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Abstract

Storage Area Networks, with their ability to offer
high data availability, reliability and scalability, are
a promising solution for the large scale storage needs
of many enterprises. As with any distributed stor-
age system, a major design challenge for a Storage
Area Network (SAN) is to provide data integrity and
confidentiality. In this paper, we propose a solution
which addresses these core security requirements. In
particular, we focus on mechanisms that enable efficient
key distribution to allow scalable data sharing. Our
scheme uses strong cryptographic techniques to achieve
data security and integrity. Further, we delegate the
bulk of the cryptographic processing to the SAN entities
(e.g., switches, routers or other network elements),
thereby removing bottlenecks at the disks and causing
minimal inconvenience to the hosts. By recognizing the
peer nature of the group of SAN entities, we propose
efficient group key mechanisms that do not involve
any centralized servers. This allows our scheme to be
scalable and be free from any single point of failure or
attack.

Keywords: Storage area networks, secure storage, key
management, group key agreement

1 Introduction

Continued growth and popularity of the Internet fuels
increased reliance on e-business which often involves
data-intensive applications. Consequently, the amount
of information that needs to be stored and managed
can become quite intimidating. Traditional centralized
servers with SCSI interfaces to peripheral storage de-
vices, which have been the workhorses of the industry,

are often unable to meet the storage needs of large orga-
nizations. To this end, they are being replaced by net-
work attached disks and, more recently, by Storage Area
Networks (SAN-s). SAN-s provide efficient any-to-any
connectivity between hosts and storage devices and rep-
resent a major step in the evolution of network storage.

A critical requirement in any distributed (e.g., stor-
age) system is the security and integrity of stored data.
Although this problem has been studied intensively in
the past, certain unique features of the SAN setting result
in some new security challenges. In this work, we con-
centrate on safeguarding data (stored on a SAN) from
various threats and attacks with the further emphasis on
efficient key management. Specifically, we propose a
security architecture for preserving privacy and integrity
of SAN data. We use on-disk as well as on-wire encryp-
tion to protect data from unauthorized insiders and mali-
cious outsiders. Only authorized SAN entities and hosts
(through these authorized SAN entities) can gain access
to the unencrypted disk contents. We employ crypto-
graphically secure hashing and digital signatures to pro-
vide data integrity. Our approach, in addition to pro-
viding strong security, offers good systemwide perfor-
mance since the bulk of the cryptographic operations are
relegated to SAN entities (which are typically equipped
with powerful processors and/or hardware acceleration
to support wire-speed encryption).

This paper is organized as follows: In section 1.1
we discuss prior work in storage security. Section 1.2
outlines our contributions. We describe the details of
our system model, trust assumptions and specify design
goals in Section 2. Section 3 introduces the crypto-
graphic primitives used in the paper. The actual archi-
tecture is introduced in Section 4. Section 5 describes
two key management schemes for SAN entities. Sec-
tion 6 discusses the security and the performance of the
proposed system and we conclude in Section 7.



1.1 Prior Work

Security in storage systems has been an area of ac-
tive research for well over a decade now. Several sys-
tems have been proposed and analyzed, e.g., CFS[1],
SFS-RO[2], Cepheus[3], and NASD[4]. Prior results
vary widely with respect to trust assumptions and se-
curity primitives/services offered. For example, one of
the earliest systems, Cryptographic File System (CFS)
[1], is tailored towards single-user workstations and re-
lies on user-supplied passwords for data encryption. In
contrast, Network-Attached Secure Disks (NASD) [4]
proposes a distributed system comprising of intelligent
disks and uses user supplied keys as proofs of authoriza-
tion. The recent work of Reidel et. al. [5] investigates
the level of security offered by various cryptographic
storage systems and provides a framework for evaluat-
ing them.

We can separate previously proposed secure storage
systems into: those which only focus on protecting data
in transit, those that attempt to safeguard the data while
stored on disk, and those which provide end-to-end pro-
tection (both on-wire and on-disk). Approaches where
the underlying storage server is trusted, (e.g. NASD
and SFS [6]) focus mainly on securing network traffic
and preventing outsider attacks. Other approaches like
Cepheus and SNAD [7] do not trust the storage servers
and, therefore, propose security measures to protect data
in transit as well as on disk. We follow the latter ap-
proach and aim to provide both on-wire and on-disk data
protection.

Many of these storage systems provide mechanisms
for efficient group sharing of data. In other words,
identical data access permissions are given to groups of
users, and any user who can prove group membership
is authorized to access data based on the group permis-
sions. Group sharing reduces the total number of keys
to be stored and distributed in the system. These group
keys are typically used to secure the symmetric keys
that are used for data encryption (e.g., group lockbox in
Cepheus). Systems such as SNAD and NASD rely on
centralized group servers to distribute these group keys.
Although a centralized server simplifies key distribution,
it is a single point of failure and represents an enticing
target for attacks. Our system does not require any cen-
tralized entities, however, it provides efficient group key
sharing. Similar to SNAD, we also store these lockboxes
on the storage system itself to enable efficient key re-
trieval.

1.2 Contributions

The notable features of our approach are as follows:

� We delegate the bulk of the cryptographic opera-
tions to the SAN entities (switches, routers or other
network devices) essentially freeing the hosts from
the cryptographic burden. A host only needs to
establish a secure link with the SAN perimeter.
(This can be easily achieved using a password-
based mechanism such as SRP [8], for example.
Also, in some settings, such as the Storage Ser-
vice Provider model, the perimeter SAN entities
are within the security boundary of the data owner).
Thus, the level of user inconvenience introduced by
our system is minimal.

� Since SAN entities are entrusted with all cryp-
tographic duties, key management only involves
these (relatively) few entities, as opposed to involv-
ing all possible hosts in the system.

� We recognize the peer nature of the SAN entities
that are authorized to virtualize a secure volume.
Exploiting this feature, we propose two different
key management approaches: one based on a sim-
ple Public Key Infrastructure (PKI). The second,
more novel, approach is based on peer group key
agreement techniques.

