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Abstract—Social engineering attacks are one of the most
common and least defended security threats today. We
present an approach which analyzes attack content to detect
inappropriate statements which are indicative of social
engineering attacks. Previous research in the detection of
social engineering attacks relies heavily on the analysis
of various metadata specific to the email attack vector,
including header information and included URL links. Our
approach is novel compared to previous work because it
focuses on the natural language text contained in the attack,
performing semantic analysis of the text to detect malicious
intent. Focusing on text analysis makes our approach
applicable to detect social engineering attacks using non-
email attack vectors, including texting applications, chat
applications, and phone/in-person attacks which have been
converted to text using a speech-to-text application. To
demonstrate the effectiveness of our approach, we have
evaluated it using a large benchmark set of phishing emails.

I. INTRODUCTION

A critical threat to information security is social
engineering, the psychological manipulation of people
in order to gain access to a system for which the
attacker is not authorized [13], [25]. Cyberattackers tar-
get the weakest part of a security system, and people
are often more vulnerable than a hardened computer
system. All manner of system defenses can often be
circumvented if a user reveals a password or some
other critical information. Social engineering is a modern
form of the confidence scam which grifters have always
performed. Phishing emails, which fraudulently request
private information, are a common version of the attack,
but social engineering comes in many forms designed
to exploit psychological weaknesses of the target. The
use of modern communication technologies, including
cellular phones and the internet, have greatly increased
the reach of an attacker, and the effectiveness of the
attack.

Social engineering attacks involve communication be-
tween the attacker and the victim in order to either elicit
some information, or persuade the victim to perform a
critical action. Information gathered might include ex-
plicitly secure information such as a credit card number,
or seemingly innocuous information which can support
a larger attack, such as the name of a coworker. An
attacker might also convince the victim to perform tasks
which would support an attack, such as going to a
website. Numerous experimental studies over the years
have demonstrated the susceptibility of people to social
engineering attacks [11], [16], [34], [26], [3]. The effec-
tiveness of social engineering has encouraged attackers
to use it more frequently, relying on social engineering
as a component of larger attacks. A study by Verizon
of security breaches in 2013 has shown that phishing
was associated with over 95% of incidents attributed to
state- sponsored actors [32]. Social engineering attacks
were executed primarily via email but also in-person,
via phone, SMS, websites, and other documents. Federal
employees have been found to be the source of at
least half of the federal cyber-incidents reported each
year, in many cases due to their vulnerability to social
engineering attacks. The frequency and effectiveness of
social engineering makes it a serious security issue which
must be addressed.

Phishing is a type of social engineering attack that
focuses on gaining sensitive information by disguising
as a trustworthy entity. Electronic communications, such
as email or text message are common platforms for
delivering phishing attacks. Phishing has been shown
to be an effective attack over the years, deceiving a
broad range of people [15]. Attackers often gain personal
information that effects the victims’ personal lives, fi-
nancial wellbeing, and work environment. Between May
2004 and May 2005, approximately 1.2 million computer



users in United States suffered financial losses because
of phishing attacks, totaling approximately 929 million
USD [17]. Based on the third Microsoft Computer Safety
Index Report released in February 2014, as much as
5 billion USD are lost to phishing attacks annually to
phishing and identity theft and 20% of Indians admitted
to having been victims of social engineering attacks [1].

Phishing emails are the most common type of phish-
ing attacks that people have to deal with. Attackers
are usually disguised as popular social websites, banks,
administrators from IT departments or popular shop-
ping websites. These emails may lure users to click on
links to initiate malware downloads, or enter personal
information into a malicious website which has a sim-
ilar look to a legitimate one. As technology becomes
more integrated into our culture, the damage caused
by social engineering continues to rise. This growing
threat calls for our attention to actively seek effective
solutions for this problem. There has been previous
research in the detection of phishing emails and websites,
such as the phishing website filters built into Microsoft
Internet Explorer and Mozilla Firefox. However, existing
approaches are typically limited to a single attack vector
(i.e. phishing emails) and a relatively superficial syntactic
analysis of the communication involved in the attack.
Other previous work has focused on the training of
individuals about social engineering attacks in order to
make them more aware and resistant in the future [10],
[28]. User training can provide resistance to a wider
range of attack types, but its effectiveness is inconsistent,
depending on the abilities of individuals which can vary a
great deal. An automated approach for social engineering
detection is needed which can be applied to a broad
range of attack types, requiring minimal effort from the
individual user.

