
1

Understanding Errors in Approximate Distributed Latent
Dirichlet Allocation

Alexander Ihler Member, IEEE, David Newman

Abstract—Latent Dirichlet allocation (LDA) is a popular algorithm for discovering semantic structure in large collections of text or other
data. Although its complexity is linear in the data size, its use on increasingly massive collections has created considerable interest in
parallel implementations. “Approximate distributed” LDA, or AD-LDA, approximates the popular collapsed Gibbs sampling algorithm for
LDA models while running on a distributed architecture. Although this algorithm often appears to perform well in practice, its quality is
not well understood theoretically or easily assessed on new data. In this work, we theoretically justify the approximation, and modify
AD-LDA to track an error bound on performance. Specifically, we upper-bound the probability of making a sampling error at each step
of the algorithm (compared to an exact, sequential Gibbs sampler), given the samples drawn thus far. We show empirically that our
bound is sufficiently tight to give a meaningful and intuitive measure of approximation error in AD-LDA, allowing the user to track the
trade-off between accuracy and efficiency while executing in parallel.

Index Terms—data mining, topic model, parallel processing, error analysis

DRAFT COPY; TO APPEAR IN: IEEE TRANS. KNOWLEDGE & DATA ENGINEERING
c©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

F

1 INTRODUCTION

LATENT Dirichlet allocation (LDA) models, sometimes
called topic models, have received considerable attention

for their ability to extract semantic content from collections
of text documents. The extracted semantic content is useful
for a variety of applications such as search, categorization
and prediction, as well as understanding the structure of a
collection and its metadata. Topic modeling can be especially
useful in understanding the organization of very large scale
systems and sets of documents; for example, Blei and Lafferty
show how topic models make a powerful tool for browsing,
exploring and navigating through the more than 100 years of
the journal Science [1].

The complexity of LDA is linear in the size of the corpus
and the number of topics being learned; however, for large
collections of documents even linear complexity becomes com-
putationally challenging. For example, learning a 1000-topic
model of MEDLINE, which contains almost a billion words,
would take weeks on a single 3GHz processor. Text collections
of this size are not uncommon in email, news, blog, and
literature databases. Variants of LDA have also been applied
to other data types, including understanding the content of
images [2] and user rankings [3].

With the widespread availability of multicore processors
and the need to topic model increasingly large collections,
researchers have been motivated to investigate ways of paral-
lelizing or distributing LDA’s computations. Nallapati et al. [4]
developed a parallel algorithm for variational inference in LDA
models. However, many researchers prefer to use a collapsed
Gibbs sampling approach for learning LDA models [5], [6].
Gibbs sampling is fundamentally sequential in nature and
thus can be difficult to correctly parallelize, prompting New-
man et al. [7] to develop AD-LDA, a distributed algorithm
that approximates collapsed Gibbs sampling for LDA. They
showed excellent parallel efficiencies for large data sets, and
experimentally demonstrated on several data sets that AD-

A. Ihler is with the Department of Computer Science, University of California,
Irvine, Irvine, CA 92697 USA. Tel: (949) 824-3645. Fax: (949) 824-4056.
(e-mail: ihler@ics.uci.edu)
D. Newman is with the University of California, Irvine, Irvine, CA 92697
USA, and NICTA Victoria Research Laboratory, University of Melbourne,
Melbourne, Vic 3010, Australia. (e-mail: newman@uci.edu)

LDA learned models with similar properties and accuracy to
those learned using the exact algorithm on a single proces-
sor. Wang et al. [8] show how AD-LDA (along with several
optimization tricks) can be represented in either the MPI or
MapReduce programming models, demonstrated scaling to
very large systems and provide an open-source implemen-
tation of the MPI version. Asuncion et al. [9] generalized
the AD-LDA approach to include asynchronous distributed
learning, and to use nonparametric versions of the LDA model.
However, a significant drawback of AD-LDA is that since the
algorithm only approximates Gibbs sampling, and comes with
no guarantees regarding the accuracy of this approximation, it
does not inherit the same desirable theoretical properties that
Gibbs sampling enjoys.

