as VS and EVS). The
when the servers’ group membership is stable and while theread membership protocol is unchanged from the non-
group communication membership protocol is not executinggcure version except for encrypting and signing each membe
This allows the key agreement protocol to run with its norm&hip message using public-private keys which does not &ang
assumptions once the membership protocol completes, {fé& content or pattern of message exchange. The new intra-
prior to notifying the client applications about the chang&erver key agreement executes after the regular membership
Thus, applications do not experience any change in sensanfi@s completed, but before any new client messages are in-
or the APIs (such as a new key message) but do experiencdr@duced so it adds some delay to the membership process
additional delay during each server membership changés (THe client experiences but does not allow any reordering of
is in order for the key agreement protocol to execute folfmyvi messages. If a new membership view change occurs before the
the completion of the membership protocol.) intra-server key agreement is complete then the key agmeme
The servers’ membership protocol is secured by usi,i,@abandoned and restarted once a new stable membership view
public key cryptography to encrypt and sign all membershﬂf"s been e_zstablished. Thus clients will see the same set of
messages, since the shared key is not available duringt§Ssages in the same order as they would have in the non-
execution. The small number of messages sent during fcure Spread protocol.

Fig. 2. A Three-Step Client-Server architecture for Spread

| Application | view at a certain timé.
I The group key for groug in view v, wherew is uniquely
Secure Spread Encryption Collection identified byview_idg, is

i T
T Ky, = HMAC(Ks,, g|lview_idg,)
.
| Spread (Flush) Library (VS) |

The shared server group key is computed in a manner

i identical to that in the Three-Step Client-Server architex
Secure Spread Server (EVS) Key Agreement and can be refreshed as needed. The client group key is
Collection changed whenever a group event (join, leave, etc.) occties. T
ooty new key is delivered within the secure membership message
SeTVeE reCent oy KEVIGEeTEnt et informing the clients about the group change. All clientigro
members receive the same key for the same membership as
Network H a result of the VS semantics. If a key change is required
because of the security policy (not caused by any group
Fig. 3. An Integrated VS architecture for Spread membership change), the key refresh notification is dediver

as an “artificial” group membership change. This is in order

to preserve the semantic guarantees of VS stipulating that

messages encrypted by a sender with a given key must be

2) Integrated VS:Although the Three-Step Client-Serverreceived by everyone while they also perceive (have) theesam
architecture presented above is relatively simple, itessff key as their current key. One of the servers acting as a leader
from decreased throughput due to the cost of the encryptign behalf of all the servers, can send a signal to 'refresh’
operations performed by the servers. Therefore, althoegh Ithe key, sent with the appropriate (SAFE) ordering service t
complex, it is not recommended when clients connect remotensure that these “extra” membership view are delivereleat t
since we aim to design an architecture with reasonable perfsame point in the message stream to all clients.
mance, not only in key management, but also in throughput.|n this architecture the sequence of messages and mem-
This can be achieved if encryption is pushed to the clientsership notifications is identical to those seen by idehtica
which, in turn, requires client group keys. clients running the non-secure Spread with the exceptitneof
We now describe a second variant of our architectur@dditional membership notifications described in the yesi

referred to adntegrated VS|t supports the VS group com-Paragraph. The VS model allows these “extra” membership
munication model and combines the advantage of a Ie4§W notifications as long as they are delivered at the same
expensive key management building block (by integrating ROINt in the message stream to all che_nts. In our case, this
in the servers) with the advantage of encryption done in tie €nsured by the SAFE ordering service. In addition, note
client library. In this aspect, Integrated VS is similar teet that one of the requirements for preserving VS, is that tien
layered architecture. The client groups are closed, i.elieat accept not the send new messages while the membership is
needs to be a member of a group in order to send message&@N9ing; therefore, no de-synchronization between gtedy
that group. As mentioned above, this requires client grouptssages and group keys can occur. The server membership
keys. However, unlike the layered architecture where kdjotocol and key agreement is the same as in the Three-Step
agreement was performed by each group, in this case, cliéhent-Server architecture and thus preserves the fornzs G
group keys are generated by servers, without involvinglgosg€mantics in the same way.
key agreement protocols. Since the library operates in e VV Encryption costs for Integrated VS consist of one encryptio
model, in a manner similar to the layered architecture (sB¥ the sender and multiple decryptions, one for each receive
Section V-A), a per-view shared key associated with the grod he worst case is when all receivers are situated on the same
can be used to provide confidentiality. The key is refreshed B1achine, whereas, the best case is when all receivers are
the servers when the group view changes. running on distinct machines. In the latter case, decryptio

Fi 3 debi he | 4 VS archi The S operations take place in parallel.
lgure 3 depicts the Integrate architecture. The Server 3) Optimized EVSOut of the variants presented thus far,

Agreement Engine (SAE) initiates a key agreement protocg ly Three-Step Client-Server supports the EVS model and
between the servers whenever it detects a change in serv gn groups. As discussed in Section I-A, EVS is faster