Although phishing attacks a popular, they are not the
only social engineering threat, and they are potentially
not the most dangerous threat. Many social engineering
attacks are launched via non-email vectors including
phone, texting, and in-person communication. The nature
of communication via these non-email attack vectors is
substantially different from email-based communication,
and offers many additional options to the attacker. Email
communication is not real-time. When an email is re-
ceived, a response is not necessarily expected immedi-
ately, if at all. Non-email communication involves two-
way conversation in which each speaker is expected to
respond immediately. From an attacker’s point of view,
conversations are a useful tool because it pressures the
target to respond without spending time considering the
consequences. The feedback received by the attacker
during the conversation enables the attacker to get a
feel for the mood of the victim and adjust the attack

accordingly. This allows non-email social engineering
attacks to be more personalized and therefore more
effective than phishing emails.

Existing approaches for automatic detection of social
engineering attacks focus on the detection of phishing
emails. These techniques rely heavily on the analysis
of non-content metadata which is found in email, such
as contained hyperlinks and SMTP headers. These tech-
niques are not effective for detecting non-email social
engineering attacks which are not associated with acces-
sible metadata. When there is no metadata to rely on,
non-email social engineering attacks must be detected
by analyzing the content of the communication. Content-
based approaches do exist which analyze features of the
content such as character frequency and word/n-gram
frequency. However, these approaches do not attempt
semantic analysis to extract the meaning the text, and
the intent of the attacker. Without semantic analysis, the
use of existing content-based metrics alone would result
in low precision and accuracy.

A. Our Contribution

In order to detect a broad range of social engineering
attacks using a range of communication vectors, we use
semantic analysis to understand some aspects of the
meaning of the communication. Our approach identifies
sentences with malicious intent in the communication
from the potential attacker.

In order for the attacker to achieve his goal, the
attacker must perform one of the following detectable
actions.

• Ask a question whose answer is private.
• Issue a command to perform a forbidden operation.

Our approach identifies all statements which are either
questions or commands posed to the victim, and checks
the appropriateness of the statement. A question is con-
sidered to be inappropriate if it requests private informa-
tion, and a command is considered to be inappropriate if
it involves the performance of a secure operation.

Our approach to the detection of inappropriate ques-
tions leverages research in question answering systems
to determine the privacy of the answers to questions
posed by the attacker. We use question answering tech-
nology to provide the privacy status of the answer,
rather than providing the answer itself, as is the goal
of traditional question answering systems. The actual
answer of each question is not needed, so our approach
can tolerate imprecision inherent to current question
answering approaches and still achieve high precision
with respect to privacy status.

We evaluate commands by summarizing their mean-
ing as a combination of the main verb and the object(s)
of that verb in the sentence. For example, the meaning
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of the command, “Please reset the router” would be
summarized by the verb-object pair (reset, router). This
verb-object pair will be compared to a blacklist of verb-
object pairs which are known to describe forbidden
operations. Reducing the meaning of a command to the
verb-object pair is beneficial as a method to normalize
the description of sentences with different syntaxes but
identical meaning. By considering synonyms and lemma-
tization as well, the set of all forbidden operations can
be stored in a compact blacklist.

B. Authentication

Authentication is outside of the scope of this work,
so our approach assumes that the party communicating
with the victim is unknown to the victim. The type of
trust relationship which a person has with other entities
will impact what information is considered private and
which operations are considered secure. For example, a
close friend can ask for some private information while a
stranger cannot. Considering the impact of identity on the
privacy of data and operations requires an authentication
approach. Since authentication is outside of the scope of
this work, we determine the privacy of data and opera-
tions assuming that access is requested by an unknown
and untrusted entity. Although our approach is limited in
this way, it could easily be extended to consider a more
graduated notion of privacy by using it together with an
existing authentication approach.

C. Social Engineering Data

Several parts of our approach require mining of actual
social engineering attacks as part of the training process.
Social engineering attacks are also required to evaluate
the effectiveness of our approach. The databases of
phishing emails summarized in Table I are publicly
available, so those are what we have used to develop and
evaluate our work. Since our approach is content-based, it
can be applied to non-email social engineering attacks as
well, but we were limited to the phishing email databases
which are publicly available. All online databases were
accessed October 11, 2017.

Database URL Size
Scamdex http://www.scamdex.com 56555
Scamwarners http://www.scamwarners.com 43241
Scamalot http://scamalot.com 18149
Antifraudintl http://antifraudintl.com 69209
Total 187154

TABLE I
SOCIAL ENGINEERING ATTACK DATA

D. Organization of the Paper

The remainder of this paper is organized as follows.
Section II outlines the structure of the overall system.