The term “approximation error” for an algorithm such as
AD-LDA may be interpreted in a number of ways. First,
any probabilistic model is by nature an approximation of the
true system, and given the LDA model, algorithms such as
collapsed Gibbs sampling perform approximate inference, as
exact inference is computationally intractable even for small
corpora of documents. These “approximations” are fundamen-
tal to the LDA approach; they can be justified anecdotally by
examining the quality of topics learned on a few corpora, or
by considering the modeling decisions inherent in the LDA
description and theoretical properties of Gibbs sampling, such
as its asymptotic consistency.

However, AD-LDA intentionally introduces an additional
source of approximation in order to make the algorithm
amenable to distributed computation, and it is this source
of approximation error examined in this work. For example,
as might be expected there is a fundamental trade-off be-
tween parallel efficiency, or how well we take advantage of
our distributed computing platform, and the fidelity of our
algorithm. However, AD-LDA as originally designed can only
give feedback about one side of this trade-off: it is easy to
measure parallel efficiency, but it provides no information
about how much error we have introduced to obtain that
efficiency. Moreover, although AD-LDA’s anecdotal evidence is
quite favorable [7], such data do not tell us what to expect in
terms of new corpora, for example feedback about whether our
algorithm continues to perform as expected, or how it might

2

alter as we change the model parameters.
We present a modified parallel Gibbs sampler for LDA which

enables us to measure the fidelity aspect of this trade-off in
terms of performance guarantees. Our algorithm obtains the
same speedups as AD-LDA, but provides an on-line measure
of the approximation quality compared to a sequential sampler.
This measure allows the user to bound and track the sampling
error at each step of the algorithm, and assess the quality of
the approximate learning procedure.

2 LATENT DIRICHLET ALLOCATION

Latent Dirichlet allocation is a probabilistic model that explains
word co-appearances in text as arising from a relatively small
number of possible semantic groups, or topics. Each document
is considered to consist of a small number of topics, each of
which is dominated by only a fraction of all possible words.
The topics define a simplified representation of the documents,
where words that co-appear regularly in documents will tend
to appear together in a topic.

The input to LDA is the standard bag-of-words representa-
tion of a collection of text documents, where a set of documents
D are each represented as a sparse vector of |W | nonnegative
counts, with W being the set of words in the vocabulary. LDA
models each document d as a mixture θd over T latent topics,
where each topic φt is a multinomial distribution over the
|W | word vocabulary. In the generative model φt is drawn
from a symmetric Dirichlet with parameter β, and θd is drawn
from a symmetric Dirichlet with parameter α.1 The ith token in
document d is generated by first drawing a topic assignment
zdi from θd, then generating the token xdi from φzdi . We use Nd
to indicate the number of tokens in document d. The complete
generative process is represented as the graphical model shown
in Fig. 1a.

Given the observed data x, the goal is to compute the
posterior distribution over the latent variables z, φt and θd.
Since exact inference is intractable, one can use variational
or sampling methods to perform approximate inference [12].
The collapsed Gibbs sampling algorithm is one of the most
commonly adopted methods, and performs well in practice [5],
[6].

Collapsed Gibbs sampling proceeds by marginalizing over
φt and θd and sampling just the topic assignments z. A Gibbs
sampling step draws a new value for each topic assignment
conditioned on the current values for all the other topic as-
signments. Given the current state of all but one variable zdi,
the conditional probability of zdi given the other assignments
z¬di is

p(zdi = t|z¬di, α, β) ∝ p(xdi|zdi = t, z¬di, β) p(zdi = t|z¬di, α)

=
N¬diwt + β

N¬dit + |W |β · N¬didt + α

where w = xdi, and we define summations of the current
assignments (indexed by word w, document d, and topic t)
by Nwdt = |{i : xdi = w, zdi = t}|, Ndt =

∑
w
Nwdt,

Nwt =
∑

d
Nwdt, and Nt =

∑
d,w

Nwdt. The superscript “¬di”

1. For simplicity, we assume symmetric Dirichlet priors with scalar
parameters α, β [10], but our error bounds are easily extended to
asymmetric Dirichlet priors with vector-valued parameters, and the
algorithm can be extended to include learning or optimizing over these
parameters as well [11].

