
CS143A: Principles of Operating Systems S20 Name: _________________
Homework 2, Due Date: May 2, 2020 (11:59pm)

Please do not modify the structure of this document! Fill out the pdf form using either a pdf
editor or by printing / scanning, and upload it to Gradescope.

1) [6] Return of Alice! Alice recalls from lecture that processes and threads are two different
ways to achieve concurrency in a system. Since threads can share data, Alice has made the
connection that threads can “communicate” through this data section. On the other hand, Alice
remembers that processes do not share resources well, which makes her wonder: How can
processes communicate with one another? As her trusted (and smart) friend,, she comes to you
to ask. Name two methods by which processes communicate with each other, and state an
advantage of each method, and briefly explain an implementation challenge.

a) Method 1: ___________________

 Advantage:

Implementation Challenge:

b) Method 2: ____________________

Advantage:

Implementation Challenge:

2) [4] Later that night, Alice decides to work more on understanding OS concepts. However,
because it was a long day for Alice, she falls asleep at her desk, where she starts dreaming about
multithreading models between user threads and kernel threads. In her dream, Alice goes to her
computer and sees that she has started a study guide with a few statements on multithreading
models. However, she doesn’t know whether (dream) Bob has modified any of the statements.
Mark an X in the appropriate box to indicate whether the statement is True or False.

 True False

In the Many-to-One multithreading model, many kernel threads are mapped to
a single user thread.

The One-to-One multithreading model suffers from scalability issues.

The Many-to-Many multithreading model always uses equal numbers of kernel
and user threads.

In the Many-to-One multithreading model, a system call from a user thread
will block an entire task.

3) [10] Upon waking up to the sound of chirping birds (and her alarm right before class would
start), Alice flips the page of her notebook, and then enters the zoom link for the class, where
scheduling algorithms are being discussed. However, Alice hasn’t eaten anything yet, and can’t
take her mind off of food. Coincidentally, the lecture is discussing scheduling algorithms and
starvation. Alice realizes that she is too distracted at the moment, and decides to make a table
listing some scheduling algorithms, and whether they could result in starvation. Assuming that a
process burst time can be infinite, mark an X in the appropriate column for whether the
scheduling algorithm can result in starvation, and briefly explain.

 Yes No Explanation

First-Come First-Served
(FCFS)

Shortest Job First (SJF)
(Non-preemptive)

Shortest Remaining Time
First (SRTF) (Preemptive)

Round Robin (RR)

Priority (Preemptive)

4) [30] Later, Alice needs to analyze some GANTT charts for some of the scheduling algorithms
from class. She complains that GANTT charts are too tedious to draw on a computer, so she
decides to print the homework and manually draw GANTT charts using a pen. However, after
Alice finishes, Bob (being the prankster he is) decides to take the page and make a paper
airplane, which (inconveniently for Alice) flies out the window into a puddle of water. Not
wanting to waste more paper, Alice decides to redraw the GANTT charts on the last page.

On the bright side, Alice already organized the following information about the processes:

Process ID Arrival Time Burst Time Priority

P1 0 70 3

P2 30 20 1

P3 10 50 2

P4 50 20 4

Additionally, she is given the following guidelines:

- When priority is being used, a smaller priority number means higher execution priority .
- For tie-breaking cases, the process with the earlier arrival time should execute.
- There is no context switching overhead

Help Alice by drawing GANTT charts for each of the following scheduling algorithms, and
attach it to the end of this file as the last page using pdf editors or other online tools. Then,
complete the following table with the average waiting time and turnaround time of each
algorithm. [Note: the GANTT charts will be used to determine partial credit if the values in the
table are incorrect]

Scheduling Algorithm Average waiting
time

Average turnaround
time

First Come First Served (FCFS)
Shortest Job First (SJF)
(Non-preemptive)

Shortest Remaining Time First
(Preemptive)

Round Robin (RR)
(Time Quantum = 5)

Priority (Preemptive)

5) [25] Learning from the last time she didn’t eat breakfast, Alice decides to eat some bread
before the next lecture. Also coincidentally, Alice (while munching on her bread) learns about
the Bakery Algorithm, which is a solution to the critical section problem. Inspired by the Bakery
Algorithm, Alice tries to design an algorithm of her own to provide a 2-process solution to the
critical section problem. After she finishes, Bob comes along and sneakily erases the boolean
values of the flags on line 1 and 7 of her algorithm, hoping that she wouldn’t notice.

Shared variables: flag[0], flag[1]
Initially flag[0] = flag[1] = false;

Process P0:
0: while (true) {
1: flag[0] = ____;
2: while (flag[1]) {
3: flag[0] = false;
4: while (flag[1]) {
5: no-op;
6: }
7: flag[0] = ____;
8: }
9: critical section
10: flag[0] = false;
11: remainder section
12: }

Process P1:
0: while (true) {
1: flag[1] = ____;
2: while (flag[0]) {
3: flag[1] = false;
4: while (flag[0]) {
5: no-op;
6: }
7: flag[1] = ____;
8: }
9: critical section
10: flag[1] = false;
11: remainder section
12: }

a) A few hours later Alice notices the blanked out areas in her algorithm, but has lost the

inspiration she had earlier in the day. Therefore, she comes to you (again) asking whether
you can mark an X in the appropriate box for the value of the boolean flags on line 1 and
7 so that the algorithm satisfies mutual exclusion.

 true false

Line 1

Line 7

b) You stare at the code and ask Alice about the other two requirements to the critical

section problem: Progress and Bounded Waiting. Mark an X in the appropriate box for
whether the requirement is satisfied or not.