The next five sections of the paper describe each com-
ponent of the system in detail: Section III describes
sentence partitioning, Section IV describes sentence type
identification, Section V describes form item identifica-
tion, Section VI describes question analysis, and Section
VII describes command analysis. Section VIII shows
our experimental results. A discussion of the results
is presented in Section IX Previous related research is
summarized in Section X and conclusions are discussed
in Section XI.

II. STRUCTURE OF THE SYSTEM

Figure 1 shows an outline of the system. The input
to the system is a block of text uttered by a potential
attacker. The text may be extracted from any means of
transmission including email, texting application, phone,
or in-person. Text extracted from either phone or in-
person communication would need to be transcribed
using an existing speech-to-text engine. The output of the
system is a set of malicious sentences which are deter-
mined to either ask questions whose answers are private,
or issue commands to perform forbidden operations. The
original text is identified as a social engineering attack
if the set of malicious sentences is non-empty.

The system as shown in Figure 1 is composed of five
main components. The Sentence Processing step sepa-
rates the text into individual sentences and parses each
sentence in order to gather information about sentence
components which will be used for analysis by other
system components. Separating individual sentences is
straightforward if proper punctuation is used in the orig-
inal text, but we assume that proper punctuation cannot
be assumed in the original text. This is particularly true
if the text is taken from an acoustic source such as a
phone or in-person conversation.

The Sentence Type Identification step determines
whether each sentence is a question or a command,
and places the sentence in the appropriate set for fur-
ther analysis. Sentences which are neither questions nor
commands are ignored. The Question Analysis step
determines whether or not a question has a private
answer, and Command Analysis determines whether or
not a command refers to a forbidden operation.

Text may include utterances which do not express
questions in isolation, but are understood to be questions
based on the context within the text. Examples of such
utterances are the items in a questionairre where each
individual item is not a question, but the context tells
the listener that the item should be treated as a question
and an appropriate answer is expected. We refer to these
implied questions as form questions because they are
often expressed as items in a form which is to be com-
pleted by the recipient. The Form Item Detection step
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Fig. 1. System Structure

identifies utterances which represent implicit questions
because they are items in a form. Each form item is
used to generate an equivalent question which can be
evaluated in the Question Answering step.

III. SENTENCE PROCESSING

The text is processed by partitioning it into sentences
and parsing each sentence to gain structural information
which will be used for analysis. Separating text into
sentences is performed by using the Punctuator tool [31]
to insert periods at appropriate locations. The Punkt
tool [19] partitions sentences at the period boundaries,
differentiating between periods which end sentences and
those which are part of abbreviations.

We extract information about each sentence by using
the Stanford Parser [20] to generate a syntactic parse
using a probabilistic context-free grammar. The resulting
parse tree shows the phrasal structure of the sentence.
Each non-terminal node is a tag, from the Penn Treebank
Tagset [24], which indicates the phrase type or part-of-
speech of the subtree beneath it. For example, the NP
tag identifies a “noun phrase” and VP identifies a “verb
phrase”.

In addition to syntactic parsing, we use typed de-
pendency parsing [6] to extract semantic information.
Typed dependencies are an alternate way to represent the
structure of a sentence which represents dependencies
between words in the sentence, rather than grouping
words into phrases as a syntactic parse tree does. A typed
dependency parse shows grammatical relationships, such
as subject and direct object between individual words.
For example, the typed dependency parse of the sentence
“Joe resets the router” would contain the following
dependencies: nsubj(resets, Joe) indicating that “Joe” is
the subject of the predicate, and dobj(resets, router) indi-
cating that “router” is the direct object of the predicate.

IV. SENTENCE TYPE IDENTIFICATION

Questions and commands are the types of sentences
which are of interest because they might refer to private
data or private operations. The identification of questions
and commands analyzes the words in the sentence and
the syntactic and typed dependency parse trees of the
sentence which were created in the Sentence Processing
step.

Question detection is straightforward using the syn-
tactic parse tree of the sentence. There are two types
of questions and each type can be recognized by the
presence of specific tags in their syntactic parse tree.
Closed questions are those whose answers are ”yes” or
”no”. Closed questions are identified by the presence of
the SQ tag in their parse tree. Open questions are those
which ask open ended questions, typically containing a
wh-word such as ”who” or ”where”. Open questions are
identified by the presence of the SBARQ tag in their
parse tree.