α

θd

zdi

xdiφt

β

NdT
D

Words

D
o
cu

m
e
n
ts

A1 A2

C1C3C2

B3 B2B1

A3

(a) (b)

Fig. 1. (a) Graphical model for latent Dirichlet allocation. Each
observed word xdi and its associated latent topic zdi is modeled
as being generated by a combination of two factors, the topic
distribution for that document, θd and the word distribution for
that topic, φt. (b) AD-LDA partitions the documents across
processors; our modification also divides the words into non-
overlapping blocks. Processors sample blocks A1,B1,C1 asyn-
chronously in parallel, re-synchronize, then continue to blocks
A2,B2,C2.

Algorithm 1: Collapsed Gibbs sampling for LDA.

initialize z at random, e.g., zdi ∼ Multinomial(1/T);1

adt = |{i : zdi = t}|+ α;2

bwt = |{(d, i) : xdi = w, zdi = t}|+ β;3

ct = |{(d, i) : zdi = t}|+ |W |β;4

repeat5

forall d ∈ D, i ∈ {1 . . . Nd} do6

t← zdi; w ← xdi; adt- -; bwt- -; ct- -;7

t ∼ Multinomial(ad bw / c);8

zdi ← t; adt++; bwt++; ct++;9

until convergence ;10

indicates excluding word i in document d from the sum. It is
convenient to write this distribution in vector form:

p(zdi|z¬di, α, β) = Multinomial(p ∝ adbw/c)

adt = N¬didt + α bwt = N¬diwt + β ct = N¬dit + |W |β,
where the product awbd/c is taken element-wise, and p is nor-
malized to sum to one. The initialization of z is arbitrary and
typically chosen at random by, for example, uniform sampling.
Pseudocode for the collapsed Gibbs sampling algorithm for
LDA is listed in Algorithm 1.

3 PARALLEL GIBBS SAMPLING FOR LDA

Each iteration of Gibbs sampling updates the topic assignment
zdi for every word in every document in the collection. For
sufficiently massive corpora of text, this can become extremely
slow, and require days or even months of CPU time [7]. For
example, learning T = 1000 topics for the |D| = 8.2 million
abstracts in MEDLINE would take approximately one hour
to iterate once through the corpus, assuming a single 3GHz
processor, and hundreds of these iterations would be required
to reach stationarity. Distributed clusters of computers can
speed up this process. While parallel processing can reduce
topic modeling of huge collections from months to hours, it can
also reduce modeling times for small collections from minutes
to seconds, potentially enabling real-time use.

3

Algorithm 2: AD-LDA: Perform collapsed Gibbs sampling
updates on a distributed set of documents D1 . . . DP .

Follow Algorithm 1 initialization (1-4)
Partition D ⇒ D1 . . . DP ;5

repeat6

for j = 1 . . . P in parallel do7

Copy bj = b, cj = c;8

forall d ∈ Dj , i ∈ {1 . . . Nd} do9

t← zdi; w ← xdi; adt- -; b
j
wt- -; c

j
t - -;10

t ∼ Multinomial(ad bj
w / cj);11

zdi ← t; adt++; b
j
wt++; c

j
t++;12

Update b = b +
P

j(b
j − b), c = c +

P
j(c

j − c);13

until convergence ;14

The obvious way to distribute the learning of an LDA
model is to partition the data set by dividing the collection
of documents into P sets, each of which is processed in
parallel. This is the idea behind AD-LDA: after distributing
the documents over P processors, Gibbs sampling is done on
each set concurrently, and the results are combined after each
processor has swept through its local data once. Note that
we use P to represent both the number of partitions in the
data and the number of processors, which for simplicity of
presentation we assume are equal.

