CVTHead: One-shot Controllable Head Avatar with Vertex-feature Transformer

Haoyu Ma, Tong Zhang, Shanlin Sun, Xiangyi Yan, Kun Han, Xiaohui Xie

University of California, Irvine Paper ID: 216

Introduction

CVTHead: <u>efficient</u> and <u>controllable</u> head avatar generation from <u>a</u> single image with point-based neural rendering

Drawbacks of current methods

- Neural head avatar
 - require video inputs or multi-view images
 - subject-specific
- Mesh-guided one-shot face reenactment
 - warp-based: only work for a limited range of head pose
 - graphics-based: tedious differentiable rendering

Methodology

- Head mesh reconstruction:
 - pre-trained DECA [2] & deformation model [1] (optional)
 - source identity & driven expressions & pose
- Vertex-feature transformer:
 - pixel-aligned features may lead to misleading feature for invisible/occluded 3D points
 - vertex token + image token
- Neural vertex rendering:
 - project vertices and corresponding feature descriptors onto the vertex feature image P_F and depth image P_D
 - Neural render: $\hat{\mathbf{I}} = \mathcal{G}(\mathbf{P_F}, \mathbf{P_D})$

Results

• Quantitative results on talking face synthesis

Dataset	VoxCeleb1				Dataset	VoxCeleb1			
Method	L1↓	PSNR †	LPIPS↓	MS-SSIM †	Method	FID ↓	CSIM ↑	IQA ↑	FPS ↑
FOMM [49]	0.048	22.43	0.139	0.836	FOMM [49]	39.69	0.592	37.00	64.3
Bi-Layer [70]	0.050	21.48	0.108	0.839	Bi-Layer [70]	43.8	0.697	41.4	20.1
ROME [31]	0.048	21.13	0.116	0.838	ROME [31]	29.23	0.717	39.11	12.9
Ours	0.041	22.09	0.111	0.840	Ours	25.78	0.675	42.26	24.3
Dataset	VoxCeleb2				Dataset	VoxCeleb2			
Method	L1 \	PSNR ↑	LPIPS ↓	MS-SSIM↑	Method	FID↓	CSIM ↑	IQA ↑	FPS ↑
FOMM [49]	0.059	20.93	0.165	0.793	FOMM [49]	61.28	0.624	36.20	64.3
ROME [31]	0.050	20.75	0.117	0.834	ROME [31]	53.52	0.729	37.34	12.9
Ours	0.042	21.37	0.119	0.841	Ours	48.48	0.712	40.27	24.3

Table 1. Results of self-reenactment on the VoxCeleb1 and Vox-Celeb2 (↑ means larger is better, ↓ means smaller is better.)

Table 2. Results of cross-identity reenactment.

• Qualitative results

3DMM-based face animation with novel views, identity, and expressions

Reference

[1] Khakhulin, Taras, et al. "Realistic one-shot mesh-based head avatars." *ECCV*, 2022.

[2] Feng, Yao, et al. "Learning an animatable detailed 3D face model from in-the-wild images." TOG, 2021

Contact: haoyum3@uci.edu