 Satisfied? Not satisfied?

Progress

Bounded waiting

6) Alice, wanting to get a bit more clarification on semaphores, decides to refer to a textbook.
She flips to a page, and reads the following:

In an operating system, processes can run concurrently. Sometimes we need to impose a specific
order in execution of a set of processes. We represent the execution order for a set of processes
using a process execution diagram. Consider the following process execution diagram. The
diagram indicates that Pr1 must terminate before Pr2, Pr3 and Pr4 start execution. It also
indicates that Pr4 should start after Pr2 and Pr3 terminate and Pr2 and Pr3 can run
concurrently.

The process execution diagram can also be represented using Serial and Parallel notation. The
above execution diagram is represented as Serial(P1, Parallel(P2, P3) , P4).

We can use semaphores in order to enforce the execution order. Semaphores have two operations
as explained below.

● P (or wait) is used to acquire a resource. It waits for semaphore to become positive, then
decrements it by 1.

● V (or signal) is used to release a resource. It increments the semaphore by 1, waking up a
blocked process, if any.

We can use the following semaphores to enforce the execution order above:

s1=0; s2=0; s3=0;
Pr1: body; V(s1); V(s1);
Pr2: P(s1); body; V(s2);
Pr3: P(s1); body; V(s3);
Pr4: P(s2); P(s3); body;

This assumes that the semaphores s1, s2 , and s3 are created with an initial value of 0 before
processes Pr1, Pr2 , Pr3, and Pr4 execute.

Although Alice read the previous page several times, she still does not quite understand what the
textbook is explaining. Frustrated, she takes a short break and decides to do some stargazing
through her window. After some time, Alice spots the Cassiopeia constellation and excitedly
draws out the placement of the stars on her homework paper. However, she forgets where the
edges should go, so she decides to simply make some up, as shown below.

a) [5] Alice then realizes that it’s long past midnight and hasn’t gotten any additional work
done. After getting back to her desk, Alice decides to use her drawing as a process
execution diagram. She wishes to ask you a few questions about process execution
diagrams over text. Write the representation of the process execution diagram using
Serial and Parallel notation below.

__

b) [20] Although your phone receives Alice’s message, you are already asleep in bed (and

thus ignore Alice’s message). In the morning, you are greeted with a process execution
diagram encoded as above. Having had a very nice sleep, you decide to help Alice with
her question: How should the semaphores s1,s2,s3,s4 be used to enforce the execution for
the given process execution diagram? Assume that the semaphores s1,s2,s3,s4, are all
initialized to 0 (as below).

s1=0; s2=0; s3=0; s4=0;

Pr1: __

Pr2: __

Pr3: __

Pr4: __

Pr5: __

Pr6: __

[Upload your GANTT Charts here]

	Name:
	a Method 1:
	b Method 2:
	In the ManytoOne multithreading model many kernel threads are mapped to:
	TrueThe OnetoOne multithreading model suffers from scalability issues:
	FalseThe OnetoOne multithreading model suffers from scalability issues:
	The ManytoMany multithreading model always uses equal numbers of kernel:
	In the ManytoOne multithreading model a system call from a user thread:
	FirstCome FirstServed:
	ExplanationFirstCome FirstServed FCFS:
	Shortest Job First SJF:
	ExplanationShortest Job First SJF Nonpreemptive:
	First SRTF Preemptive:
	ExplanationShortest Remaining Time First SRTF Preemptive:
	Round Robin RR:
	ExplanationRound Robin RR:
	Priority Preemptive:
	ExplanationPriority Preemptive:
	Average waiting timeFirst Come First Served FCFS:
	Average turnaround timeFirst Come First Served FCFS:
	Average waiting timeShortest Job First SJF Nonpreemptive:
	Average turnaround timeShortest Job First SJF Nonpreemptive:
	Average waiting timeShortest Remaining Time First Preemptive:
	Average turnaround timeShortest Remaining Time First Preemptive:
	Average waiting timeRound Robin RR Time Quantum 5:
	Average turnaround timeRound Robin RR Time Quantum 5:
	Average waiting timePriority Preemptive:
	Average turnaround timePriority Preemptive:
	trueLine 1:
	falseLine 1:
	trueLine 7:
	falseLine 7:
	SatisfiedProgress:
	Not satisfiedProgress:
	SatisfiedBounded waiting:
	Not satisfiedBounded waiting:
	Serial and Parallel notation below:
	Pr1:
	Pr2:
	Pr3:
	Pr4:
	Pr5:
	Pr6:
	Text2:
	Text3:
	Text4:
	Text5:
	Text6:
	Text7:
	Text8:
	Text9:
	Text10:
	Text11:
	Text12:
	Text13:
	Image14_af_image:
	Image15_af_image:
	Image16_af_image:
	Image17_af_image:
	Image18_af_image:

