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Abstract. A group signature scheme allows a group member to sign
messages anonymously on behalf of the group. However, in the case of a
dispute, the identity of a signature’s originator can be revealed (only) by
a designated entity. The interactive counterparts of group signatures are
identity escrow schemes or group identification scheme with revocable
anonymity. This work introduces a new provably secure group signature
and a companion identity escrow scheme that are significantly more ef-
ficient than the state of the art. In its interactive, identity escrow form,
our scheme is proven secure and coalition-resistant under the strong RSA
and the decisional Diffie-Hellman assumptions. The security of the non-
interactive variant, i.e., the group signature scheme, relies additionally
on the Fiat-Shamir heuristic (also known as the random oracle model).
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1 Introduction

Group signature schemes are a relatively recent cryptographic concept intro-
duced by Chaum and van Heyst [CvH91] in 1991. In contrast to ordinary sig-
natures they provide anonymity to the signer, i.e., a verifier can only tell that
a member of some group signed. However, in exceptional cases such as a legal
dispute, any group signature can be “opened” by a designated group manager
to reveal unambiguously the identity of the signature’s originator. At the same
time, no one — including the group manager — can misattribute a valid group
signature.

The salient features of group signatures make them attractive for many spe-
cialized applications, such as voting and bidding. They can, for example, be



used in invitations to submit tenders [CP95]. All companies submitting a tender
form a group and each company signs its tender anonymously using the group
signature. Once the preferred tender is selected, the winner can be traced while
the other bidders remain anonymous. More generally, group signatures can be
used to conceal organizational structures, e.g., when a company or a government
agency issues a signed statement. Group signatures can also be integrated with
an electronic cash system whereby several banks can securely distribute anony-
mous and untraceable e-cash. This offers concealing of the cash-issuing banks’
identities [LR98].

A concept dual to group signature schemes is identity escrow [KP98]. It can
be regarded as a group-member identification scheme with revocable anonymity.
A group signature scheme can be turned into an identity escrow scheme by
signing a random message and then proving the knowledge of a group signature
on the chosen message. An identity escrow scheme can be turned into a group
signature scheme using the Fiat-Shamir heuristic [FS87]. In fact, most group
signature schemes are obtained in that way from 3-move honest-verifier proof of
knowledge protocols.

This paper presents a new group signature / identity escrow scheme that is
provably secure. In particular, the escrow identity scheme is provably coalition-
resistant under the strong RSA assumption. Other security properties hold under
the decisional Diffie-Hellman or the discrete logarithm assumption. Our group
signature scheme is obtained from the identity escrow scheme using the Fiat-
Shamir heuristic, hence it is secure in the random oracle model.

Our new (group signature) scheme improves on the state-of-the-art exempli-
fied by the scheme of Camenisch and Michels [CM98a] which is the only known
scheme whose coalition-resistance is provable under a standard cryptographic as-
sumption. In particular, our scheme’s registration protocol (JOIN) for new mem-
bers is an order of magnitude more efficient. Moreover, our registration protocol
is statistically zero-knowledge with respect to the group member’s secrets. In
contrast, in [CM98a] the group member is required to send the group manager
the product of her secret, a prime of special form, and a random prime; such
products are in principle susceptible to an attack due to Coppersmith [Cop96].
Moreover, our scheme is provably coalition-resistance against an adaptive adver-
sary, whereas for the scheme by Camenisch and Michels [CM98a] this holds only
for a static adversary.

The rest of this paper is organized as follows. The next section presents the
formal model of a secure group signature scheme. Section 3 overviews crypto-
graphic assumptions underlying the security of our scheme and introduces some
basic building blocks. Subsequently, Section 4 presents the new group signature
scheme. The new scheme is briefly contrasted with prior work in Section 5. The
security properties are considered in Section 6. Finally, the paper concludes in
Section 7.

2 The Model

Group-signature schemes are defined as follows. (For an in-depth discussion on
this subject, we refer the reader to [Cam98].)



Definition 1. A group-signature scheme is a digital signature scheme com-
prised of the following five procedures:

SETUP: On input a security parameter `, this probabilistic algorithm outputs the
initial group public key Y (including all system parameters) and the secret key
S for the group manager.

JOIN: A protocol between the group manager and a user that results in the user
becoming a new group member. The user’s output is a membership certificate
and a membership secret.

SIGN: A probabilistic algorithm that on input a group public key, a membership
certificate, a membership secret, and a message m outputs group signature of
m.

VERIFY: An algorithm for establishing the validity of an alleged group signature
of a message with respect to a group public key.

OPEN: An algorithm that, given a message, a valid group signature on it, a group
public key and a group manager’s secret key, determines the identity of the
signer.

A secure group signature scheme must satisfy the following properties:

Correctness: Signatures produced by a group member using SIGN must be ac-
cepted by VERIFY.

Unforgeability: Only group members are able to sign messages on behalf of the
group.

Anonymity: Given a valid signature of some message, identifying the actual signer
is computationally hard for everyone but the group manager.

Unlinkability: Deciding whether two different valid signatures were computed by
the same group member is computationally hard.

Exculpability: Neither a group member nor the group manager can sign on be-
half of other group members.1 A closely related property is that of non-
framing [CP95]; it captures the notion of a group member not being made
responsible for a signature she did not produce.

Traceability: The group manager is always able to open a valid signature and
identify the actual signer.

Note that the last property is also violated if a subset of group members, pooling
together their secrets, can generate a valid group signature that cannot be opened
by the group manager. Because this was ignored in many papers we state it
explicitly as an additional property.