2 System Model

Figure 1. System Architecture

A Storage Area Network, as seen from the perspec-
tive of a host or a disk, is a network infrastructure that
forwards, in an efficient and reliable way, both data
blocks and commands required to retrieve and store
these data blocks on disks. The SAN infrastructure is
essentially a collection of network devices such as high-
end switches for IP or Fibre Channel networks or stor-
age routers. We use the term SAN entities to refer to
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these network devices. The SAN entities, typically, are
equipped with powerful processors with the equivalent
computational power of a high-end PC. Further, these
devices are secured within the data center where access
control is tightly enforced.

In most SAN frameworks the actual data owner can
control, fully or in part, the SAN administration. This
is the case in a typical enterprise scenario as well as in
the Storage Service Provider (SSP) model (where SSP
companies sell storage as a service to their customers).

In fact, in an enterprise scenario, user data is pro-
tected according to the security policy established by
the enterprise and enforced within the enterprise SAN.
As an example, data availability is ensured by applying
a backup policy that is enforced in the SAN itself, with-
out the user intervention (i.e., disks where user data are
stored are mirrored, replicated or backed up under the
control of the SAN administrators, and not of the users).
In the same way, data integrity and privacy should also
be ensured and enforced by the SAN administrators, in
accordance with the security policy of the enterprise.

Even in the SSP model, the SAN is at least partially
under control of the data owner. The SAN entities lo-
cated on customer premises (that provide connectivity
with the provider’s part of the SAN) are, in fact, man-
aged and controlled by the customer’s administrators.

The fact that the data owner controls the SAN enables
the powerful concept of virtualization for data security:
the SAN entities can actively enforce data security poli-
cies by encrypting and decrypting on-the-fly blocks of
data that are written to, or read from, the storage sub-
system. In practice, the host sees the remote disk as a
secure virtual volume with security attributes transpar-
ently provided by the SAN. The mapping between the
secure virtual volume, the physical disk(s) where data is
actually stored, and the security parameters/transforms
applied to the data is performed by the SAN entities con-
trolled by the data owner.

Since the SAN entities are responsible for the active
enforcement of data security, there is the need to effec-
tively protect them from unauthorized access on their
management interface. This is a well known problem
addressed by management architectures (such as SN-
MPv3 [9]) and is out of scope of this paper. We assume
that management access to the SAN entities is governed
by a strong access control mechanism ensuring that only
authorized storage administrators can modify the config-
uration of parameters for a secure virtual volume.

2.1 System Events

The various events that take place in our model are
summarized below:

1. Initialization: a storage administrator, through a
management action in one of the SAN entities, cre-
ates a new secure virtual volume mapped over one
or more physical disks. The initial encryption keys
for that volume are chosen.

2. Disk Access: a disk read or disk write event is trig-
gered when a host accesses a secure virtual disk
through a SAN entity.

3. Key Update: occurs when the encryption key needs
to be changed. This can be prompted by: a) com-
promised key(s), b) compromised SAN entity, or
c) Periodic key refresh. (We use the term Com-
promised SAN entity to describe an entity that has
been removed from the SAN for one of the fol-
lowing reasons: changes in network topology, re-
allocation of SAN resources for performance opti-
mization or administrative reasons, or because the
SAN entity was subverted. We assume that it is
possible to detect subverted SAN entities and prop-
agate this information to other SAN elements, e.g.,
by using an Intrusion Detection system.)

4. SAN entity Join: triggered when a secure virtual
volume is instantiated for the first time by a new
SAN entity (e.g., because a host connected to that
SAN entity attempts to access that volume).

Assumptions and Scope of this Paper We assume
that the storage subsystem (essentially, the set of disk
arrays) is not intrinsically trusted by the data owner,
whereas, some of the SAN entities are trusted. In other
words, the data owner controls the hosts and part of the
SAN but not necessarily the physical disk array. There
are many solutions for the authentication and authoriza-
tion between the host and the SAN (e.g., the iSCSI[10]
architecture proposes a password-based approach for the
authentication) and we do not address these issues here.

The use of block-level encryption is independent
of the physical organization of the storage subsystem.
Thus, data redundancy and high availability can be pro-
vided by the usual approach followed on disk arrays (it
may be structured with RAID organization that better
addresses the requirement in terms of resiliency to catas-
trophic failures of the disk drives). For example, a secure
virtual volume may be physically mapped over a disk ar-
ray organized as a RAID 5 storage subsystem, without
compromising robustness. We note that even the backup
strategy is completely unaffected by block-level encryp-
tion, since traditional backup strategies can be applied
to the physical disks over which a secure virtual volume
is mapped.

Other aspects out of scope of this paper have to do
with the actual mechanisms used to provide integrity and
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encryption mechanisms used on data blocks of a secure
virtual volume. Many well-known block encryption and
data integrity protection algorithms can be applied1. We
also do not consider the actual authentication mecha-
nisms used between the SAN and the storage subsystem.

2.2 Design Goals

We now outline the key design goals for the secure
SAN architecture.

Data Encryption: on-wire encryption is needed to pro-
tect the data against passive eavesdroppers. Disk en-
cryption is necessary since disks are assumed not to be
under direct control of data owners. (Also, keeping data
encrypted on disk does not influence the ability to per-
form backups and other administrative functions.)

Data Integrity: providing data integrity is another key
goal. In order to maintain the integrity of data, we
use digital signatures and keyed MAC-s. These cryp-
tographic tools make it possible to detect unauthorized
data alterations. However, a malicious storage server or
an attacker can still illegally modify the data (by means
of a block substitution attack). As we noted before, safe-
guarding the integrity of stored data from such attacks
requires certain special techniques (such as MAC trees).

Data Sharing: data privacy alone is not a challenging
goal. Individual files can be encrypted by the owner
with the keys of its choosing. However, this would be
inefficient and impractical when files need to be shared
among multiple users in a large distributed computing
environment. Hence, effective key management is an
important design goal to enable data sharing.