We present four different types of commands, each of
which is identified in a different way.

• Direct imperatives - Commands are made using
imperative sentences which generally start with the
base form of the verb, as in “Open the door” or
“Come in”. The imperative form is a second-person
form, so the subject is the person being spoken to.
Direct imperative sentences often do not include an
explicit subject because the subject is assumed to
be the listener.
Direct imperatives are identified if they match a reg-
ular expression of the form “¡verb¿ ...”, indicating
that the sentence starts with a verb.

• Polite prefixes - Simple imperative sentences can
sound rude, so an attacker may desire to soften
the request by prefixing the command with a polite
greeting, such as, “Please go home”.
Polite prefix imperatives are identified if they match
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a regular expression of the form “Please ¡verb¿ ...”,
indicating that the sentence starts with the word
“Please” followed by a verb.

• Suggestion - Rather than directly commanding a
victim to perform an action, the command may be
phrased as a suggestion which the victim should
follow, such as, “You could open the door” or “You
should go home”.
Suggestion imperatives are identified if they match
a regular expression of the form “You ¡modal verb¿
...”, indicating that the sentence starts with the word
“You” followed by a modal verb such as “should”,
“could”, or “must”.

• Expression of desire - Another way to soften a
command is to prefix it with an expression of desire
such as “I want you to come in” or “I urge you to
come in”.
The detection of commands which express desire
is performed based on two observations, 1) the
sentence must include a desire verb such as “urge”
or “encourage”, and 2) the pronoun “you” is the
direct object of the desire verb. The presence of a
desire verb is determined by comparing each word
in the sentence to a list of desire verbs. The direct
object of the sentence is performed by examining
the typed dependency parse of the sentence which
is generated during sentence processing as described
in Section III. The dobj dependency relation indi-
cates the direct object for phrases written in the
active voice, and the nsubjpass dependency relation
indicates the direct object for phrases written in the
passive voice.

V. FORM ITEM IDENTIFICATION

An attacker may prompt the victim to answer a
question by only stating the data which is requested,
without explicitly stating a question.In these cases, the
data requested is presented in an itemized list which is
understood by the victim as a series of implicit questions
based on the context. In phishing emails, this type of
question prompt is most commonly seen as a form which
the victim is requested to complete. Figure 2 shows
portions of forms taken from phishing emails in the set
which we examined.

Each entry in a form is an implicit question to the
user. In order to present these form items to question
analysis, we need to make each question explicit. Our
approach is to identify each form item and generate
a form question which can be presented to question
analysis. Each question is of the form “What is your
< item >?”, where < item > is the form item. For
example, for the form items “Full Name” and “Gender”
shown in Figure 2, the following form questions would

1) Full Name:................
2) Gender:.................

Name in full:
Address:

Your Full Name:
Address Line 1:

Fig. 2. Form excerpts found in phishing emails

be generated: “What is your Full Name?” and “What
is your Gender?”. Form items are found using regular
expressions to match the most common form item tem-
plates. Example templates match the forms shown in
Figure 2, such as “< number >) < item >:....” and
“< item >:”, where < number > is a number, and
< item > is a token which matches the form item. We
assume that any form must have more than one item,
so we only detect a form item if at least two items are
found sequentially in the email.

VI. QUESTION ANALYSIS

Our approach modifies an existing approach for ques-
tion answering to determine whether or not the answer
to a factoid question is private. We will first describe
the existing question answering approach and we will
then present our modifications to the approach to make
it suitable for use in detecting social engineering attacks.

A. PARALEX Question Answering System

The existing PARALEX question answering system
which we modified is fully described in previous work
[8] and is outlined in Figure 3. Answers are found in
an SQL database and the SQLite database engine [22]
is used to search the database for answers. The database
is a collection of triples of the form r(e1, e2), where r
is a relation and e1, e2 are entities. For example, the
fact that the population of New York City is 8.5 million
people might be stored as the triple population(new −
york, 8.5 ∗ 106). A set of formal queries are generated
from the original natural language question and the
queries are ranked according to the likelihood of being a
semantic match to the original query. The highest ranked
query is used to search the database and the matching
result is returned as the answer. Each query is in one
of two forms: either r(?, e) or r(e, ?). Searching the
database using a query returns the entity e which satisfies
the given relationship.