Coalition-resistance: A colluding subset of group members (even if comprised of
the entire group) cannot generate a valid signature that the group manager
cannot link to one of the colluding group members.

We observe that many group signature schemes (e.g., [CM98a,CM99b,CS97])
can be viewed as making use of two different ordinary signature schemes: one to
1 Note that the above does not preclude the group manager from creating fraudulent

signers (i.e., nonexistent group members) and then producing group signatures.



generate membership certificates as part of JOIN and another to actually gener-
ate group signatures as part of SIGN (cf. [CM99b]). Consequently, the properties
of any secure group signature scheme must include the Unforgeability property
(as defined in [GMR88]) for each of the two ordinary signature schemes. It is
easy to see that each of: Traceability and Exculpability map into the Unforge-
ability property for the two respective signature schemes. Furthermore, together
they ensure that a group signature scheme is unforgeable, i.e., that only group
members are able to sign messages on behalf of the group.

The model of identity escrow schemes [KP98] is basically the same as the one
for group signature schemes; the only difference being that the SIGN algorithm
is replaced by an interactive protocol between a group member and a verifier.

3 Preliminaries

This section reviews some cryptographic assumptions and introduces the build-
ing blocks necessary in the subsequent design of our group signature scheme. (It
can be skipped with no significant loss of continuity.)

3.1 Number-Theoretic Assumptions

The Strong-RSA Assumption (SRSA) was independently introduced by Barić
and Pfitzmann [BF97] and by Fujisaki and Okamoto [FO97]. It strengthens the
widely accepted RSA Assumption that finding eth-roots modulo n — where e is
the public, and thus fixed, exponent — is hard to the assumption that finding
an eth-root modulo n for any e > 1 is hard. We give hereafter a more formal
definition.

Definition 2 (Strong-RSA Problem). Let n = pq be an RSA-like modulus
and let G be a cyclic subgroup of ZZ∗n of order #G, dlog2(#G)e = `G. Given n
and z ∈ G, the Strong-RSA Problem consists of finding u ∈ G and e ∈ ZZ>1

satisfying z ≡ ue (mod n).

Assumption 1 (Strong-RSA Assumption). There exists a probabilistic
polynomial-time algorithm K which on input a security parameter `G outputs
a pair (n, z) such that, for all probabilistic polynomial-time algorithms P, the
probability that P can solve the Strong-RSA Problem is negligible.

The Diffie-Hellman Assumption [DH76] appears in two “flavors”: (i) the
Computational Diffie-Hellman Assumption (CDH) and (ii) the Decisional Diffie-
Hellman Assumption (DDH). For a thorough discussion on the subject we refer
the reader to [Bon98].

Definition 3 (Decisional Diffie-Hellman Problem). Let G = 〈g〉 be a cyclic
group generated by g of order u = #G with dlog2(u)e = `G. Given g, gx, gy, and
gz ∈ G, the Decisional Diffie-Hellman Problem consists of deciding whether the
elements gxy and gz are equal.



This problem gives rise to the Decisional Diffie-Hellman Assumption, which was
first explicitly mentioned in [Bra93] by Brands although it was already implicitly
assumed in earlier cryptographic schemes.

Assumption 2 (Decisional Diffie-Hellman Assumption). There is no
probabilistic polynomial-time algorithm that distinguishes with non-negligible
probability between the distributions D and R, where D = (g, gx, gy, gz) with
x, y, z ∈R ZZu and R = (g, gx, gy, gxy) with x, y ∈R ZZu.

The Decisional Diffie-Hellman Problem is easier than the (Computational) Diffie-
Hellman Problem which involves finding guv from gu and gv; the Decisional
Diffie-Hellman Assumption is, thus, a stronger assumption. Both are stronger
assumptions than the assumption that computing discrete logarithms is hard.

If n is a safe RSA modulus (i.e., n = pq with p = 2p′ + 1, q = 2q′ + 1, and
p, q, p′, q′ are all prime), it is a good habit to restrict operation to the subgroup
of quadratic residues modulo n, i.e., the cyclic subgroup QR(n) generated by
an element of order p′q′. This is because the order p′q′ of QR(n) has no small
factors.

The next corollary shows that it is easy to find a generator g of QR(n): it
suffices to choose an element a ∈ ZZ∗n satisfying gcd(a ± 1, n) = 1 and then to
take g = a2 mod n. We then have QR(n) = 〈g〉. (By convention, gcd(0, n) := n.)

Proposition 1. Let n = pq, where p 6= q, p = 2p′ + 1, q = 2q′ + 1, and
p, q, p′, q′ are all prime. The order of the elements in ZZ∗n are one of the set
{1, 2, p′, q′, 2p′, 2q′, p′q′, 2p′q′}. Moreover, if the order of a ∈ ZZ∗n is equal to p′q′

or 2p′q′ ⇐⇒ gcd(a± 1, n) = 1. ut

Corollary 1. Let n be as in Proposition 1. Then, for any a ∈ ZZ∗n s.t. gcd(a ±
1, n) = 1, 〈a2〉 ⊂ ZZ∗n is a cyclic subgroup of order p′q′. ut

Remark 1. Notice that 4 (= 22) always generates QR(n) whatever the value of
a safe RSA modulus n. Notice also that the Jacobi symbol (g|n) = +1 does
not necessarily imply that g is a quadratic residue modulo n but merely that
(g|p) = (g|q) = ±1, where (g|p) (resp. (g|q)) denotes the Legendre symbol2 of
g modulo p (resp. q). For example, (2|55) = (2|5) (2|11) = (−1) (−1) = +1;
however, there is no integer x such that x2 ≡ 2 (mod 55).