L : 0
group connectivity. The Group Keys Engine (GKE) generat us, it is desirable to have a secure group communication
for each group, a shared key wheneve_r Fhe group members Vtem supporting this model. The Three-Step Client-Serve
.ChaT(gZSf'. Irl(;aﬁe ofgge:r]vog(}féngﬁct;vltty Chingeﬁ th?bSAl\(Erves this purpose, but incurs heavy encryption overhead
INVokea irst, toflowed by the - 'Ne aller Tetreshes I8g K\ hen clients connect remotely to servers.

for each group that suffered changes in membership due to 3 . .
. . . ne way to alleviate the large number of encryption oper-
change in server connectivity. The new group key is attathed

the membership notification and delivered to the group.r['r:lieatlons 's to have clients perform encryption by using a share
group keys are generated by the servers based on three:valugs _ _ -
This number is generated based on a timestamp, the identifi¢he

1) Server group shared !(dys- 2) group name (uni.que within servers’ representative, and a counter that is incremeveq time the group
the system), and 3) unique number that identifies the grothanges

| Application | message matches that of the current key. If so, the message

T is immediately delivered. Otherwise, the message is désdyp
Eecure Spread [Eroypion e oo Encryption Collection with the appropriate stored “old” key and re-encrypted unde
JeE = Algorithm 1 the current key. Si [
y. Since the message stream delivered to each
3 client is a reliable FIFO channel, the client eventuallyeiees
Secure Spread Server (EVS) the message in the same view that the server expects it to.
| Group Keys Engine |+-»{ EVS Fix Messages |« Eeﬁ Agreement Thus, the sequence of messages and views delivered by the
server to each client is identical to the sequence in the non-
Serveréng?gzemem S B ol o secure Spread case, so the Optimized EVS architecture still
maintains all of the typical EVS semantics. The only new risk
Network % is that a message could be delivered in the correct order, but
be encrypted with the wrong key and thus not be readable
Fig. 4. An Optimized EVS Architecture for Spread by the client. This can occur only if there is a collision in

the Key_id field, so that two different keys generate identical
Key_id's, or, as discussed in the next paragraph, if the server
per-view group key, in a manner similar to the Integrated V§oes not store the old keys for a long enough time. Both of
architecture. However, unlike VS, EVS does not guarantee thhese risks can be managed to be arbitrarily small at the cost
all messages are delivered to receivers in the same viewginsome resources.
which they were sent. Therefore, there might be messages tha)f\ccumulating old keys and ey_ids ad infinitumis clearly
group members will be unable to decrypt as they do not haygt viable. Thus, old keys have to be periodically flushed by
the key used to encrypt that message in the first place. Qigich server. Different expiration metrics can be used eiipe
next variant addresses this issue. each server individually or in concert; time-outs and keyso
In order to support EVS semantics and client messagetime-out occurs when no message encrypted under a given
encryption, we developed an architecture that relies oveser key has been received for a certain length of time. A key-out
not only to generate client group keys, but also to “adjustakes place when some pre-set maximum number of keys-per-
messages that are not encrypted with the current group kgbup is exceeded. Many combinations and variations on the
Clients operate without any disruption since servers gueea theme are clearly possible.
that all messages delivered to the clients are encryptedl wit The choice of a key expiration methodology can affect the
the current group key. risk of a message being “indecipherable” even when the serve
Figure 4 presents this variant, referred to @gptimized in theory, could have kept the required key.
EVS The Servers Agreement Engine and Group Keys Engine
perform key management of the servers’ shared secret and VI. EXPERIMENTAL RESULTS
cl!ent group keys_, respectively. 'I_'he method of generatmgln this section we present experimental results for the
client group keys is the same as in Integrated VS. The main . -
change is the addition of the EVS-Fix-Messages module, t%rh{)up key _management and daf[a encrypthn building pIOCkS'
. . ..1he experiments cover all architecture variants described
detects when a message for a certain group is encrypted with & .. . :
key that is no longer valid. Each such message is decryptid anec_tlon V measured in a local-area and wide-area network
re-encrypted with the current group key before being detise environments.
to the clients. Clients, in turn, decrypt all group messages
normally. TGDH is used as the server group key agreemeht Group Key Management
protocol. We first compare the cost of establishing a shared group key
The EVS-Fix-Messages module addresses two problerirsa layered architecture and in an integrated architecfioe
it detects whenever a message is encrypted with the wromgsure a fair comparison we use the same key agreement pro-
key and determines the correct key to use for encrypting tteeol in both architectures, TGDH [36]. The communication
message. The first problem is addressed by having the sergiet computation costs of the TGDH protocol are summarized
include in each message a unighiey_id of the group key in Table I, whereh denotes the height of the tree built by
that was used to encrypt it. ThiSey_id is independently and TGDH. More details about why TGDH is our protocol of
randomly computed each time a new key is generated (itdhoice can be found in [46].
also distributed along with each new client group key). 8inc We used an experimental testbed consisting of a cluster of
it does not provide integrity, but merely identifies the otie 13 667 MHz Pentium Il dual-processor PCs running Linux.
group key,Key_id can be relatively short, e.g., 64 bits. It isEach machine runs a Spread server. Clients are uniformly
transported in the un-encrypted portion of the messagedhneadistributed on the machines. Therefore, more than one psoce
To detect messages encrypted with an “old” key, a servean be running on a single machine (which is frequent in many
stores each client group along with ifsey_id. Each server collaborative applications). We present results both icalo
also tags one key as the “current” key for each client grougnd wide area network. For the WAN experiments, machines
The current key is the key that matches the last membershipre distributed at three sites: Johns Hopkins University
(or key refresh) delivered to the group members. Then, befddHU), Maryland, University of California at Irvine (UCIna
delivering a message to a client, it checks if fiey_id on the Information and Communications University (ICU), Korea.