The challenge is to generate a formal query which is
semantically equivalent to the natural language question.
Each formal query is composed of database concepts,
specifically a relation r and an entity e. The approach
uses a lexicon to associate natural language patterns
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Fig. 3. PARALEX question answering approach

with database concepts. Each lexicon entry has the form
(p, d), where p is a string pattern found in a natural
language question, and d is a database concept. There are
three types of entries in the lexicon: entity entries pair
strings with database entities (“NYC” and new− york),
relation entries pair strings with database relations (“big”
and population), and question pattern entries pair string
patterns with query templates (“how r is e” and r(?, e)).

A derivation is a mapping from a natural language
question to a formal query. A derivation is generated
by matching lexicon entry patterns to strings in the
natural language question. The database concepts of
the matching lexicon entries are combined to make the
query. For example, assume that we have a lexicon
containing the following two entries: (“How big is e”,
population(?, e)) and (“NYC”, new − york). Since the
question “How big is NYC?” matches both lexicon
entries, a derivation for this question would combine the
database concepts of both entries to create the query
population(?, new − york). It is important to observe
that there are often many possible derivations for a
question with a given lexicon. This happens due to noise
in the lexicon which may occur as a result of the learning
process used to generate the lexicon [8]. A lexicon
may contain entries which interpret the same natural
language string pattern in different ways. The question
How big is NYC? could be interpreted as asking about
population or asking about land area. To describe these
interpretations, the lexicon could contain both entries
(“How big is e”, population(?, e)) and (“How big is
e”, area(?, e)), leading to two possible derivations. The
Generate Derivations step shown in Figure 3 uses the
lexicon to generate all possible derivations based on
the entries in the lexicon. The queries produced by the
derivations are scored in the Score Queries step and the
top ranked query is used to search the database.

B. Modifications to Question Answering

We have modified the PARALEX question answering
approach to determine whether or not the answer to a
factoid question is private or not. We have made the
following three modifications.

1) Creating a Private Database: We replace the
database of facts with a database containing only facts
which are considered to be private. This guarantees that if
an answer to a query is found in the database, it must be
a private answer. Since the number of private facts is very
small relative to the set of answers to all possible factoid
questions, the database used to determine privacy is much
smaller than the database used in the original PARALEX
approach which contained over 15 million facts. This
system requires the creation of a database of private
information. Such a database could be created manually,
allowing a user to match the database contents to his/her
enterprise. For example, if the system is being used to
protect a medical office then the database would contain
private medical information. Since we are experimenting
with a set of phishing emails targeted at generic users,
we have created our database based on samples of those
emails.

Our procedure for creating the private database was
to manually identify private questions and from 20,000
randomly selected phishing emails, and private form
questions from 2,000 phishing emails within the larger
set of 20,000. We manually determined that a question
was private if we could not find the answer using Google.
For each private question, we presented the question to
the PARALEX tool and observed the formal queries that
it created for the question using relations and entities
already defined in its lexicon. We examined the top four
queries generated by PARALEX and inserted answers to
those queries into the private database, using the rela-
tions and entities contained in the queries. This process
guarantees that if this question or a similar question is
posed to the question answering tool, and answer will be
found in the database and the question will be identified
as being private.

2) k-best Queries: : Rather than using only the top
ranked query, we search the database using the k-best
queries. If matches are found for any of the k-best
queries, the question is considered to be private. The
chance that the correct answer will be found by one of the
top k queries is considerably higher than the top query
alone. The potential problem with this approach is that a
question whose answer is not private may be incorrectly
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classified because one of the queries generated from it
does have a private answer. However this is unlikely
because private data is such a small subset of the set
of all question answers.

3) Lexicon Modification: : The original lexicon de-
veloped as part of the PARALEX system provides a
mapping from natural language strings to concepts in the
original database. Since we are changing the database,
the lexicon must be modified to map to the concepts in
the new database. The original lexicon is quite expansive,
having been generated from a corpus of over 15 million
question-answer pairs, but occasionally a new entity must
be added to the database, and appropriate entries must
be added to the lexicon. During the process of creating
the new database, we needed to define only two new
entities which were not part of the original lexicon. We
also modified only 341 lexicon entries out of a total of
over 6 million entries.

VII. COMMAND ANALYSIS

Command analysis is performed by extracting the verb
and the direct object of the command so that the verb-
object pair can be used as a summary of the intent of
the command. A command is considered to refer to
a forbidden operation if its verb-object pair is found
in a verb-object blacklist which describes forbidden
operations. Extraction of the verb and direct object is per-
formed by examining the typed dependency parse of the
sentence which is generated during sentence processing
as described in Section III. The dobj dependency relation
indicates the direct object for phrases written in the active
voice, and the nsubjpass dependency relation indicates
the direct object for phrases written in the passive voice.
Both the dobj and nsubjpass dependencies relate the verb
to the direct object, so the verb-object pair is determined
using one of these two relations.