Deciding whether some y is in QR(n) is generally believed infeasible if the
factorization of n is unknown.

3.2 Signatures of Knowledge

So-called zero-knowledge proofs of knowledge allow a prover to demonstrate
the knowledge of a secret w.r.t. some public information such that no other
information is revealed in the process. The protocols we use in the following
are all 3-move protocols and can be proven zero-knowledge in an honest-verifier
2 By definition, the Legendre symbol (g|p) = +1 if g is a quadratic residue modulo p,

and −1 otherwise.



model. Such protocols can be performed non-interactively with the help of an
ideal hash function H (à la Fiat-Shamir [FS87]). Following [CS97], we refer to
the resulting constructs as signatures of knowledge. One example is the Schnorr
signature scheme [Sch91] where a signature can be viewed as a proof of knowledge
of the discrete logarithm of the signer’s public key made non-interactive.

In the following, we consider three building blocks: signature of knowledge
of (i) a discrete logarithm; (ii) equality of two discrete logarithms; and (iii) a
discrete logarithm lying in a given interval. All of these are constructed over a
cyclic group G = 〈g〉 the order of which #G is unknown; however its bit-length
`G (i.e., the integer `G s.t. 2`G−1 ≤ #G < 2`G) is publicly known. Fujisaki and
Okamota [FO97] show that, under the SRSA, the standard proofs of knowledge
protocols that work for a group of known order are also proofs of knowledge in
this setting. We define the discrete logarithm of y ∈ G w.r.t. base g as any integer
x ∈ ZZ such that y = gx in G. We denote x = logg y. We assume a collision-
resistant hash function H : {0, 1}∗ → {0, 1}k which maps a binary string of
arbitrary length to a k-bit hash value. We also assume a security parameter
ε > 1.

Showing the knowledge of the discrete logarithm of y = gx can be done easily
in this setting as stated by the following definition (cf. [Sch91]).

Definition 4. Let y, g ∈ G. A pair (c, s) ∈ {0, 1}k ×±{0, 1}ε(`G+k)+1 verifying
c = H(y‖g‖gs yc‖m) is a signature of knowledge of the discrete logarithm of
y = gx w.r.t. base g, on a message m ∈ {0, 1}∗.

The party in possession of the secret x = logg y is able to compute the signature
by choosing a random t ∈ ±{0, 1}ε(`G+k) and then computing c and s as:

c = H(y‖g‖gt‖m) and s = t− cx (in ZZ) .

A slight modification of the previous definition enables to show the knowledge
and equality of two discrete logarithms of, say y1 and y2, with bases g and h,
i.e., knowledge of an integer x satisfying y1 = gx and y2 = hx.

Definition 5. Let y1, y2, g, h ∈ G. A pair (c, s) ∈ {0, 1}k × ±{0, 1}ε(`G+k)+1

verifying c = H(y1‖y2‖g‖h‖gs y1c‖hs y2c‖m) is a signature of knowledge of the
discrete logarithm of both y1 = gx w.r.t. base g and y2 = hx w.r.t. base h, on a
message m ∈ {0, 1}∗.

The party in possession of the secret x is able to compute the signature, provided
that x = logg y1 = logh y2, by choosing a random t ∈ ±{0, 1}ε(`G+k) and then
computing c and s as:

c = H(y1‖y2‖g‖h‖gt‖ht‖m) and s = t− cx (in ZZ) .

In Definition 4, a party shows the knowledge of the discrete logarithm of y
w.r.t. base g. The order of g being unknown, this means that this party knows
an integer x satisfying y = gx. This latter condition may be completed in the
sense that the party knows a discrete logarithm x lying in a given interval. It is
a slight modification of a protocol appearing in [FO98].



Definition 6. Let y, g ∈ G. A pair (c, s) ∈ {0, 1}k × ±{0, 1}ε(`+k)+1 verifying
c = H(y ‖g ‖gs−cX yc ‖m) is a signature of knowledge of the discrete logarithm
logg y that lies in ]X − 2ε(`+k), X + 2ε(`+k)[, on a message m ∈ {0, 1}∗.
From the knowledge of x = logg y ∈ ]X − 2`,X + 2`[, this signature is obtained
by choosing a random t ∈ ±{0, 1}ε(`+k) and computing c and s as:

c = H(y‖g‖gt‖m), s = t− c(x−X) (in ZZ) .

Remark 2. Note that, although the party knows a secret x in ]X−2`,X+2`[, the
signature only guarantees that x lies in the extended interval ]X − 2ε(`+k), X +
2ε(`+k)[.

The security of all these building blocks has been proven in the random oracle
model [BR93] under the strong RSA assumption in [CM98b,FO97,FO98]. That
is, if ε > 1, then the corresponding interactive protocols are statistical (honest-
verifier) zero-knowledge proofs of knowledge.

4 The New Group Signature and Identity Escrow
Schemes

This section describes our new group signature scheme and tells how an identity
escrow scheme can be derived.

As mentioned in Section 2, many recent group signature schemes involve
applying two types of non-group signature schemes: one for issuing certificates
and one for actual group-signatures, respectively. The security of the former, in
particular, is of immediate relevance because it assures, among other things, the
coalition-resistance property of a group signature scheme. The reasoning for this
assertion is fairly intuitive:

Each group member obtains a unique certificate from the group manager
as part of JOIN where each certificate is actually a signature over a secret
random message chosen by each member. As a coalition, all group members
can be collectively thought of as a single adversary mounting an adaptive
chosen message attack consisting of polynomially many instances of JOIN.