TABLE |
TGDH COMMUNICATION AND COMPUTATION COST

[Event [Rounds| Messages| Unicast | Multicast [Exponentiations| Signatures| Verifications |
Join, merge 2 3 0 3 3h/2 2 3
Leave 1 1 0 1 3h/2 1 1
Partition h 2h 0 2h 3h h h
Join Leave
350 T —— T T T T T 350 T ——— T T T T T
Layered Architecture - TGDH—— Layered Architecture - TGDH——
Integrated Architecture—<— 300 Integrated Architecture—x—
250 | R
3 g
g ﬁ 200 | R
() (]
£ E 1501
[[
100 -
50 -
O i T T 1 1 1 0 T 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Group size (#members) Group size (#members)
(a) Join (b) Leave
Merge Partition
700 T T T — T T T T 700 T T T — T T T T
Layered Architecture - TGDH—— Layered Architecture - TGDH——
Integrated Architecture - TGDH-—--x--- Integrated Architecture - TGDH-—-x---
600 - E 600 - E
500 - E 500 E
3 B
ié’, 400 | R :EU: 400 | E
[} ()
E 3001 B £ 300t B
[=
200 W 200 F]
100 £ 5 100 - R
O 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Group size (#members) Group size (#members)
(c) Merge (d) Partition

Fig. 5. The cost of key agreement in LAN - layered architextus. integrated architecture

For the most common group changes, join and leave, tbleanging the group membership. In the EVS case, the numbers
cost of establishing a new group key is reduced to almost tfog the integrated architecture will be much smaller. The sa
cost of the group communication membership protocol, sint@oth aspect of the TGDH protocol is due to the heuristicsluse
the servers can compute a new group key without performibg TGDH to balance the tree. New members are always added
any other key agreement protocol, just one HMAC operatida the right-most leave as long as they do not increase the
is needed per group change. The results for the experimemigght of the tree. In this case, the new member will be added
performed in a LAN setting, for join and leave are presented the root and the cost of refreshing the key will be minimal
in Figure 5(a) and Figure 5(b). The results for the integtatdthis corresponds to the drop in the saw tooth). While the
architecture are for a VS group membership protocol. Thigight increases, the cost of refreshing the key also isesea
is because the cost of the VS group membership proto@mrresponding on an ascending slope on the graph.
represents the worst case: VS uses closed groups and it

requires acknowledgments from each group member beforéXesults for join and leave in a WAN environment are
presented in Figure 6. In this case the predominant coseis th

10

Join Leave
2000 T T T — T T T T T 2000 T T — T T T T T
Layered Architecture - TGDH—— Layered Architecture - TGDH——
Integrated Architecture—<— Integrated Architecture—x—
1500 E 1500 R
o o
(7] Q
£ £
o 1000- R < 1ooor
£ £
[=
'X)(»KX 50 3K KT R g s X Ko X XXX Mot e 3 36 38 K s K X —><—><—><—x—><—><‘x‘x.x~><«><»><»><~><~><»><»>< oot ¢ 0 K35 X RN 5 x»><f><\><,></></><\><-><—><—><’x><‘
500 | ¥ R 500 - Fal E
X
X
¥
O 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Group size (#members) Group size (#members)
(a) Join (b) Leave

Fig. 6. The cost of key agreement in WAN - layered architexis. integrated architecture

Merge Partition
350 T T T — T T T T 350 T T T — T T T T
Layered Architecture - TGDH—— Layered Architecture - TGDH——
Integrated Architecture - TGDH-——x— Integrated Architecture - TGDH—x—
300 300 R
250 + R 250 B
2 g
g 200 R :é’, 200 R
] (9]
E 150+t B £ 150+ B
[=
100 | Rk 100 + R
50 - R 50 | R
O 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of groups (groups size is 13 members) Number of groups (groups size is 13 members)
(a) Merge (b) Partition