Granularity of Protection: the amount of data en-
crypted with a single key influences the overhead of stor-
age and management of cryptographic keys. Of course,
it is possible to naı̈vely use a single key to encrypt an
entire virtual volume. However, if this key needs to be
changed, the overhead of re-encrypting the whole vol-
ume would be staggering. In general, coarser granularity
leads to fewer keys at the expense of costlier re-keying,
whereas, finer granularity results in a potentially large
number of keys.

Performance: incorporating security should not be pro-
hibitively expensive. System performance is a crucial
issue. For example, in case of key compromise, all key-
holders must be notified and all affected data must be

1We note that it might be important to choose one that provides pro-
tection against blocks substitution attacks, whereby the attacker sub-
stitutes an entire block of encrypted data with a previously encrypted
value observed on the same block. Approaches such as MAC trees or
the incremental MAC technique suggested in [11] might address this
problem.

re-encrypted with the new key. This must be possible
without significant overhead even if the volume of the
data in the system is very large.

3 Cryptographic Building Blocks

In order to support secure sharing of files among a
group of SAN entities – without relying on any central-
ized entity – public key cryptography is a natural choice
due to its simple key management. At the same time, the
use of public key cryptography must be minimized be-
cause of its relatively high cost. Therefore, a two-tiered
approach is often used: bulk data is encrypted using a
fast symmetric cipher such as AES [12] and the sym-
metric encryption keys are themselves encrypted under
the public keys of all authorized SAN entities. (We re-
fer to this below as the Encrypted Master Key approach.)
One very viable alternative is to encrypt symmetric (bulk
data encryption) keys under a single group key known
only to all authorized SAN entities. This can be achieved
through the use of a secure group key agreement mech-
anism [13]. Both approaches are discussed in detail in
the remainder of this paper.

3.1 Notation

Before we introduce both approaches, we summarize
the notation used throughout the rest of the paper.

��� �����
SAN entity;

�	��
��������������
��� � ���

virtual volume;
� ��
��������������

�! �
Public Key of

� ���
SAN entity�  �

Private Key of
�����

SAN entity" �
Secret random number chosen by

� ���
SAN entity#$ 

Data encryption key%'& (*)
Save

%
in
)%$+,+ )

Concatenation of
%

and
)

3.2 Public Key Cryptography

In a typical public key cryptosystem (PKCS), a party-
has a public key and a corresponding private key. A

public key .�/ is used to encrypt messages (and/or ver-
ify signatures) while the corresponding private key 01/
is used to decrypt ciphertext (and/or sign messages). A
public key is, as the name suggests, widely available and
only its authenticity is required to guarantee that

-
is

the only party who knows the corresponding secret key
[14]. Examples of PKCS-s include RSA [15] and ElGa-
mal [16].

3.3 Group Key Agreement

Group key agreement [17] is a process whereby a
shared secret key 2�/ is jointly computed by a group of
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users.2 Fundamental properties of group key agreement
include:

� a group key 2�/ generated as ���������	��
�������������
where ����� is a one-way function and ��� (for ��������� "!

) is a key share randomly and uniformly
chosen by each group member.

� no information about 2�/ can be extracted from a
protocol run without knowledge of at least one of
� �

� all key shares are kept secret, i.e., if a member
�

is
honest then, even if all other parties collude, they
cannot extract any information about � � from their
combined view of the protocol.

Many group key agreement protocols – such as [19],
[20] and [21] – support only secure group creation, i.e.,
they enable a static group of users to share a key. Re-
cently, some of these protocols have been extended to
handle group membership changes (GDH [13], STR
[22] and TGDH [17]). We are particularly interested in
the following features:

Condition 1: provide efficient mechanisms for member
join and member evict events (in order to add a new
member or expell a member) and

Condition 2: not require all current group members’
contribution for join and evict operations (since all
members may not be available/active at a given
time).

We do not consider the Burmester-Desmedt protocol
[21], since it does not satisfy condition 2 above, i.e., a
join or evict operation requires all current members to
update their key shares [13]. This puts an undue burden
on the members (SAN entities). SSDW [19] and STR
are not considered since they are quite inefficient in han-
dling group eviction events, requiring, at worst, #$� � �
exponentiations (where

�
is the total number of mem-

bers). GDH is equally expensive for both evict and join
events. (Recent results on the performance of practical
group key agreement protocols can be found in Amir, et
al. [23].) Therefore, we focus on the TGDH protocol
which requires, on the average, only #$��%'&)( � � modular
exponentiations to handle any group event.

3.4 TGDH Protocol

TGDH is a group key agreement technique combin-
ing Diffie-Hellman key exchange [24] with key-trees

2Group key distribution [18] mechanism also enables a group of
users to share a secret key. However, it requires a centralized server
which becomes a single point of failure or corruption.

[25]. It implements fully distributed contributory group
key agreement and handles key adjustments due to group
membership changes and periodic re-keying needs. A
group key is derived from the individual contributions
of all group members using a binary key-tree. TGDH
assumes reliable communication among group members
for protocol correctness and fault-tolerance (but not for
security). In the SAN setting, however, instead of count-
ing on the presence of a reliable group communication
system, we use shared storage to maintain the group key-
tree. Below, we describe the protocol in detail. (A de-
tailed description of TGDH appears in Kim, et al. [17].)

<2,0> <2,1> <2,2> <2,3>

<1,0> <1,1>

<0,0>

h = 3

l = 0

l = 1

l = 2

M M

M M

1 2

3 4

N = 6

<3,0> <3,1> <3,6> <3,7>

M5 M6

l = 3

Figure 2. TGDH Key-Tree Notation

A group key-tree is organized in the following man-
ner: each node *�+-,�.0/ is associated with a key 132'465 798
and a corresponding blinded key (bkey) :;132'465 798=<>0?A@'B'C DFEHG�IKJML where > is a generator of a subgroup ofNPOQ and L is a large prime. This shared key-tree includes
only blinded keys. All keys – including the root key
and the members’ invidual contributions – are private to
each member.