The AD-LDA algorithm is listed in Algorithm 2. Notice
that since the data are split into groups along document
lines, document-specific variables are accessed only by the
processor with ownership of that document. Thus, partitioning
documents across processors enables us to also partition the
variables z and a (representing Ndt) among the distributed
computing elements so that the relevant parts of these variables
are always local and up-to-date. For the other variables (b, c),
AD-LDA makes a local copy (bj , cj) which is updated using
that processor’s data, and the results are combined at the end of
each iteration (line 13). Note that this Gibbs sampling process
is approximate, in the sense that the topic values sampled are not
from the same distributions as would be used in a sequential
Gibbs sampling algorithm. In particular, the vectors bj , cj are
not changed to reflect the samples that have been already
drawn by other processors, and are thus incorrect. In practice,
this approximation appears to be minor, and AD-LDA provides
good results, but has no guarantees. We shall see that, with a
little more work, we can gauge this error “on the fly” and
control it.

Our first algorithmic modification is to partition the data not
only along shared documents but also along shared words. In
addition to partitioning documents D = D1∪ . . .∪DP , we also
partition the observed words W = W1 ∪ . . . ∪WP . We create
P 2 data partitions, each defined by a subgroup of documents
and words. We arrange the computation so that exactly P
of these are done concurrently, and that these P subsets are
orthogonal (no two share the same document or word); see
Fig. 1b. The algorithm is outlined as Algorithm 3. The refined
partitioning requires slightly more frequent synchronization
among the processes (fewer data are processed during each
parallel-for loop), but also involves fewer shared resources.
The local Gibbs sampling steps can update a and b without
potential overlap; only c uses a local copy on each processor
which is not kept up-to-date. This data partitioning was also
independently proposed by Yan et al. [13] to reduce potential
read/write conflicts on a GPU. However, we show that this

Algorithm 3: Word-block coordination in AD-LDA.

Follow Algorithm 1 initialization (1-4);
Partition D ⇒ D1 . . . DP , W ⇒W1 . . . WP ;5

repeat6

for k = 1 . . . P in sequence do7

for j = 1 . . . P in parallel do8

k̄ = k + j − 1 mod P ;9

Copy cj = c;10

forall d ∈ Dj , i ∈ {i : xdi ∈Wk̄} do11

t← zdi; w ← xdi; adt- -; bwt- -; c
j
t - -;12

t ∼ Multinomial(ad bw / cj);13

zdi ← t; adt++; bwt++; c
j
t++;14

Update c = c +
P

j(c
j − c);15

until convergence ;16

modification is key to being able to bound the approximation
error inherent in AD-LDA.

In terms of approximation error, our partitioning’s reduced
number of shared resources has two significant advantages.
The first is that c (or Nt) represents the total number of words
allocated to each topic. This is a “bulk” quantity, and likely to
be relatively stable within any given parallel for-loop. If c were
constant, i.e., were not changed by each processor, our sampler
would be exact. Intuitively, the more stable c, the better our
approximation; we make this precise in Section 4. The second
point is that c is relatively low-dimensional (T values), making
it feasible to save and re-examine it later for a retrospective
evaluation of stability.

4 ANALYZING THE SAMPLING ERROR

Our version of AD-LDA has only a limited number of sources
of approximation error, specifically the differences in the topic
counts Nt being updated locally at each processor. Using a
particular measure of distributional error, we can efficiently
track and bound the error at each step of the Gibbs sampler.