Fig. 7. The cost of key agreement in LAN - multiple groups

communication cost, and over high-delay networks like theumber of clients, the impact of the key agreement protocol

one we use for our experiments, extra communication rounidsless significant. For example, in the case of a LAN, the

can degrade the scalability significantly. cost of the secure membership merge decreases from about
In Figure 5(c) and Figure 5(d) we present the cost &20 milliseconds, to about 90 milliseconds where the size of

establishing a secure membership for merge and partitism, athe group after partition is 100 users, and from about 680
in a LAN environment. Such a group event is triggered byrgilliseconds to about 60 milliseconds for a partition, wer
network connectivity change which requires a modification {the size of the group before partition is about 100 members.
the set of reachable servers, or by a server crash. In thés casThe above results are for a scenario when only one group
a new key needs to be computed by the servers, and only t&fkts in the system. In practice, this is not the case. When
the group keys are computed. In Figure 5(c) and Figure 5(ghbre than one group exists in the system and a change in the
we present the cost of establishing a secure group mempersfiryers’ configuration that affects more than one groupsgcu
for a test scenario where the servers are partitioned indmalf e layered architecture performs a key agreement protocol
then brought back together. each of the existing groups affected by the change. For the
As it can be seen in Figures 5(c) and 5(d) the cost aftegrated architecture, there is only one (smaller sdedg)
the key management for the integrated architecture isthlighagreement performed between servers, and then a number of
higher than in the case of join and leave because of the cbBYIAC operations equal with the number of groups affected
of the key agreement protocol performed between servelny.the change. Figure 7 shows the average cost of recomputing
However, since the number of servers is much smaller than thehared key for all groups, when more than one group exists

Throughput with multiple senders (Three-Step Client-Server)

80000

11

not, without first decrypting it. Since the encryption opina

— L Sender (Blowfish and AMAC)— ta_kes place at the data I|nk_ layer, the servers encrypt_ gt on
70000 5 Senders (Blowfish and HMAC)—— | client data, but also control information, so this modeMies
1 Sender (AES and HMAC) - .
_ 5 Senders (AES and HMAC) = a stronger service than the other two models. Both Intedrate
g o l VS and Layered architecture have the same throughput since
£ 50000} encryption is performed by clients.
4 . . .
S 0000l 2/ This experiment only used one sender and the server that
2 / the sender was connected to was the bottleneck. In a case
g 30007y where several senders exist in the group and thereforeadever
= 2000077 servers will send messages, this cost will be amortizedlaad t
10000 1F throughput will increase considerably. The results preskbim
Figure 9 demonstrate this behavior. Both in the Blowfish and
O 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 AES conflgurat_lon a higher th_roughput is achieved when there
Message size (bytes) are 5 senders in the system instead of 1.
Fig. 9. Data throughput as a function of varied number of semcind e did not include results for the Three-Step Client Server

message sizes architecture when clients connect remotely, but from the
results in Figure 8 we can extrapolate that the achieved

throughput in this case will be much smaller, and therefore

in the system. Al_l the groups have the same number of C"en%acceptable. The Optimized EVS architecture throughglut w
13. We chos_e this num_ber, b_ecause th'_s IS glso the numbelb8fsimilar to the one of Integrated VS if no server membership
the servers in our c_onflguratlon. Ev_en in this favora_ble F’;et%ccurs, and will degrade when membership changes occur, as
for the layered architecture (small size groups), the gl o5 e messages will need to be decrypted and re-encrypted
architecture scales much better than the layered ardhitect jor new keys. The Three-Step Client-Server architecture

when the number of groups in the system increases. Basedp%'?formance should be the worst in all cases, when clients
the results we present in Figure 7 we estimate that even wWith (act remotely to servers.

a very small group size (13 in our case), it will take more
than 4 seconds to refresh the key for 200 groups in a layered
architecture, while it will take about 50 times less to parfo
the same operation for an integrated architecture.

VIl. DISCUSSION

The layered architecture and each of the new proposed inte-
grated variants have benefits and limitations. In the falhgw
we first compare the layered and integrated approaches and

B. Data Encryption ! X . .
) o ,) then discuss the three variants of integrated architexture
Another important building block in the architecture of se-