A. Generating the Verb-Object Blacklist

Command analysis depends on the existence of a
blacklist of verb-object pairs which is correct and com-
plete. The blacklist could be created manually, allow-
ing a user to match blacklist contents to his/her en-
terprise. For example, if the system is being used to
protect a bank then the blacklist would contain the pair
(give, combination). Since we are experimenting with a
set of phishing emails targeted at generic users, we have
created our blacklist based on samples of those emails.

Our goal is to find the verb-object pairs which are
most closely associated with phishing emails, but are
also most weakly associated with non-phishing emails.
For this purpose, we compute the term frequency-inverse
document frequency (TF-IDF) statistic [27] for each verb-
object pair. TF-IDF is a well accepted statistic used in

data mining and information retrieval to determine how
important a term is in a corpus. The statistic takes the
product of the term frequency which is a measure of
how often a term appears in a corpus of documents,
and the inverse document frequency which is a measure
of how often the term appears in documents outside of
the corpus. A term receives a high TF-IDF score if it is
common within the corpus, but rare outside of the corpus.

For our problem, a term is a verb-object pair in a com-
mand, and the corpus in question is a random selection of
100,000 phishing emails from the set of phishing emails
which we are using. For a set of non-corpus documents,
we use 100,000 emails in the Enron email corpus [21]
which is assumed not to contain phishing emails. All
commands are identified in both the phishing and non-
phishing emails, and all verb-object pairs are identified
in each command. The TF-IDF statistic is computed for
each verb-object pair and all verb-object pairs whose
TF-IDF is above a threshold (0.45) is included in the
blacklist. This produced a blacklist containing 508 verb-
object pairs.

In order to improve the generality of the blacklist,
we performed two additional processing steps on the
blacklist. First, we considered synonyms of each word
in the blacklist so that the use of synonyms in the
social engineering attacks will not cause a command
to be classified incorrectly. Additionally, we perform
lemmatization which reduces different forms of the same
word to their common stem. Lemmatization allows words
to be recognized regardless of the form in which they
are used in a sentence. We use the lemmatizer which
is part of the Stanford CoreNLP Toolkit [23]. After this
processing, the final blacklist contains 1709 verb-object
pairs.

VIII. EXPERIMENTAL RESULTS

We have evaluated our approach by implementing it
and using it to identify phishing emails. Our implemen-
tation is primarily a set of Python code, using Java when
necessary to interface with a particular tool. Specifically,
Java is used to interact with the Stanford Parser and
CoreNLP [23] which have a Java API. The phishing
email datasets which we use are presented in Table I
and the non-phishing emails which we use are those
contained in the Enron email corpus [21]. Of the total
set of 187,048 phishing emails, we subtract the 100,000
which we used for creating the verb-object blacklist and
creating the private database. For evaluating our system,
we use the remaining 87,048 phishing emails and an
equal number of non-phishing emails taken from the
Enron corpus.

Table II contains the raw detection results using our
system. Each cell in the table contains the count of
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Phishing Enron
Detected 56616 (TP) 14168 (FP)

Not Detected 30432 (FN) 72880 (TN)
TABLE II

RAW DETECTION RESULTS

how many emails fell into each category. The two rows
indicate the labeling applied by our tool, either Detected
or Not Detected. The two columns indicate the true
label of the email, either Phishing (social engineering) or
Enron (not social engineering). Each cell also contains
initials indicating the correctness of the labeling: TP
(true positive), TN (true negative), FP (false positive),
or (FN) false negative. Both FP and FN indicate that
the email was labeled incorrectly by our system. We
also present the Precision (TP/(TP +FP )) and Recall
(TP/(TP +FN)) summary statistics, Precision = 0.800
and Recall = 0.650.

IX. DISCUSSION OF RESULTS

It is important to understand the reasons for the sub-
optimal results shown in Table II in order to determine
if the approach is inherently flawed, or improvements
can be made in the future to make the approach more
effective. We will examine the reasons for both false
negative and false positive examples.

A. False Negatives

False negative examples are those emails which are
phishing emails but were not detected as phishing emails
by our approach. In order to consider the reason for false
negatives, we first need to classify different stages of a
social engineering attack. A social engineering attack can
be subdivided into at least 3 parts.