The main challenge in designing a practical group signature scheme is in
finding a signature scheme for the certification of membership that allows the
second signature scheme (which is used to produce actual group signatures) to
remain efficient. Typically, the second scheme is derived (using the Fiat-Shamir
heuristic) from a proof of knowledge of a membership certificate. Hence, the
certification signature scheme must be such that the latter proof can be realized
efficiently.

Recall that proving knowledge of a hash function pre-image is, in general, not
possible in an efficient manner. Therefore, a candidate signature scheme must
replace the hash function with another suitable function. However, because JOIN
is an interactive protocol between the new member and the group manager, the
latter can limit and influence what he signs (e.g., assure that it signs a random
message).



4.1 The Group Signature Scheme

Let ε > 1, k, and `p be security parameters and let λ1, λ2, γ1, and γ2 denote
lengths satisfying λ1 > ε(λ2+k)+2, λ2 > 4`p, γ1 > ε(γ2+k)+2, and γ2 > λ1+2.
Define the integral ranges Λ = ]2λ1−2λ2 , 2λ1 +2λ2 [ and Γ = ]2γ1−2γ2 , 2γ1 +2γ2 [.
Finally, let H be a collision-resistant hash function H : {0, 1}∗ → {0, 1}k. (The
parameter ε controls the tightness of the statistical zero-knowledgeness and the
parameter `p sets the size of the modulus to use.)

The initial phase involves the group manager (GM) setting the group public
and his secret keys: Y and S.

SETUP:

1. Select random secret `p-bit primes p′, q′ such that p = 2p′ + 1 and q =
2q′ + 1 are prime. Set the modulus n = pq.

2. Choose random elements a, a0, g, h ∈R QR(n) (of order p′q′).
3. Choose a random secret element x ∈R ZZ∗p′q′ and set y = gx mod n.
4. The group public key is: Y = (n, a, a0, y, g, h).
5. The corresponding secret key (known only to GM) is: S = (p′, q′, x).

Remark 3. The group public key Y is made available via the usual means (i.e.,
embedded in some form of a public key certificate signed by a trusted authority).
We note that, in practice, components of Y must be verifiable to prevent framing
attacks. In particular, Proposition 1 provides an efficient way to test whether
an element has order at least p′q′. Then it is sufficient to square this element to
make sure it is in QR(n), with order p′q′. GM also needs to provide a proof that
n is the product of two safe primes ([CM99a] shows how this can be done).

Suppose now that a new user wants to join the group. We assume that
communication between the user and the group manager is secure, i.e., private
and authentic. The selection of per-user parameters is done as follows:

JOIN:

1. User Pi generates a secret exponent x̃i ∈R ]0, 2λ2 [, a random integer
r̃∈R ]0, n2[ and sends C1 = gx̃ihr̃ mod n to GM and proves him knowledge
of the representation of C1 w.r.t. bases g and h.

2. GM checks that C1 ∈ QR(n). If this is the case, GM selects αi and
βi ∈R ]0, 2λ2 [ at random and sends (αi, βi) to Pi.

3. User Pi computes xi = 2λ1 + (αi x̃i + βi mod 2λ2) and sends GM the
value C2 = axi mod n. The user also proves to GM :
(a) that the discrete log of C2 w.r.t. base a lies in Λ, and
(b) knowledge of integers u, v, and w such that

i. u lies in ]− 2λ2 , 2λ2 [,
ii. u equals the discrete log of C2/a

2λ1 w.r.t. base a, and
iii. Cαi1 gβi equals gu(g2λ2 )vhw (see Definition 6).

(The statements (i–iii) prove that the user’s membership secret xi =
loga C2 is correctly computed from C1, αi, and βi.)



4. GM checks that C2 ∈ QR(n). If this is the case and all the above
proofs were correct, GM selects a random prime ei ∈R Γ and computes
Ai := (C2 a0)1/ei mod n. Finally, GM sends Pi the new membership cer-
tificate [Ai, ei]. (Note that Ai = (axi a0)1/ei mod n.)

5. User Pi verifies that axia0 ≡ Aiei (mod n).

Remark 4. As part of JOIN, GM creates a new entry in the membership table
and stores {[Ai, ei], JOIN transcript} in the new entry. (JOIN transcript is formed
by the messages received from and sent to the user in the steps above. It is
assumed to be signed by the user with some form of a long-term credential.)

Armed with a membership certificate [Ai, ei], a group member can generate
anonymous and unlinkable group signatures on a generic message m ∈ {0, 1}∗:

SIGN:

1. Generate a random value w ∈R {0, 1}2`p and compute:

T1 = Ai y
w mod n, T2 = gw mod n, T3 = gei hw mod n .

2. Randomly choose r1 ∈R ±{0, 1}ε(γ2+k), r2 ∈R ±{0, 1}ε(λ2+k),
r3 ∈R ±{0, 1}ε(γ1+2`p+k+1), and r4 ∈R ±{0, 1}ε(2`p+k) and compute:
(a) d1 = T1

r1/(ar2 yr3) mod n, d2 = T2
r1/gr3 mod n, d3 = gr4 mod n,

and d4 = gr1 hr4 mod n;

(b) c = H(g‖h‖y‖a0‖a‖T1‖T2‖T3‖d1‖d2‖d3‖d4‖m);

(c) s1 = r1 − c(ei − 2γ1), s2 = r2 − c(xi − 2λ1), s3 = r3 − c ei w, and
s4 = r4 − cw (all in ZZ).