cure group communication is the encryption module. Figure 8]]
presents our results for data throughput. Figure 8 (a) shofts Layered Architecture vs. Integrated Architecture
the throughput achieved by an integrated architecture (i.e In this section we compare a layered architecture approach
Three-Step Client-Server) under different configuratioistng to an integrated architecture approach, when providingrégc
a 64-bit encryption algorithm, Blowfish with HMAC-SHAL, services to a GCS. We compare them by investigating the
using a 128-bit encryption algorithm, AES also with HMAC{ollowing aspects: trust, key management scalability,acimf
SHA1, and finally, no encryption is used, just HMAC-SHAlhe compromise of the shared secret, complexity, and yabilit
for integrity and source authentication. As expected, rgldito efficiently support other group services.
security services decreases the throughput of the systém, w The layered architecture has the advantage that no trust is
the most expensive configuration being the one using AESut outside of the end user’s control with respect to pratgct
It is interesting to note the performance dip for messagt®e data generated by a client. The client needs to trust the
around 700 bytes. Spread uses message packing for very sisaiers with respect to the membership service and ordered
packets, to improve throughput. The dip at 700 bytes occuasd reliable delivery. The compromise of a group key, does
because messages can no longer be packed into one netwotkaffect the security of the rest of the groups in the system
packet. since each group is running its own protocol and computes its
In Figure 8 (b) we compare the throughput of an Integratesthared key independently of the other groups. In additius, t
Architecture (Three-Step Client-Server) with a Layeredtr architecture is less complex and easier to develop. However
tecture, in two encryption configurations, AES and Blowfistihis model, due to the high security, but expensive key agree
We consider a scenario where clients connect to servement protocols we used, has limited scalability, to no more
running locally, so in the Three-Step Client-Server setuffjan 100 members for the best performance key protocol.
encryption is performed only between servers. The integrated architectures we proposed overcome the key
The throughput for the Three-Step Client-Server is less thenanagement scalability problem by using the key agreement
that of the throughput achieved in the Layered Architectured compute a secret key shared by the servers, and thusgputtin
The major reason for this decrease is that both headers #nd daore trust in the servers. This is because the security of the
are encrypted and the message delivery protocol employeddrgups relies on the security of the servers shared key which
Spread can not detect if it needs to process a message farthes used in generating the client group keys. If the servesg’ k

12

Throughput as a function of message size Throughput as a function of message size

80000 T T T T T T T T 80000 T T T T T T T T
Unsecure Spread—— Unsecure Spread——
70000 - Three-Step Client-Server (AES and HMAG)-<--- | 20000 | Layered Architecture (AES and HMAC)--x--- |
Three-Step Client Server (Blowfish and HMAGC) - Three-Step Client-Server (AES and HMAG) * -

R Three-Step Client Server (HMAC) = - Layered Architecture (Blowfish and HMAC)-=
8 60000 1 9 60000 - Three-Step Client-Server (Blowfish and HMAC)-=—- -
2 2
£ 50000 Z 50000
=3 =3
5 40000 5 40000
o o
=) 5
5 30000 § 30000
e e
F 20000 = 20000

10000 10000 .

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Message size (bytes) Message size (bytes)
(a) Integrated Architecture (b) Integrated vs. Layered Architecture

Fig. 8. Data throughput as a function of varied encryptiogpathms and security architectures

TABLE Il
SECURE GROUP COMMUNICATION ARCHITECTURES

Group Keys | Servers Key Encryption Group Comm. Model
Layered Architecture Client None Client-Clients VS
VS Integrated Architecturd Server Yes Client-Clients VS
Three-Step Client-Server None Yes Client-Server, Server-Servelr VS and EVS
Optimized EVS Server Yes Client-Clients mostly EVS

is compromised, the confidentiality of the communication d@. Integrated Architectures Variants Comparison

all the groups in the system is compromised, as opposed t%s we discussed in Section V-B there is no one-size-fits-all

the layered model where in order to compromise the confi-

dentiality of all the groups in the system, an attacker neearschltecture solution that will perform the best in all fb&s

to compromise the shared key for each group. We note thearl'l[wronments, under both VS and EVS group communication

in the case of the layered architecture, an attacker caurpertsemamlcs' Therefore, we proposed three integrated ecehit

. S .) . ture variants that trade off encryption cost for complexity
service availability by attacking the servers’ commurimat 2 .
overhead and group communication model support. In this

An integrated architecture is more appropriate for provgdi section we compare them by focusing on the group commu-
other security services such as client authentication upoitation model supported, design and implementation of the
connection and access control to perform group specific-opkey management building block (do they use client group keys
ations. A security policy can be easily configured and erfdrcor not) and the place where the encryption and decryption
by an administrator controlling a server configuration file. operations are performed (only between clients, only betwe
her ad fani d archi servers, or between a client and a server).

Another advantage of an integrated architecture vs. adalyer Table Il summarizes their features. The Three-Step Client-

architecture involves the protection of the control infation . .
messages exchanged by the servers. If designed apprt;pria?eer\./er approach does not.use client group keys, but requires
' a client to share a key with the server it connects to. The

an integrated architecture can provide this service based 0

. approach is very appealing because it uses a less complex
the secret key shared between servers, while the laye o y app 9 P

. S ey management mechanism. However, it is expensive in
architecture can not. Combinations of the two approaches ary 9 P

. . ncryption and decryption operations when clients connect
also possible. For example, the clients who do not trust the yp yp P

. . . 0 servers remotely. If clients connect to servers locaiig t
servers will encrypt their data end-to-end, while the sexve Y Iy