Figure 2 shows a key-tree example. The key at the
root node is the secret group key shared by all mem-
bers, and a key at the leaf node is the member’s con-
tribution. (Each leaf node is associated with a distinct
member RTS .) Every member knows all keys on the path
from its leaf node to the root as well as all bkeys on
the key-tree. Each key 132U465 798 is computed recursively as
follows:

1V2'465 798W< X�:�1V2'4UY[ZF5 \�7]Y[Z^8-_ ?`@'Bba0cdC e�DFE G$IKJfL
< X�:�1V2'4UY[ZF5 \�798-_ ?`@'BbaKcgC egD^a0cgE G$IKJML
< > ?`@'BbaKcgC egD	E6?A@'Bba0cdC e�D^aKcgE G$IKJfL

Clearly, computing a key at *�+^,^.K/ requires knowledge
of the key for one of the two children and the bkey
of the other. For example, in Figure 2, R \ can com-
pute 1V2'\�5 h]8F,�1V2iZ	5 h]8 and 1V2'h�5 h]8 using :;1V2kj95 h]8F,	:�1V2k\95 Z^8 ,
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� /�� ��� ��� , and /���� � ��� . Following each group member-
ship change, a particular member (called a sponsor) re-
computes all affected keys and bkeys and updates the
shared key-tree file.3 Note that the role of a sponsor is
unique to each membership event.

In general, the insertion point for a join event is the
shallowest rightmost node, where the join would not in-
crease the height of the key-tree. Otherwise, if the key-
tree is fully balanced, the new member node is joined to
the root. The sponsor is the rightmost leaf node in the
subtree rooted at the insertion node. Figure 3 depicts the
join protocol.

<2,0> <2,1>

<1,0> <1,1>

<0,0>

M M

M

1 2

3

<2,0> <2,1>

<1,0> <1,1>

<0,0>

M M M
1 2 3

<2,2> <2,3>

M4

New Intermediate Node

New Member

Tree T3 Tree T3

Figure 4. Tree update: join

Figure 4 shows an example where 	�
 joins a group
and the sponsor ( 	 � ) performs the following actions:

1. renames node � ! � !� to ���K��� 
2. creates new intermediate node � ! � !� and new leaf

node ���K��� 
3. promotes � ! � !� as parent node of ���K���  and ���K��� 

Since all members know
� /�� 
�� � � and

� /�� ��� ��� , 	 � can
compute the new group key /�� ��� ��� .

Member eviction is similar to a join. The key-tree is
updated by deleting the leaf corresponding to the evicted
member ( 	�� ). The former sibling of 	�� is promoted
to replace 	�� ’s parent node. The member performing
the update (sponsor) generates a new key share, com-
putes all � � ��! ��" �#��!%$ pairs on the path up to the root,
and reveals the updated key-tree (containing a new set
of bkeys) to the rest of the group. Thereafter, only cur-
rent members can compute the new group key; equiv-
alently, outsiders (including evicted former members)
cannot compute subsequent group keys. The sponsor
is always determined as the rightmost leaf of the subtree
rooted at the evicted member’s sibling.

TGDH protocol is proven secure under the well-
known Decision Diffie-Hellman (DDH) assumption
[26]. For more details of the proof and the actual proto-
col, please refer to Kim, et al. [27].

3We stress, once again, that the shared file contains only bkeys.

We need to adapt the TGDH protocol for the SAN
environment. In its original form, TGDH relies on the
presence of a reliable group communication system to
notify the group of all membership changes and to pro-
vide reliable and sequenced protocol message delivery.
However, in the present environment, two (related) is-
sues arise: 1) reliable group communication requires
constant on-line presence of all current members, and
2) network partitions and congestion may cause mem-
bership changes, i.e., group membership is dependent
on the state of the network. In a SAN, membership in a
group of SAN entities is a long-term concept and should
not be influenced by short-term network perturbations.
Therefore, group membership changes should not be
triggered by the instantaneous reachability or availabil-
ity of members, but, instead, by explicit and infrequent
events such as: a new member being introduced into the
group (join) or a current member being expelled (evic-
tion) from the group.

As a consequence of the above, some of the heuris-
tics of TGDH need to be amended. In particular, spon-
sor selection must change since on-line presence of the
sponsors (as defined above) cannot be assumed.

We observe that the original sponsor selection criteria
aims to keep the key tree as balanced as possible. How-
ever, in case of a join event, any node can be the spon-
sor. Many possible courses of action are possible; the
simplest one is for the first available member to “lock”
the shared key tree (thus claiming the sponsor role) and
perform the update by either inserting the new leaf as
described above or at the root.

Member eviction is a little more involved. As stated
earlier, the normal sponsor for an evict event is the right-
most leaf in the subtree rooted at the evicted leaf’s sib-
ling. In fact, we note that any leaf in that subtree is ac-
tually capable of performing an eviction-triggered key-
tree update. Furthermore, any leaf in a subtree rooted at
the evicted leaf’s grand-parent is likewise capable.4 To
avoid contention, we can employ the same approach as
in member join, i.e., any leaf in either subtree can “lock”
the key-tree in shared storage and perform the update.

Clearly, unless the group is a singleton, there exists
at least one remaining leaf in the subtree rooted at the
grand-parent (or parent) of the evicted leaf. However, it
is conceivable that all leaves in that subtree are currently
unavailable, e.g., off-line. In that unlikely case, the up-
date becomes more complicated. Specifically, any other
leaf can perform the key-tree update as follows:

1. Let 	 � be the evicted leaf and let ��&(' ��) be 	 � ’s
grand-parent. Let 	�* be a leaf NOT in the subtree
rooted in ��&(' ��) .

4We state these properties without proof to conserve space.
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Step 1: New member broadcasts request for join along with its bkey.������� � / � ��� �����
	 ���� �������������������� � �������������������
Step 2: sponsor member� update key-tree by adding a new member node and a new intermediate node,� generate new share and compute all  !�"$#&% � "$#�%(' pairs on the path from node associated with it to the root,� save the updated tree )*,+ only with bkeys on the shared file.

Figure 3. Join Protocol

2. 	 * replaces the leaf formerly labeled 	 � with its
own label, 	 * .

3. 	 * moves the entire subtree rooted at ��&(' � ) into
the place previously occupied by 	 * itself.