3. Output (c, s1, s2, s3, s4, T1, T2, T3).

A group signature can be regarded as a signature of knowledge of (1) a value
xi ∈ Λ such that axia0 is the value that is ElGamal-encrypted in (T1, T2) under
y and of (2) an ei-th root of that encrypted value, where ei is the first part of
the representation of T3 w.r.t. g and h and that ei lies in Γ .

A verifier can check the validity of a signature (c, s1, s2, s3, s4, T1, T2, T3) of
the message m as follows:

VERIFY:

1. Compute:

c′ = H
(
g‖h‖y‖a0‖a‖T1‖T2‖T3‖a0

c T1
s1−c2γ1/(as2−c2

λ1
ys3) mod n ‖

T2
s1−c2γ1 /gs3 mod n ‖T2

c gs4 mod n ‖T3
c gs1−c2

γ1
hs4 mod n ‖m

)
.

2. Accept the signature if and only if c = c′, and s1 ∈ ±{0, 1}ε(γ2+k)+1, s2 ∈
±{0, 1}ε(λ2+k)+1, s3 ∈ ±{0, 1}ε(λ1+2`p+k+1)+1, s4 ∈ ±{0, 1}ε(2`p+k)+1.



In the event that the actual signer must be subsequently identified (e.g., in
case of a dispute) GM executes the following procedure:

OPEN:

1. Check the signature’s validity via the VERIFY procedure.
2. Recover Ai (and thus the identity of Pi) as Ai = T1/T2

x mod n.
3. Prove that logg y = logT2

(T1/Ai mod n) (see Definition 5).

4.2 Deriving an Identity Escrow Scheme

Only minor changes are necessary to construct an identity escrow scheme out
of the proposed group signature scheme. Specifically, the SIGN and VERIFY pro-
cedures must be replaced by an interactive protocol between a group member
(prover) and a verifier. This protocol can be derived from SIGN by replacing the
call to the hash function H by a call to the verifier. That is, the prover sends to
the verifier all inputs to the hash function H and gets back a value c ∈ {0, 1}`c
randomly chosen by the verifier, with `c = O(log `p). Then, the prover computes
the si’s and sends these back to the verifier. The verification equation that the
verifier uses to check can be derived from the argument to H in VERIFY. De-
pending on the choice of the security parameters, the resulting protocol must be
repeated sufficiently many times to obtain a small enough probability of error.

5 Related Work

Previously proposed group signature schemes can be divided into two classes:
(I) schemes where the sizes of the group public key and/or of group signatures
(linearly) depend on the number of group members and (II) schemes where the
sizes of the group public key and of group signatures are constant. Most of
the early schemes belong to the first class. Although many of those have been
proven secure with respect to some standard cryptographic assumption (such
as the hardness of computing discrete logarithms) they are inefficient for large
groups.

Numerous schemes of Class II have been proposed, however, most are either
insecure (or of dubious security) or are grossly inefficient. The only notable and
efficient group signature scheme is due to Camenisch and Michels [CM98b].

Our scheme differs from the Camenisch/Michels scheme mainly in the mem-
bership certificate format. As a consequence, our JOIN protocol has two impor-
tant advantages:

(1) Our JOIN protocol is an order of magnitude more efficient since all proofs
that the new group member must provide are efficient proofs of knowledge
of discrete logarithms. This is in contrast to the Camenisch/Michels scheme
where the group member must prove that some number is the product of
two primes. The latter can be realized only with binary challenges.



(2) Our JOIN protocol is more secure for the group members, i.e., it is statistical
zero-knowledge with respect to the group member’s membership secret. The
JOIN protocol in the Camenisch-Michels scheme is not; in fact, it requires the
group member to expose the product of her secret, a prime of special form,
and a random prime; such products are in principle susceptible to an attack
due to Coppersmith [Cop96]. (Although, the parameters of their scheme can
be set such that this attack becomes infeasible.)

Furthermore, the proposed scheme is provably coalition-resistant against an
adaptive adversary. This offers an extra advantage:

(3) Camenisch and Michels prove their scheme coalition-resistant against a static
adversary who is given all certificates as input, whereas our scheme can han-
dle a much more powerful and realistic adversary that is allowed to adaptively
run the JOIN protocol.

6 Security of the Proposed Schemes

In this section we assess the security of the new group signature scheme and
the companion escrow identity scheme. We first need to prove that the following
theorems hold.

Theorem 1 (Coalition-resistance). Under the strong RSA assumption, a
group certificate [Ai = (axi a0)1/ei mod n, ei] with xi ∈ Λ and ei ∈ Γ can be
generated only by the group manager provided that the number K of certificates
the group manager issues is polynomially bounded.

Proof. Let M be an attacker that is allowed to adaptively run the JOIN and
thereby obtain group certificates [Aj = (axj a0)1/ej mod n, ej ], j = 1, . . . ,K.
Our task is now to show that ifM outputs a tuple

(
x̂; [Â, ê]

)
, with x̂ ∈ Λ, ê ∈ Γ ,

Â = (ax̂ a0)1/ê mod n, and (x̂, ê) 6= (xj , ej) for all 1 ≤ j ≤ K with non-negligible
probability, then the strong RSA assumption does not hold.

Given a pair (n, z), we repeatedly play a random one of the following two
games withM and hope to calculate a pair (u, e) ∈ ZZ∗n×ZZ>1 satisfying ue ≡ z
(mod n) from M’s answers. The first game goes as follows:

1. Select x1, . . . , xK ∈ Λ and e1, . . . , eK ∈ Γ .
2. Set a = z

∏
1≤l≤K el mod n.