;is the best architecture since theoretically it only regsiir
will also provide either secure channels, or only integrit . .) .
ne encryption/decryption of each message and it can easily
checks between themselves.

protect not only client data, but also the control inforroati
Choosing the most appropriate architecture depends @xchanged by the servers. Note, that depending on the im-
the desired scalability and trust guarantees. An intedratelementation, even when clients connect locally, more than
approach scales better, but the security of all groupssrelie one encryption/decryption of each message can take place as
one key; a layered architecture scales poorly, but the ggcudiscussed in Section VI-B. This architecture supports Ie¢h
of a group is independent of the security of the rest of théS and the EVS semantics.
groups and gives more control to the client. Both the Integrated VS and the Optimized EVS archi-

13

tectures use client group keys generated by servers. Guch an approach, security services of the type provided by
experimental results show that the scalability of the syste Secure Spread, can be very useful.

improved substantially with respect to the layered archites.

For all the integrated architectures the confidentialitythod
data ultimately relies on the secret shared by the servers. o
The smallest encryption overhead is exhibited by the In-
tegrated VS approach. The Optimized EVS solution has the
same encryption cost as the Integrated VS if the grouB]

REFERENCES

Y. Amir, C. Nita-Rotaru, J. Stanton, and G. Tsudik, “Sngl secure
group communication systems: Beyond peer-to-peerPrioceedings of
DISCEX3 Washington, DC, USA, April 2003.

T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-BtGn the

impossibility of group membership.” iProceedings of tha5t* ACM

membership is stable. Whe_n memberShip Change_s occur and symposium on Principles of Distributed Computing (PODMy 1996,
there are messages not delivered in the membership they were pp. 322-330.

sent in, four additional encryption/decryption operasiquer [3]

K. P. Birman and T. Joseph, “Exploiting virtual synchyoin distributed
systems,” inProceedings of the % Annual Symposium on Operating

message are performed, to decrypt the messages encryptedsystems PrincipleNovember 1987, pp. 123-138.

with an old key and re-encrypt them under the current key4]
The encryption overhead incurred by the Three-Step Client-
Server approach, even when clients connect locally, istarg
than that of Integrated VS. However, it provides a strongeif]
service since it also protects the information exchanged by
the servers.

As mentioned in Section V-B.1 the cost of Three-[6]
Step Client-Server is quite high, when clients connect r 5
motely. Possible solutions to decrease the number of eacryp
tion/decryption operations, use an asymmetric architectis
follows: the sending client encrypts the message usinga pa{S]
wise key and sends it (via SSL) to its server; the server
decrypts and re-encrypts the message, each receivingr serig
decrypts and re-encrypts but re-encryption is done under
group key (a key common for all clients, on that server,
that belong to the appropriate client-group, clients nezaind
decrypt. The overhead of encryption is still 6 operationg byt
on delivery, a server only performs one encryption instefad @z
one for each client who is a group member.

[13]
VIIl. CONCLUSIONS

The main focus of this work was designing a highH4l
performance security architecture for a client-serverugro
communication system. In particular, we focused on desni[15]
a security architecture for Spread, under two well-known
group communication semantics: VS and EVS. Both modéiLse’]
support network partitions and merges and present their par
ticular challenges. Contributory key agreement protoadien [17]
used in a layered architecture have limited scalability. We
overcame this by using an integrated approach that relies on
contributory group key management in a light-weight/heavy28l
weight group architecture such that the cost of key man-
agement is amortized over many groups, while each group
has its own unique key. The experimental results we presét¥
demonstrate the increased scalability of integrated ambres
over layered approaches, without a significant decrease in
throughput performance. (20]

One limitation of this work is that it does not tolerate iresid

attacks and hence relies on servers not being compromised.

Current architectures for distributed systems toleraitisider [21]

threats have strong connectivity requirements and malagt

peer communication exchanges that prevent them from gralie2]
well to wide-area networks. One way of overcoming this
obstacle is to use a hierarchical approach, which combines
intrusion-tolerant protocols with fault-tolerant protds. In

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarka“Ex-
tended virtual synchrony,” iRroceedings of the IEEE 14 International
Conference on Distributed Computing SystertSEE Computer Society
Press, Los Alamitos, CA, June 1994, pp. 56-65.

J. Schultz, “Partitionable virtual synchrony using exded
virtual synchrony,” Master's thesis, Department of Congput
Science, Johns Hopkins University, January 2001, availabt
www.cnds.jhu.edu/publications/.

K. P. Birman and R. V. Reness&eliable Distributed Computing with
the Isis Toolkit IEEE Computer Society Press, March 1994.

1 K. Birman, “The process group approach to reliable distied comput-

ing,” Communications of the ACMol. 36, no. 12, pp. 36-53, December
1993.

A. Montresor, R. Davoli, and. Babaoglu, “Enhancing Jini with group
communication,” inProceedings of the ICDCS Workshop on Applied
Reliable Group Communicatiorpril 2001.