1) Pretext The act of pretexting is the creation of a
scenario to persuade the target to either provide
the desired information, or perform the desired
action. We define the pretext of the attack as the
communication which is used by the attacker to
present the pretext to the target. The context of the
pretext will define a false identity for the attacker
which is trusted by the target to some degree. The
pretext may be as simple as a false introduction
such as, “Hi, I am Joe from the bank”, but it
may also include a detailed description of a false
situation which would justify the communication
attempt from the attacker’s false identity. For ex-
ample, the pretext might be, “Hi, I am Joe from
the bank and we have detected strange activity on
your account. We will need to verify your account
information before we can fix the problem”. This
pretext defines a false, trusted identity, and justifies
requests for account information.

2) Elicitation Elicitation is the process of building a
rapport with the target in order to make the target
comfortable enough to provide the desired infor-
mation or perform the desired action. The target
needs to trust the attacker and elicitation is the act
of building that trust through communication. The
degree of elicitation required depends on the self-
awareness of the target; a naive target may imme-
diately accept the pretext but a more sophisticated
target might not. Intelligence field agents are often
trained in elicitation, so a significant body of work
exists exploring the different techniques available.
Common techniques include the following [12]:

• Appealing to Someone’s Ego - Subtle flattery
can coax person into participating in an inap-
propriate conversation.

• Expressing a Mutual Interest - People tend to
trust a person who seems to share the same
interests and values.

• Volunteering “Private” Information - People
tend to trust a person who shares information
which seems to be private. Sharing private
information can also create a sense of obli-
gation in the target, creating that feeling that
he should reciprocate by providing his own
private information.

3) Information/Command Goal The culmination of
the social engineering attack is to either request
private information or ask the target to perform an
inappropriate operation. The goal will vary based
on the information desired (“Please confirm your
social security number”) or the operation desired
(“Please click on the link”).

Our detection approach can only detect the final stage
of the attack, the Information/Command Goal. We
observe that many of the undetected phishing emails are
only the first stage in a potential sequence of emails,
and as a result, involve pretexting and elicitation. These
emails may tell a story to engage the victim, and then
request that the victim respond in order to start a conver-
sation. The following email is an example of this type
of phishing email

I KNOW THIS MAIL WILL COME AS SURPRISE
TO YOU BUT IN A BRIEF INTRODUCTION . MY
NAME IS MR TERRY ARUMAH FROM GHANA WEST
AFRICA . I AM A MARKETING MANGER OF
TARKWAH COMMUNITY GOLD MINING CON-PAY IN
TARKWAH COMMUNITY HERE IN THE REPUBLIC
OF GHANA, WE HAVE GOLD DUST AND ALSO
GOLD BAR OUR PRODUCT IS GOOD ,FOR YOU
TO BE SURE OF THE TYPE OF GOLD YOU ARE
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BUYING YOU WILL BE ALLOWED TO TEST IT
IN ANY PLACE OF YOUR CHOOSE SO IF YOU
ARE INTERESTED PLEASE YOU CAN CALL US
HERE +2335403977 OR REPLY US HERE OKAY.
GOOD BYE TAKE GOOD CARE OF YOUR SELF .

Notice that the email requests that the victim responds
with the statement, “PLEASE YOU CAN CALL US”,
but no overt attempt is made to gain information or
suggest a forbidden operation. We manually examined
100 of the false negative emails in order to determine the
specific reason why these were not detected. We found
that the majority of these emails, 79%, were this type of
email, only the beginning of a longer sequence of attack
emails.

Although our approach does not detect pretexting or
elicitation, we claim that our approach is still useful in
practice because the Information/Command Goal stage
must eventually occur, and our technique would detect
the attack at that point.

B. False Positives

False positives are the emails which are not phishing
(Enron emails) but are detected as phishing emails by
our approach. We manually examined 100 of the false
positive emails in order to determine the specific reason
why these were falsely detected. We found that the large
majority of these emails, 97%, were detected because
they were found to contain suspicious commands whose
verb-object pairs were found to be in the blacklist. This
occurred with the verb-object pairs such as (call,me),
and (pay,< number >). These verb-object pairs are
part of the blacklist, so they must have had relatively
high TF-IDF scores, but these pairs can also be used in
an innocuous way.