4. Since the previous step results in ��&(' ��) ’s former
parent having only one child, 	�* compacts the
key-tree by promoting its own ancestor to replace
��&(' � ) ’s former parent.

5. Finally, 	�* changes its key share, re-computes all
necessary keys and bkeys, stores the new key-tree
and releases the lock.

<2,0> <2,1>

<1,0> <1,1>

<0,0>

M
M

M
1

2
3

<3,6> <3,7>

<1,0>

<0,0>

M M
4 2

<2,0> <2,3>

Tree T

<3,6> <3,7>

<2,3>

M M4 d

<2,2>
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<1,1>
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1
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Member to be evicted

<2,2>
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<4,6> <4,7>
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4 2

<2,0>

<3,3>

<2,1>
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1

<3,2>

M
3

<3,6> <3,7>

<0,0>

M M
4 2

<1,0>

<2,3>

<1,1>

M
1

<2,2>

M
3

Tree T

Intermediate Tree 1

Intermediate Tree 2

Figure 5. Tree update: evict

Figure 5 shows an example where -/. is evicted from
a group and the sponsor ( -10 ), which is not in the subtree
rooted in 243(5�6�7 , performs the following actions:

1. renames node 8:9<;>=�? to 8A@,;�B$? (Intermediate Tree 1)

2. renames node 8C=D;>=�? to 8:9<;>=E? (Intermediate Tree 2)

3. Since the previous step results in 8AF<;�FD? having only
one child, -10 compacts the key-tree by promoting
its own ancestor 8C=$;�FD? to replace 8:F<;�F�? (Final key-
tree).

4. Finally, - 0 changes its key share, re-computes all
necessary keys and bkeys, stores the new key-tree
and releases the lock.

4 Architecture

The simplest solution to safeguard data in the SAN
setting is to encrypt all data in a virtual disk with a sin-
gle key and make sure that only authorized SAN enti-
ties know this key. The SAN entity that encrypted the
data can also store a digital signature along with the en-
crypted data. This would help maintain data integrity.
This solution is simple to implement and the associ-
ated storage overhead is minimal. However, it is clearly
impractical, since changing the key would require re-
encryption of the entire virtual disk data, which can be
very expensive.

One straight-forward enhancement (to improve per-
formance) is to divide each secure virtual disk into mul-
tiple logical segments or Encrypted Data Units (EDU-
s) 5. Consequently, data in each EDU can be encrypted
with a separate key and a key change operation would
cause only the data in the relevant EDU(s) to be re-
encrypted. The size of individual EDU-s and, there-
fore, the total number of EDU-s on a disk can be either
fixed or variable. To simplify things, we assume that
the EDU-size is a global parameter and is fixed and en-
forced in the SAN by the SAN administrators. Clearly,
the choice of EDU-size affects the encryption granular-
ity. In other words, the number of data encryption keys is
determined by the number of EDU-s. Choosing the op-
timum size is an important issue which affects the over-
all performance of the system. However, we will not

5This will require storing additional metadata corresponding to
each EDU on the disk.
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discuss the factors that may affect this decision in this
paper.

In essence, encrypting data in each EDU with a sep-
arate key results in several data encryption keys for a
given virtual disk. These keys need to be shared among
the group of SAN entities authorized to virtualize that
disk. Additionally, any authorized SAN entity should be
allowed to unilaterally change a EDU-specific key. To
avoid explicit communication of key updates, all EDU
keys for a particular virtual disk should be stored on that
disk. Of course, these keys are themselves encrypted to
enable their seamless retrieval by the authorized SAN
entities. One way to do so is by encrypting each EDU-
specific key with the public key of each authorized SAN
entity (via public key encryption)6. Assuming � EDUs
and

�
authorized SAN entities, a total ����� � � EDU keys

would be stored on a given volume.
A more elegant approach is to use a single Master

Key to encrypt individual EDU keys. All SAN entities
authorized to virtualize a volume can be viewed as a peer
group and the Master Key that is used to encrypt individ-
ual EDU keys can be shared by the members of this peer
group. The EDU keys are stored in a key lockbox (simi-
lar to the group lock box concept suggested in Cepheus
[3]) secured by the Master Key and the master key itself
is securely shared among all group members. (However,
unlike in Cepheus, in our approach, each of the autho-
rized SAN entities take part in the generation of the Mas-
ter Key. This will be explained in the next section) This
hierarchical key structure is depicted in Figure 6.

The key sharing problem is now essentially reduced
to sharing the Master Key among the group members.
Before going into the details of our proposal, we de-
scribe the fundamental components (building blocks) of
a virtual volume taking into account the security-related
information (EDU keys, lockboxes and Master Keys)
that needs to be stored along with the encrypted data.

4.1 System components

A virtual disk contains three basic objects: Encrypted
Data Units (EDU-s), Key Lockbox and Master Key Com-
ponent.

4.1.1 EDU-s

An EDU is a container for encrypted data segment. A
virtual disk includes one or more EDUs. One possible

6S/MIME (Secure Multipurpose Internet Mail Extensions) [28]
and Privacy-Enhanced Mail (PEM) [29] use this technique to send
encrypted e-mail to multiple recipients: A session key is generated,
the message is encrypted using this session key using a symmetric en-
cryption algorithm, and the session key is then encrypted with each
recipient’s public key (via public key encryption).

Figure 6. Hierarchical Structure

EDU realization is shown in Figure 7.

Pointer to Key
  ComponentEDU id Encrypted  data Secure

Checksum

Figure 7. Encrypted Data Unit

The EDU-id uniquely identifies an EDU on a virtual
disk. Each EDU contains multiple 512-byte blocks of
data encrypted under a symmetric encryption algorithm
with a single key. The EDU encryption key is stored
in a Key Lockbox the location of which is stored in the
key pointer field. Finally, every EDU contains a secure
checksum (i.e., a keyed hash such as HMAC [30]) of the
cleartext data7.