O. M. Group, “Fault-tolerant CORBA: Joint revised sulssion,” OBG
Document orbos/99-12-08, December 1999.

8] R. V. Renesse, K.Birman, and S. Maffeis, “Horus: A fldgilgroup

communication systemCommunications of the ACMol. 39, pp. 76—
83, April 1996.

M. Hayden, “The ensemble system,” Ph.D. dissertatdepartment of
Computer Science, Cornell University, 1998.

Y. Amir and J. Stanton, “The Spread wide area group comioation
system,” Johns Hopkins University, Center of Networkingd abis-
tributed Systems, Tech. Rep. 98-4, 1998.

The Keyed-Hash Message Authentication Code (HMACNational
Institute for Standards and Technology (NIST), 2002, nd?S-1198,
http://csrc.nist.gov/publications/fips/index.html.
Advanced Encryption Standard (AES)
for Standards and Technology (NIST),
http://csrc.nist.gov/encryption/aes/.

A. Menezes, P. van Oorschot, and S. Vanstdaandbook of Applied
Cryptography CRC Press, 1996.

M. Steiner, G. Tsudik, and M. Waidner, “Key agreementdiynamic
peer groups,1EEE Transactions on Parallel and Distributed Systems
vol. 11, no. 8, August 2000.

A. Fekete, N. Lynch, and A. Shvartsman, “Specifying amsing a
partitionable group communication service,”Rmoceedings of the 16
annual ACM Symposium on Principles of Distributed Commg,tBanta
Barbara, CA, August 1997, pp. 53-62.

Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A aamunication
sub-system for high availability,Digest of Papers, Proceedings of the
2274 |nternational Symposium on Fault-Tolerant Computing Syst
pp. 76-84, 1992.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. Agarwal, aP. Ciarfella,
“The Totem single-ring ordering and membership protocdCM Trans-
actions on Computer Systemml. 13, no. 4, pp. 311-342, November
1995.

B. Whetten, T. Montgomery, and S. Kaplan, “A high perfance totally
ordered multicast protocol,” iTheory and Practice in Distributed Sys-
tems, International Workshoger. Lecture Notes in Computer Science,
September 1994, p. 938.

T. Anker, G. V. Chockler, D. Dolev, and I. Keidar, “Schla group
membership services for novel applications,” froceedings of the
Workshop on Networks in Distributed Computirig98.

I. Keidar, J. Sussman, K. Marzullo, and D. Dolev, “A citeserver ori-
ented algorithm for virtually synchronous group membegshiwans,”

in Proceedings of the 20 International Conference on Distributed
Computing Systems (ICDCS 2000)EEE Computer Society, 2000, p.
356.

Institute
FIPS 197,

National
2001, no.

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]
[46]

K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, HE SecureRing
protocols for securing group communication,” Rroceedings of the
IEEE 3" Hawaii International Conference on System Scienuek 3,
Kona, Hawaii, January 1998, pp. 317-326.

0. Rodeh, K. Birman, and D. Dolev, “Using AVL trees foufatolerant
group key managementlhternational Journal on Information Securjty
vol. 1, no. 2, February 2002.

——, “The architecture and performance of security peols in the
Ensemble Group Communication SystelACM Transactions on Infor-
mation and System Securityol. 4, no. 3, pp. 289-319, August 2001.
M. K. Reiter, “Secure agreement protocols: reliablel atomic group
multicast in Rampart,” irProceedings of the’?! ACM Conference on
Computer and Communications SecurityACM, November 1994, pp.
68-80.

P. ZimmermannThe Official PGP User’s Guide MIT Press, 1995.
K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiudari Min-

sky, “Bimodal multicast,” ACM Transactions on Computer Systems

vol. 17, no. 2, May 1999.
M. A. Hiltunen and R. D. Schlichting, “Adaptive distuited and fault-

tolerant systems,International Journal of Computer Systems Scienci

and Engineeringvol. 11, no. 5, pp. 125-133, September 1996.

M. A. Hiltunen, R. D. Schlichting, and C. Ugarte, “Entemg surviv-
ability of security services using redundancy,” froceedings of The
International Conference on Dependable Systems and Netwdune
2001.

L. Gong, “Enclaves: Enabling secure collaboration rothe Internet,”
IEEE Journal on Selected Areas in Communicatjord. 15, no. 3, pp.
567-575, April 1997.

P. McDaniel, A. Prakash, and P. Honeyman, “Antigone: Axithle
framework for secure group communication,”Rmoceedings of the'$
USENIX Security SymposiurAugust 1999, pp. 99-114.

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhaigreliable
multicast framework for light-weight sessions and appioa level
framing,” IEEE/ACM Transactions on Networkingol. 5, no. 6, pp.
784-803, December 1997.

Y. Amir, “Replication using group communication over partitioned
network,” Ph.D. dissertation, Institute of Computer ScenThe Hebrew
University of Jerusalem, Jerusalem, Israel, 1995.