3. Choose r ∈R Λ and set a0 = ar mod n.
4. For all 1 ≤ i ≤ K, compute Ai = z(xi+r)

∏
1≤l≤K;l 6=i el mod n.

5. Select g, h ∈R QR(n), x ∈ {1, . . . , n2}, and set y = gx mod n.
6. Run the JOIN protocol K times with M on input (n, a, a0, y, g, h). Assume

we are in protocol run i. Receive the commitment C1 fromM. Use the proof
of knowledge of a representation of C1 with respect to g and h to extract
x̃i and r̃i such that C1 = gx̃ihr̃i (this involves rewinding of M). Choose αi
and βi ∈ ]0, 2λ2 [ such that the prepared xi = 2λ1 + (αi x̃i + βi mod 2λ2) and



send αi and βi to M. Run the rest of the protocol as specified until Step 4.
Then send M the membership certificate [Ai, ei].
After these K registration protocols are done, M outputs

(
x̂; [Â, ê]

)
with

x̂ ∈ Λ, ê ∈ Γ , and Â = (ax̂ a0)1/ê mod n.
7. If gcd(ê, ej) 6= 1 for all 1 ≤ j ≤ K then output ⊥ and quit. Otherwise, let
ẽ := (x̂+r)

∏
1≤l≤K el. (Note that Âê ≡ zẽ (mod n).) Because gcd(ê, ej) = 1

for all 1 ≤ j ≤ K, we have gcd(ê, ẽ) = gcd(ê, (x̂+r)). Hence, by the extended
Euclidean algorithm, there exist α, β ∈ ZZ s.t. α ê + β ẽ = gcd(ê, (x̂ + r)).
Therefore, letting u := zα Âβ mod n and e := ê/ gcd(ê, (x̂+ r)) > 1 because
ê > (x̂+ r), we have ue ≡ z (mod n). Output (u, e).

The previous game is only successful if M returns a new certificate [A(x̂), ê],
with gcd(ê, ej) = 1 for all 1 ≤ j ≤ K. We now present a game that solves the
strong RSA problem in the other case when gcd(ê, ej) 6= 1 for some 1 ≤ j ≤ K.
(Note that gcd(ê, ej) 6= 1 means gcd(ê, ej) = ej because ej is prime.)

1. Select x1, . . . , xK ∈ Λ and e1, . . . , eK ∈ Γ .
2. Choose j ∈R {1, . . . ,K} and set a = z

∏
1≤l≤K;l 6=j el mod n.

3. Choose r ∈R Λ and set Aj = ar mod n and a0 = A
ej
j /a

xj mod n.
4. For all 1 ≤ i ≤ K i 6= j, compute Ai = z(xi+ejr−xj)

∏
1≤l≤K;l 6=i,j el mod n.

5. Select g, h ∈R QR(n), x ∈ {1, . . . , n2}, and set y = gx mod n.
6. Run the JOIN protocol K times with M on input (n, a, a0, y, g, h). Assume

we are in protocol run i. Receive the commitment C1 fromM. Use the proof
of knowledge of a representation of C1 with respect to g and h to extract x̃i
and r̃i such that C1 = gx̃ihr̃i mod n (this involves rewinding ofM). Choose
αi and βi ∈ ]0, 2λ2 [ such that the prepared xi = 2λ1 + (αi x̃i + βi mod 2λ2)
and send αi and βi toM. Run the rest of the protocol as specified until Step
4. Then send M the membership certificate [Ai, ei].
After these K registration protocols are done, M outputs

(
x̂; [Â, ê]

)
with

x̂ ∈ Λ, ê ∈ Γ , and Â = (ax̂ a0)1/ê mod n.
7. If gcd(ê, ej) 6= ej output ⊥ and quit. Otherwise, we have ê = t ej for some
t and can define Z := Ât/Aj mod n if x̂ ≥ xj and Z := Aj/Â

t mod n
otherwise. Hence, Z ≡ (a|x̂−xj |)1/ej ≡ (z|ẽ|)1/ej (mod n) with ẽ := (x̂ −
xj)
∏

1≤l≤K;l 6=j el. Because gcd(ej ,
∏

1≤l≤K
l 6=j

el) = 1, it follows that gcd(ej ,

|ẽ|) = gcd(ej , |x̂ − xj |). Hence, there exist α, β ∈ ZZ s.t. α ej + β |ẽ| =
gcd(ej , |x̂−xj |). So, letting u := zα Zβ mod n and e := ej/ gcd(ej , |x̂−xj |) >
1 because ej > |x̂− xj |, we have ue ≡ z (mod n). Output (u, e).

Consequently, by playing randomly one of the Games 1 or 2 until the result is
not ⊥, an attacker getting access to machineM can solve the strong RSA prob-
lem in expected running-time polynomial in K. Because the latter is assumed to
be infeasible, it follows that no one but the group manager can generate group
certificates. ut

Theorem 2. Under the strong RSA assumption, the interactive protocol under-
lying the group signature scheme (i.e., the identification protocol of the identity



escrow scheme) is a statistical zero-knowledge (honest-verifier) proof of knowl-
edge of a membership certificate and a corresponding membership secret key.

Proof. The proof that the interactive protocol is statistical zero-knowledge is
quite standard. We restrict our attention the proof of knowledge part.