4.1.2 Key Lockbox

A Key Lockbox (KLB) stores EDU keys (see Figure 8 for
one potential representation) encrypted under a Master
Key. The pointer field of the KLB object points to the
Master Key component, which, in turn, stores the master
key itself. Each triple: 01/ � * : � EDU id, Encrypted
key, Validity � determines the encrypted EDU key. Also,
Validity contains a keyed hash computed as:

� 	 -	� � clear text 
�
 dirty bit �
where dirty bit denotes the “compromise” status of the
data in this EDU. When this bit is set, the data has been
read or written by a potentially compromised SAN en-
tity. The Validity field is useful when we employ so-
called Lazy Re-encryption discussed in section 5 below.
Finally, the SAN entity id field identifies the SAN entity
that last modified this KLB and the corresponding signa-
ture is basically the SAN entity’s digital signature over
the entire KLB. The signature protects the integrity of

7 Note that an encryption key and an HMAC key are different. In
general, we can derive two keys from the same secret key

 
by, say,� ������  ��

and
��� �����  ��

where
��� �

and
��� �

are distinct one-way
functions.
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the KLB itself and provides origin authentication of the
SAN entity last to modify the KLB.

Pointer
to MKC SKD  SKD  ... SKD  1 2 n SAN entity ID Signature

EDUid Encrypted Key Validity

Figure 8. Key Lockbox

4.1.3 Master Key Component

The Master Key Component (MKC) contains the infor-
mation necessary to retrieve the Master Key. Two differ-
ent types of MKC-s are used depending upon whether
Encrypted Master Key or Shared Group Key approach is
used. The structural representation of the two types are
as follows:

Encrypted Master Key (Public Key) approach is
shown in Figure 9. We refer to the corresponding
MKC as MKC PK. In this case, each tuple: 	 / � * �
� SAN Entity id � Encrypted Key � stores the Master Key
encrypted for each authorized SAN entity. Also in-
cluded is the identity and the signature of the SAN entity
that last modified the MKC PK object.

MKD  MKD  ... MKD  1 2 n SAN entity ID Signature

Encrypted KeySAN entity id

Figure 9. Master Key Component (En-
crypted Master Key approach)

Shared Group Key approach is shown in Figure 10.
The MKC is referred to as MKC GK. This object
stores public key-related information (blinded key-tree
in TGDH) derived from the contributions of all mem-
bers. Any current member can compute the group key
(which is also the Master key) by combining this pub-
lic information with its own secret share (as described in
section 3.3). Once again, the signature of the SAN entity
that last modified this object is included.

5 Architectural Details

In this section, we discuss the secure SAN architec-
ture. More concretely, we discuss the details of two

GKD  GKD  ... GKD  1 2 n SAN entity ID Signature

Figure 10. Master Key Component (GK ap-
proach)

Master-key management schemes: one using Encrypted
Master Key approach and the other using group-key
agreement method.

5.1 Encrypted Master Key Approach

We saw in section 4 that introducing a higher-level
Master Key helps key management. In the Encrypted
Master Key approach, this Master Key for a virtual disk
is simply chosen by one of the SAN entities authorized
to virtualize that volume. All EDU keys are then en-
crypted with the Master Key and stored in a KLB. The
Master Key is, in turn, encrypted individually for all
other authorized SAN entities and stored in a MKC PK.
Thus the total number of encrypted keys to be stored on
the virtual disk is � � � � � , i.e., � EDU keys encrypted
with the Master Key and the Master Key encrypted

�
times (there are

�
authorized SAN entities). A change of

an EDU key, requires one encryption of the new key (un-
der the Master Key) and an update of the Key Lockbox
(including a signature). Only when the Master Key is
changed, a SAN entity must modify the MKC PK com-
ponent by encrypting the new key

�
times. Figure 11

summarizes the basics of this approach and the scheme
is briefly explained below:

EDU

EDU

EDU

KLB MKC_PK

Figure 11. Encrypted Master Key Approach

Virtual Disk Initialization Event Assume virtual
disk � * is created by the storage administrator with the
help of SAN entity 0 � . The master key 	 / for � * is
chosen (randomly) by 0 � . 	 / is encrypted with .�/$�
( 0 � ’s public key) and stored in MKC PK of � * , along
with 0 � ’s signature.

SAN Entity Join Event Assume that the group of
SAN entities authorized to access virtual disk � * , cur-
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rently has j members: ��0 � ������ 0 � � . Assume 0 � � �
wants to instantiate � * . We make an assumption that
when a SAN entity is attempting to join the group, at
least one of the current members is available to pro-
vide assistance. The current member encrypts the Mas-
ter Key of � * for 0 � � � (using .�/�� � � ) and includes it
in the MKC PK component. The current member also
computes a new signature on MKC PK to reflect this
change.

Key Update Event As mentioned in Section 2.1, a
key update event may be triggered because of a compro-
mised key, a compromised SAN entity or periodically
when the key needs to be refreshed. These situations are
dealt with differently as explained below:

� EDU Key refresh event: Assume SAN entity 0 �
wants to refresh the data encryption key of � �����

.
0 � chooses a new key � / �����

and re-encrypts
the data in � �	�
�

with � / ����� . It also encrypts
� / ����� with the master-key 	 / and stores the
encrypted key in /�� � . Additionally, it sets the
validity field corresponding to that EDU in KLB to
indicate that the EDU key and data are fresh (i.e.,
not compromised). Finally, 0 � adds its signature to
KLB and writes re-encrypted EDU (along with its
new secure checksum) back to disk.

� Master Key refresh event: Assume SAN entity 0 �
wants to refresh the master key of disk � * 8. 0 �
chooses a new master key 	 / ����� , re-encrypts all
the EDU keys in KLB with 	 / ����

� � /�� /�� � �������
����� ��� / ��� � /�� �

0 � appends its signature to /�� � . Next, 0 � en-
crypts 	 / ��� � for all authorized SAN entities and
updates MKC PK of � * . 0 � also generates a signa-
ture on MKC PK.