This indicates to us that we will need to improve the
blacklist in the future. We can experiment with changing
the TF-IDF threshold, but this may increase the number
of false negatives. This may indicate that the pair of the
verb and direct object are not sufficient to summarize the
meaning of a command. We will explore using additional
semantic information to add context, such as indirect
objects also contained in the sentence.

X. RELATED WORK

A commonly used approach to social engineering
detection and prevention is to provide training for em-
ployees to make them aware of the risks [28], [10].
Training-based approaches rely on the human to detect
and prevent attacks manually. The problem with these
techniques is that the vulnerability of a person to a social
engineering attack depends on the person’s emotional
state at the time of the attack, regardless of training

received. Manual attack prevention demands more dis-
cipline than can be expected from most people. For
example, one training-based approach expects a person
to internally answer a set of security-related questions
before providing information to an external agent [4]. It
is hard to believe that a person will consistently maintain
this procedure, especially when under the influence of an
attacker who is expert at manipulating the emotions of a
victim.

A. Automatic Detection

Many previous contributions in phishing detection
rely on non-content-based information associated with
the email, data contained in headers or log file en-
tries. Examples of non-content-based information used
include SMTP headers, NIDS logs, LDAP logs, and cc
lists. Several approaches use this information to evaluate
emails [14], [7], [30]. A notable approach in this category
applied their technique to over 370 million emails and de-
tected spearphishing campaigns with a false positive rate
of only 0.004%. Existing non-content-based information
are effective for detecting email-based social engineering
attacks, but would not be useful for non-email attacks,
since the same information is not available.

A number of approaches detect phishing email by
performing authorship identification, analyzing various
features of the email to verify that the true email author
is the author who is claimed in the email [14], [7], [30],
[18]. These approaches characterize emails and their
senders using both non-content-based information as well
as content-based information. Content-based information
includes statistics on the frequency of words, characters,
and n-grams in the text. An example is the ASCAI
approach [18] which generates a writeprint for each
known sender which is a list of the most common n-
grams used in a compilation of emails attributed to the
sender. A writeprint is generated for the email and it
is compared to the writeprint of the sender to verify
authorship.

Several approaches examine the URLs contained in-
side the message [9], [5]. The assumption is that many
phishing attacks have the goal of convincing the user to
click on a malicious link embedded inside the email in
order to execute an attack such as downloading malware
to the victim machine. Work in [9] performs logistic
regression classification using a range of URL features.
Features include the page rank of the domain, domain
name presence in a white list, obfuscation of the domain
name, and the inclusion of suspicious words in the
URL. The LinkGuard tool presented in [5] uses regular
expression pattern matching to identify URLs containing
suspicious features. Features used in [5] include mis-
match between URL domain name in the anchor text
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and the link, using the dotted decimal form IP address
instead of a domain name, and use of encoding in the
URL, domain names which are similar to well-known
domain names.

Some content-based approaches use natural language
processing (NLP) techniques to extract information from
the email content. For example, EmailProfiler [7] uses
the number of each part-of-speech as a feature, using a
Stanford Parser to perform part-of-speech tagging. Other
techniques attempt to infer some aspect of sentence
meaning based on the presence of particular words. An
example of this type of text analysis is seen in [29] which
defines a set of rules which are regular expressions that
match each expected category of phishing email. For
example, [29] presents a rule for “financial opportunity”
which detects when a windfall offer is sent. These
emails typically contain congratulatory language such as
“pleased”, and “congratulations”, and financial language
such as “$”, and “dollars”. PhishNet-NLP [33] defines
several sets of words which indicate different goals on
the part of the speaker. For example, if an attacker is
attempting to convince a victim to perform a suspicious
activity then words used might include “click”, “follow”,
“visit”, or “confirm”. An attacker might convey a sense
of urgency using the words “urgently”, “desperately”, or
“immediately”. The word lists are developed by evaluat-
ing a set of 20 known phishing emails. Work presented
in [2] uses a similar approach, defining word lists which
indicate a sense of urgency and the mention of money.
Additionally, [2] defines word lists which indicate that
the speaker is inducing a reply (“write”, “contact”, “get
back”, etc.) and the absence of the user’s name.

XI. CONCLUSION

We present an approach to detect social engineering
attacks and phishing emails. Our approach relies on
semantic analysis of the content, rather than metadata
which might be associated with emails. As a result, our
approach can be applied to detecting social engineering
dialogs which are composed of pure text. Our results
on phishing emails demonstrate that the use of question
answering and verb-object semantic information is use-
ful in detecting social engineering. The applicability of
our approach to the detection of any text-based social
engineering attacks is also unique.
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