We have to show that the knowledge extractor is able to recover the group cer-
tificate once it has found two accepting tuples. Let (T1, T2, T3, d1, d2, d3, d4, c, s1,
s2, s3, s4) and (T1, T2, T3, d1, d2, d3, d4, c̃, s̃1, s̃2, s̃3, s̃4) be two accepting tuples.
Because d3 ≡ gs4 T2

c ≡ gs̃4 T2
c̃ (mod n), it follows that gs4−s̃4 ≡ T2

c̃−c (mod n).
Letting δ4 = gcd(s4− s̃4, c̃−c), by the extended Euclidean algorithm, there exist
α4, β4 ∈ ZZ s.t. α4 (s4 − s̃4) + β4 (c̃− c) = δ4. Hence,

g ≡ g(α4 (s4−s̃4)+β4 (c̃−c))/δ4 ≡ (T2
α4 gβ4)

c̃−c
δ4 (mod n) .

Note that we cannot have c̃−c < δ4 because otherwise T2
α4 gβ4 is a ( c̃−cδ4 )th root

of g, which contradicts the strong RSA assumption. Thus, we have c̃− c = δ4 =
gcd(s4 − s̃4, c̃ − c); or equivalently, there exists τ4 ∈ ZZ s.t. s4 − s̃4 = τ4(c̃ − c).
So, because s4 + cw = s̃4 + c̃ w, we have τ4 = w and thus obtain

Ai =
T1

yτ4
mod n .

Moreover, because d4 ≡ gs1 hs4 (T3 g
−2γ1 )c ≡ gs̃1 hs̃4 (T3 g

−2γ1 )c̃ (mod n),
we have gs1−s̃1 ≡ (T3 g

−2γ1 )c̃−c hs̃4−s4 ≡ (T3 g
−2γ1h−τ4)c̃−c (mod n). Let δ1 =

gcd(s1 − s̃1, c̃− c). By the extended Euclidean algorithm, there exist α1, β1 ∈ ZZ
s.t. α1 (s1 − s̃1) + β1 (c̃ − c) = δ1. Therefore, g ≡ g(α1 (s1−s̃1)+β1 (c̃−c))/δ1 ≡
[(T3 g

−2γ1 h−τ4)α1 gβ1 ]
c̃−c
δ1 (mod n). This, in turn, implies by the strong RSA

assumption that c̃ − c = δ1 = gcd(s1 − s̃1, c̃ − c); or equivalently that there
exists τ1 ∈ ZZ s.t. s1 − s̃1 = τ1(c̃ − c). Consequently, because s1 + c(ei − 2γ1) =
s̃+ c̃(ei − 2γ1), we find

ei = 2γ1 + τ1 .

Likewise, from d2 ≡ T2
s1 g−s3 (T2

−2γ1 )c ≡ T2
s̃1 g−s̃3 (T2

−2γ1 )c̃ (mod n), it
follows that gs3−s̃3 ≡ (T2

τ1+2γ1 )c̃−c (mod n). Therefore, by the extended Eu-
clidean algorithm, we can conclude that there exists τ3 ∈ ZZ s.t. s3 − s̃3 =
τ3(c̃ − c). Finally, from d1 ≡ T1

s1 a−s2 y−s3 (T1
−2γ1 a2λ1

a0)c ≡ T1
s̃1 a−s̃2 y−s̃3

(T1
−2γ1 a2λ1

a0)c̃ (mod n), we obtain as̃2−s2 ≡ (T1
τ1+2γ1 y−τ3 a−2λ1

a0
−1)c̃−c

(mod n) and similarly conclude that there exists τ2 ∈ ZZ s.t. s2 − s̃2 = τ2(c̃− c).
Because s2 + c(xi − 2λ1) = s̃2 + c̃(xi − 2λ1), we recover

xi = 2λ1 + τ2 ,

which concludes the proof. ut

Corollary 2. The JOIN protocol is zero-knowledge w.r.t. the group manager.
Furthermore, the user’s membership secret key xi is a random integer from Λ.

Proof. Straight-forward. ut



Corollary 3. In the random oracle model the group signature scheme presented
in Section 4 is secure under the strong RSA and the decisional Diffie-Hellman
assumption.

Proof. We have to show that our scheme satisfies all the security properties listed
in Definition 1.

Correctness: By inspection.
Unforgeability: Only group members are able to sign messages on behalf of the

group: This is an immediate consequence of Theorem 2 and the random oracle
model, that is, if we assume the hash functionH behaves as a random function.

Anonymity: Given a valid signature (c, s1, s2, s3, s4, T1, T2, T3) identifying the ac-
tual signer is computationally hard for everyone but the group manager: Be-
cause of Theorem 2 the underlying interactive protocol is statistically zero-
knowledge, no information is statistically revealed by (c, s1, s2, s3, s4) in the
random oracle model. Deciding whether some group member with certifi-
cate [Ai, ei] originated requires deciding whether the three discrete logarithms
logy T1/Ai, logg T2, and logg T3/g

ei are equal. This is assumed to be infeasi-
ble under the decisional Diffie-Hellman assumption and hence anonymity is
guaranteed.

Unlinkability: Deciding if two signatures (T1, T2, T3, c, s1, s2, s3, s4) and (T̃1, T̃2, T̃3,
c̃, s̃1, s̃2, s̃3, s̃4) were computed by the same group member is computationally
hard. Simiarly as for Anonymity, the problem of linking two signatures reduces
to decide whether the three discrete logarithms logy T1/T̃i, logg T2/T̃2, and
logg T3/T̃3 are equal. This is, however, impossible under Decisional Diffie-
Hellman Assumption.