� 0 *!� � Authorized SAN Entities for � * � �
�"�$#%�
&]��	 / ����� � �'� � 	 / � .�/

� Key update event due to key compromise: In the
event of a EDU key compromise, the key needs
to be changed and the affected data needs to be
re-encrypted. This event handling is similar to a
EDU key-refresh event as described above. Note
that we do not consider the possibility of an at-
tacker breaking only the Master Key without first
compromising a SAN entity. Since the master key
is used only to encrypt the EDU encryption keys,

8Master key, like any other key, is subject to aging and prudent
security practices require that it should be periodically refreshed

we claim that the amount of information encrypted
using the Master key is insufficient to enable suc-
cessful cryptanalysis. Hence, we do not consider
Master key compromise event separately.

� Key update event due to SAN entity compromise:
Compromised SAN entity implies compromised
Master Key. (In other words, this implies compro-
mise of all data stored on that virtual disk.) Han-
dling this event requires the Master key and all in-
dividual EDU keys to be changed and the entire
disk data to be re-encrypted. Since re-encrypting
the entire disk data can be very expensive, we
employ lazy re-encryption mechanism proposed in
Cepheus[3]: the SAN entity handling this event
simply changes the Master Key (the master key is
changed by triggering a master-key refresh event)
and additionally sets the validity field value for ev-
ery EDU in KLB as compromised. The EDU key is
changed and the data is re-encrypted subsequently
during a disk-access or a key-refresh event on that
EDU.

Disk Access Event Assume 0 � wants to access � ���(�
of virtual disk � * . 0 � obtains the encrypted 	 / from
MKC PK of � * and decrypts it using its private key
01/ � . Using 	 / , key lockbox KLB is unlocked to ob-
tain the encryption key � / for � �	�(�

. � / is used
for accessing the data. If that � / does not exist (i.e.,
� ���(�

is empty and 0 � wants to write to it), then 0 �
chooses a new � / and updates the KLB to include this
new entry. Additionally, 0 � should change this � / ,
if the validity field corresponding to that EDU is set as
compromised. 0 � can change the EDU key by triggering
a EDU key refresh event.

5.2 Shared Group Key approach

The other approach that we propose for sharing a sin-
gle key among all group members is based on group key
agreement (Section 3.3). In this approach, instead of re-
lying on any one SAN entity to choose the Master key
for a virtual volume, the SAN entities share a Group Key
that has contributions from all the members. All blinded
(public) keys are stored in the MKC GK component of
that disk (Figure 12). Any authorized member can com-
pute the group key by using the blinded keys on the key-
tree and its own secret share. The scheme is briefly ex-
plained below:

Virtual Disk Initialization Event Assume virtual
disk � * is created by the storage administrator with the
help of SAN entity 0 � . 0 � randomly chooses its private

10



EDU

EDU

EDU

KLB MKC_GK

Figure 12. Shared Group Key Approach

key share � � which is also the initial Group Key ( 2�/ )
since 0 � is the sole member of the group. 0 � computes
the corresponding public key (blinded value) and stores
this public information in MKC GK of � * . 0 � ’s signa-
ture is also stored in MKC GK.

SAN Entity Join Event Assume � * is currently in-
stantiated by

�
members: ��0 � ������ 0 � � . Assume 0 � � �

also wants to instantiate � * . The group member that
receives the join request from 0 � � � , updates the
key-tree by including 0 � � � ’s blinded share in the group
key-tree, thereby modifying the MKC GK component
(Please refer to Section 3.4 for details of the protocol).
This results in a new group key for � * and KLB is up-
dated by encrypting all EDU keys with the new group
key. The group member helping 0 � � � recomputes the
signatures on KLB and MKC GK.

Key Update Event

� EDU Key refresh event: This event is similar to
EDU key refresh event in Encrypted Master Key
approach. Assume 0 � wants to refresh the data
encryption key of � �����

. 0 � chooses a new key
� / ����� and re-encrypts the data in � �����

with
� / ����� . It also encrypts � / ���� with the group
key 2�/ and updates KLB accordingly. Addition-
ally, it sets the validity field corresponding to that
EDU in KLB to indicate that the EDU key is valid.
Finally, 0 � adds its signature to KLB and writes re-
encrypted EDU back to disk.

� Group Key refresh event: Assume 0 � wants to re-
fresh the group key of disk � * . 0 � picks a new share
for itself - �M������� and updates the blinded key-tree
to reflect its new share, thereby changing the group
key (Please refer to Section 3.4 for details of the
protocol for updating the key-tree). 0 � also re-
encrypts all the EDU keys in KLB with 2�/ �����

.
Finally, 0 � generates new signatures for KLB and
MKC GK.

� � / � /�� � ��� � �
� ������� / ��� � /�� �

� Key update due to key compromise: In the event
of a EDU key compromise, the key needs to be
changed and the affected data needs to be re-
encrypted by the SAN entity handling that event.
This event handling is similar to a EDU key-refresh
event as described above. Once again, we do not
consider the possibility of an attacker compromis-
ing only the group key without compromising a
SAN entity.

� Key update due to SAN entity compromise: When
a member SAN entity is evicted, effectively, the
group key is compromised. This implies that the
data on the entire virtual disk is compromised.
Handling this event requires the group key and all
individual EDU keys to be changed and the en-
tire disk data to be re-encrypted. Since, this can
be a very expensive operation, we employ lazy re-
encryption mechanism: the SAN entity handling
the event changes its private key share, deletes
the leaf node corresponding to the evicted mem-
ber from the group tree and recomputes the new
group key (Please refer to Section 3.4 for details
of the evict protocol). The rest is the same as han-
dling lazy re-encryption in Encrypted Master Key
approach: SAN entity handling the event updates
the KLB by encrypting all EDU keys with the new
group key and sets the validity field value for every
EDU in KLB as compromised. The EDU key is
changed and the data is re-encrypted subsequently
during a disk-access or a key-refresh event on that
EDU.