G. V. Chockler, I. Keidar, and R. Vitenberg, “Group comnication
specifications: A comprehensive studdCM Computing Surveyso. 4,
pp. 427-469, December 2001.

Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group keyreement,”
ACM Transactions on Information and System Secusit). 7, no. 1,
2004.

Y. Amir, Y. Kim, C. Nita-Rotaru, J. Stanton, and G. Tskdl'Secure
group communication using robust contributory key agretheEEE
Transactions on Parallel and Distributed Systerssl. 15, no. 5, pp.
468-480, May 2004.

Spread Project team, “Spread,” http://www.spreagl.or

Cliques Project team, “Cliques,” http://sconcelics.edu/cliques/.

M. Burmester and Y. Desmedt, “A secure and efficient ecerice key
distribution system,’Advances in Cryptology — EUROCRYPT, May
1994.

Y. Kim, A. Perrig, and G. Tsudik, “Group key agreemenftiaént in
communication,"lEEE Transactions on Computengol. 33, no. 7, 2004.
W. Diffie and M. E. Hellman, “New directions in cryptogray,” IEEE
Trans. Inform. Theoryvol. IT-22, pp. 644-654, November 1976.

The TLS Protocol Version 1.0 T. Dierks and C. Allen, 1999, no.

RFC2246, http://www.fags.org/rfcs/rfc2246.html.
Recommendation for Block Cipher Modes of Operation - Methartl

14

Yair Amir received the BS (1985) and MS (1990)
degrees from the Technion and the PhD degree
(1995) from the Hebrew University of Jerusalem.
Prior to his PhD, he gained extensive experience
building C3I systems. He is currently with the de-
partment of Computer Science, The Johns Hopkins
University where he served as Assistant Professor
since 1995, Associate Professor since 2000 and
Professor since 2004. He has been a member of the
program committees of the IEEE International Con-
ference on Distributed Computing Systems (ICDCS)

in 1999 and 2002, the ACM Conference on Principles of Diated Comput-
ing (PODC) in 2001, and the IEEE International ConferenceDependable
Systems and Networks (DSN) in 2001 and 2003. He is a membéed&EE

Computer Society.

Cristina Nita-Rotaru is an Assistant Professor in

the Computer Science department of the Purdue
University and a member of Center for Education

and Research in Information Assurance and Security
at Purdue University. She received the BS and MSc
degrees in Computer Science from Politechnica Uni-
versity of Bucharest, Romania, in 1995 and 1996,
and the MSE and PhD degrees in Computer Science
from The Johns Hopkins University in 2000 and

2003. Her Ph.D thesis focused on secure group com-
munication. Her research interests include secure

distributed systems, network security protocols and sycaspects in wireless
networks. She is a member of the ACM and IEEE.

%Y\, -J,f'
PN

\

for clustered systems.
Society.

Techniques National Institute for Standards and Technology (NIST),

2001, no. SP 800-38A.

OpenSSL Project team, “Openssl,” May 1999, http://wapenssl.org/.
Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik, “On the germance

of group key agreement protocolsfCM Transactions on Information
Systems Securityol. 7, no. 3, August 2004.

Jonathan Stantonis an Assistant Professor in the
Computer Science department of the George Wash-
ington University. He also holds an appointment as
an adjunct assistant professor in the Computer Sci-
ence department of The Johns Hopkins University.
He received the BA degree in Mathematics in 1995
from Cornell University, and the MSE and PhD de-
grees in Computer Science from The Johns Hopkins
University in 1998 and 2002. His research interests
include distributed systems, secure distributed mes-
saging, network protocols, and middleware support
He is a member of the ACM and the IEERBpDer

Gene Tsudik is a Professor of Computer Science
at the University of California, Irvine. He has been
conducting research active in internetworking, net-
work security and applied cryptography since 1987.
He obtained a Ph.D. in Computer Science from USC
in 1991; his dissertation focused on access control
in internetworks. Before coming to UC Irvine in
2000, he was a Project Leader at IBM Research,
Zurich Laboratory (1991-1996) and USC Informa-
tion Science Institute (1996-2000). Over the years,
his research interests included: routing, firewalls, au-

thentication, mobile/wireless network security, secuob®mmerce, anonymity,
secure group communication, digital signatures, key memagt, ad hoc

network routing, and,

more recently, database privacy awlire storage.

Some of Professor Tsudik's notable research contributioctude: Inter-
Domain Policy Routing (IDPR), IBM Network Security Progra(iryp-
toKnight), IBM Internet Keyed Payment (iKP) protocols, P&group Key
Management (CLIQUES) and Mediated Cryptographic Serv(&$CSES).
Professor Tsudik has over 100 refereed publications andehfsa Since 2002
he has been serving as Associate Dean of Research and @ &tudtes in
the Donald Bren School of Information and Computer ScieratedCIl. He
is a member of the IEEE.