Exculpability: Neither a group member nor the group manager can sign on behalf
of other group members: First note that due to Corollary 2, GM does not get
any information about a user’s secret xi apart from axi . Thus, the value xi
is computationally hidden from GM . Next note that T1, T2, and T3 are an
unconditionally binding commitments to Ai and ei. One can show that, if the
factorization of n would be publicly known, the interactive proof underlying
the group signature scheme is a proof of knowledge of the discrete log of Aeii /a0

(provided that `p is larger than twice to output length of the hash function /
size of the challenges). Hence, not even the group manager can sign on behalf
of Pi because computing discrete logarithms is assumed to be infeasible.

Traceability: The group manager is able to open any valid group signature and
provably identify the actual signer: Assuming that the signature is valid, this
implies that T1 and T2 are of the required form and so Ai can be uniquely
recovered. Due to Theorem 1 a group certificate [Ai = A(xi), ei] with xi ∈ Λ
and ei ∈ Γ can only be obtained from via the JOIN protocol. Hence, the Ai
recovered can be uniquely be linked to an instance of the JOIN protocol and
thus the user Pi who originated the signature can be identified.

Coalition-resistance: Assuming the random oracle model, this follows from Theo-
rems 1 and 2.

ut



Corollary 4. The identity escrow scheme derived from our group signature
scheme is secure under the strong RSA and the decisional Diffie-Hellman as-
sumption.

Proof. The proof is essentially the same as for Corollary 3, the difference being
that we do not need the random oracle model but can apply Theorems 1 and 2
directly. ut

7 Conclusions

This paper presents a very efficient and provably secure group signature scheme
and a companion identity escrow scheme that are based on the strong RSA
assumption. Their performance and security appear to significantly surpass those
of prior art. Extending the scheme to a blind group-signature scheme or to split
the group manager into a membership manager and a revocation manager is
straight-forward (cf. [CM98a,LR98]).
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[BF97] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signa-
ture schemes without trees. In Advances in Cryptology — EUROCRYPT ’97,
vol. 1233 of LNCS, pp. 480–494, Springer-Verlag, 1997.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In 1st ACM Conference on Computer and Com-
munication Security, pp. 62–73, ACM Press, 1993.

[Bon98] D. Boneh. The decision Diffie-Hellman problem. In Algorithmic Number The-
ory (ANTS-III), vol. 1423 of LNCS, pp. 48–63, Springer-Verlag, 1998.

[Bra93] S. Brands. An efficient off-line electronic cash system based on the repre-
sentation problem. Technical Report CS-R9323, Centrum voor Wiskunde en
Informatica, April 1993.

[CM98a] J. Camenisch and M. Michels. A group signature scheme with improved
efficiency. In Advances in Cryptology — ASIACRYPT ’98, vol. 1514 of LNCS,
pp. 160–174, Springer-Verlag, 1998.

[CM98b] . A group signature scheme based on an RSA-variant. Technical Re-
port RS-98-27, BRICS, University of Aarhus, November 1998. An earlier
version appears in [CM98a].

[CM99a] . Proving in zero-knowledge that a number is the product of two safe
primes. In Advances in Cryptology — EUROCRYPT ’99, vol. 1592 of LNCS,
pp. 107–122, Springer-Verlag, 1999.

[CM99b] . Separability and efficiency for generic group signature schemes. In
Advances in Cryptology — CRYPTO ’99, vol. 1666 of LNCS, pp. 413–430,
Springer-Verlag, 1999.

[CP95] L. Chen and T. P. Pedersen. New group signature schemes. In Advances in
Cryptology — EUROCRYPT ’94, vol. 950 of LNCS, pp. 171–181, 1995.

[CS97] J. Camenisch and M. Stadler. Efficient group signature schemes for large
groups. In Advances in Cryptology — CRYPTO ’97, vol. 1296 of LNCS, pp.
410–424, Springer-Verlag, 1997.



[Cam98] J. Camenisch. Group signature schemes and payment systems based on the
discrete logarithm problem. PhD thesis, vol. 2 of ETH Series in Information
Security an Cryptography, Hartung-Gorre Verlag, Konstanz, 1998. ISBN 3-
89649-286-1.

[Cop96] D. Coppersmith. Finding a small root of a bivariatre interger equation; fac-
toring with high bits known. In Advances in Cryptology — EUROCRYPT
’96, volume 1070 of LNCS, pages 178–189. Springer Verlag, 1996.

[CvH91] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology
— EUROCRYPT ’91, vol. 547 of LNCS, pp. 257–265, Springer-Verlag, 1991.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, IT-22(6): 644–654, 1976.

[FO97] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove
modular polynomial relations. In Advances in Cryptology — CRYPTO ’97,
vol. 1297 of LNCS, pp. 16–30, Springer-Verlag, 1997.

[FO98] . A practical and provably secure scheme for publicly verifiable se-
cret sharing and its applications. In Advances in Cryptology — EURO-
CRYPT ’98, vol. 1403 of LNCS, pp. 32–46, Springer-Verlag, 1998.

[FS87] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identifi-
cation and signature problems. In Advances in Cryptology — CRYPTO ’86,
vol. 263 of LNCS, pp. 186–194, Springer-Verlag, 1987.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[KP98] J. Kilian and E. Petrank. Identity escrow. In Advances in Cryptology —
CRYPTO ’98, vol. 1642 of LNCS, pp. 169–185, Springer-Verlag, 1998.

[LR98] A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable
solution to electronic cash. In Financial Cryptography (FC ’98), vol. 1465 of
LNCS, pp. 184–197, Springer-Verlag, 1998.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryp-
tology, 4(3):161–174, 1991.