Disk Access Event Assume 0 � wants to access � ���(�
of � * . 0 � obtains the blinded key-tree information corre-
sponding to � * ’s 2�/ from MKC GK and computes the
value of 2�/ using this public information and its own
private secret share � � . This 2�/ is used to open the
key lockbox /�� � to obtain the encryption key � / for
� ��� �

. Again, if that � / does not exist (i.e., � �	� �
is

empty and 0 � wants to write to it), then 0 � should choose
a new � / and update the KLB to include this new en-
try. Additionally, 0 � should change � / during a disk
access event if the validity field corresponding to that
EDU is set as compromised. 0 � can change the EDU
key by triggering a EDU key refresh event.

6 Discussion

In this section, we compare the security and effi-
ciency of these two key-management approaches.
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6.1 Security

One of the major differences in the two approaches
concerns the Master Key: In the Encrypted Master Key
approach, the master key is chosen by a single SAN en-
tity, whereas, in the Shared Group Key approach, the
group key is determined by contributions from all SAN
entities that have currently instantiated that virtual vol-
ume. Hence, in the Shared Group Key approach, the
randomness of the master key does not depend on the
ability of a “single” SAN entity to choose cryptographi-
cally strong random keys. Additionally, in the Encrypted
Master Key approach, the master key is encrypted us-
ing each SAN entity’s public key whereas, in the Shared
Group Key approach, no such long term keys are used
(Since the group key and the individual shares are peri-
odically refreshed).

Another important distinction between the two ap-
proaches pertains to the SAN entity join event. The mas-
ter key in Encrypted Master Key approach remains the
same as new entities instantiate the volume unless a mas-
ter key update event is triggered specifically to change
it. In contrast, the master key in Shared Group Key
approach is changed automatically while handling the
join event. (See Step 2 in Figure 3). As a result, the
Shared Group Key approach is able to provide forward
and backward secrecy (and therefore, key independence)
in the current setting9. In [27], TGDH is proven to pro-
vide key independence. In order to get the same level
of security in the Encrypted Master Key approach, an
explicit master key update event needs to be triggered
every time the group membership changes as a result of
a SAN entity join event.

6.2 Efficiency

Table 1 compares the two approaches discussed in the
previous section with respect to the number of modu-
lar exponentiations required to handle the basic system
events. The cost of each modular exponentiation dif-
fers depending on the public key encryption algorithm.
Therefore, in case of Encrypted Master Key approach
(called PK in the table), we counted the number of pub-
lic key operations (encryption or decryption). The cost
of Shared Group Key approach (called GKA) is more
straight-forward: only pure modular exponentiations are

9Forward secrecy (not to be confused with Perfect Forward Secrecy
or PFS) guarantees that a passive adversary who knows a contiguous
subset of old group keys cannot discover subsequent group keys. In
contrast, backward secrecy guarantees that a passive adversary who
knows a contiguous subset of group keys cannot discover preceding
group keys. Key independence guarantees that a passive adversary
who knows a proper subset of group keys

� ����
cannot discover

any other group key �
 � � ��� � �

. [17]

considered. These operations are performed by the SAN
entity handling an event. The count does not include
signature generation (since same number of digital sig-
natures are used in both the approaches). In table 1,

�
denotes the total number of SAN entities that have in-
stantiated a given virtual volume. We assume that the
average height of the TGDH key-tree is %'&)( � .

Details of the cost are as follows:
� Initialization event: For PK, the master key needs

to be encrypted with the public key of the SAN en-
tity that was involved in the initialization event. For
GK, on the other hand, the group key needs to be
blinded. Therefore, both approaches require 1 pub-
lic key operation each.

� Key update event: To refresh the master key for
PK, the new master key needs to be encrypted

�
times (for each member SAN entity), while GKA
requires � %'&)( � public key operations. SAN Entity
compromise (or eviction) cost is almost the same
as master key refresh operation, since it essentially
involves refreshing the master key for

�� �!
remain-

ing members. Note that we do not need any public
key operations for EDU key refresh.

� Disk access event: When accessing the virtual disk,
PK requires just one public key operation to com-
pute the master key, while GKA needs %k& ( � op-
erations. To improve efficiency, we can allow the
SAN entities to cache the master key locally. Note
that when cached master key is valid, no public key
operations are required for disk access events.

� SAN Entity join event: In case of GKA, adding a
new member takes � %'&)( � public key operations.
As we mentioned in section 6.1, this automatically
provides key independence. In order to get key in-
dependence in PK, we need to first trigger a Master
key update event (which costs

�
encryptions) and

then encrypt the new master key for the new mem-
ber. Hence, the total cost is

� � !
public key oper-

ations.

� Memory requirement: total memory size required
to store the master key (group key) on the virtual
disk, i.e., it measures the size of MKC PK and
MKC GK respectively. For PK, it is

� � � � ��!	��
�%� � .� ��!	��
��%�
depends on the public key encryption al-

gorithm. If we use RSA,
� ��!	��
��%�

is at least 1024
bits. For GKA, total memory required is ��� �f ! � �
� �#��!	��
� � � (The group key-tree is a binary tree with�

leaves). The
� ��!	��
�%�

for GKA is 1024 bits. Note
that we do not consider the memory requirements
for KLB here, since the size of KLB is identical in
both the approaches.
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Table 1. Cost comparisons
PK GKA

Modular
exponentiations

Initialization Event 1 1
Key
update
event

Periodic refresh
� ��%k& ( �

EDU Key Compromise 0 0
SAN Entity Compromise

�; ! � %'&)( �
Disk
access
event

Data read (normal) 1 %k& ( �
Data read (cached key) 0 0

Data write (normal) 1 %k& ( �
Data write (cached key) 0 0

SAN Entity join Event 1 +
� � %'&)( �

Memory requirement
� �P� �#��!	��
� � � ��� �; ! � �P� � ��!	��
� � �

7 Conclusions

In this paper, we proposed a security architecture for
preserving privacy and integrity of SAN data with an
additional emphasis on secure and efficient key manage-
ment. In our approach, SAN entities are responsible for
active enforcement of security. Our schemes utilize the
nascent computing power of the SAN entities to carry
out computationally intensive cryptographic functions.
We specifically addressed the key management problem.
Exploiting the peer group nature of the SAN entities vir-
tualizing a secure disk, we presented two mechanisms
to enable key sharing that do not require any centralized
servers.
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