It is worth noting here that our bound will be on the
probability of drawing an incorrect sample at each step of
the algorithm, given the (possibly incorrect) samples drawn
so far. Ideally, we might prefer to measure the difference
between the distributions over joint topic assignments, p(z),
produced by the two algorithms, and in particular their sta-
tionary distributions at convergence. However, since p(z) has
size exponential in the number of tokens, reasoning directly
about p(z) is intractable (hence the use of Gibbs sampling for
inference). Instead, as Gibbs sampling progresses towards the
stationary distribution using small, tractable distributions over
one variable at a time, we measure the differences incurred in
each of these incremental steps. However, this per-sample error
is not easy to directly relate to the joint distribution error for
two reasons. First, it can potentially accumulate over samples,
even super-linearly since errors may compound one another.
Second and conversely, the joint error will be decreased at each
step by the progress of Gibbs sampling towards the stationary
distribution; however, the rate of this decrease (the mixing rate
of the Gibbs sampler) is difficult to quantify accurately in
practice. These two factors will balance one another to produce
the total error between the joint distributions.

While our on-line measure does not capture the possible
accumulation of errors, we argue that it remains a useful as-
sessment of quality. Intuitively, it treats the distributed compu-
tation as additional “noise” being input into the Gibbs sampler,

4

and allows us to measure the magnitude of the noise during a
distributed execution. This view places the error of distributing
the calculation on the same footing as we might consider, for
example, a round-off error in floating point calculations or non-
uniformity in a random number generator, either of which will
have similar per-step effects on the Gibbs sampling process.
Because our error values can be interpreted as a bound on a
probability, it has a natural scale for interpreting its magnitude;
a value of 10−4, for example, means that on average we draw
99.99% of the samples correctly.

Providing some measure of error is important to understand-
ing the trade-offs inherent in AD-LDA. AD-LDA as originally
developed provides no feedback on quality, and can only be
assessed anecdotally by also running a sequentially computed
model [7]. As this is impractical in general, we have no way
to know how well AD-LDA will do on any new data set. An
error bound can be used to assure the user, for example, that
the magnitude of error is similar to that observed previously.

4.1 Hilbert’s Projective Metric

We use a measure of error between two vectors called Hilbert’s
projective metric [14]. This metric has been successfully applied
to analyze approximations in a probabilistic inference algo-
rithm called belief propagation; it was independently developed
in [15] (there termed the dynamic range) for the purpose of ana-
lyzing the stability of belief propagation to small perturbations.

The projective metric d(v, v̂) between two positive vectors
v, v̂ is given by

d(v, v̂) = max
t,t′

[log(vt/v̂t)− log(vt′/v̂t′)] (1)

This distance measure is closely related to the L∞ or sup-norm
applied to log v, and has a number of useful properties for an-
alyzing the ways in which distributional errors behave during
inference. The most important properties for our analysis are:

Theorem 1: The projective metric is invariant to positive scal-
ing on the vectors, so that if λ, λ′ are positive scalars, we have

d(λv, λ′v̂) = d(v, v̂) (2)

Proof: Follows readily from the definition (1).
Theorem 2: Let s be any positive vector; then

d(sv, sv̂) = d(v, v̂) (3)

where the vector multiplication is elementwise, (sv)t = stvt.
Proof: Again follows directly from the definition (1).

Theorem 3: Let
∑

t
vt =

∑
t
v̂t. Then, adding any nonneg-

ative vector h does not increase the distance between v and
v̂:

d(v + h, v̂ + h) ≤ d(v, v̂) (4)

Proof: Since
∑

t
vt =

∑
t
v̂t, by the mean value theorem,

min
t′

log vt′/v̂t′ ≤ 0 ≤ max
t

log vt/v̂t.

Furthermore, it is easy to show that for a, b, c, d ≥ 0,

a

c
≤ b

d
⇒ a

c
≤ a+ b

c+ d
≤ b

d
.

Since log is monotonic, and log ht/ht = log 1 = 0, we have

log
vt′

v̂t′
≤ log

vt′ + ht′

v̂t′ + ht′
≤ 0 ≤ log

vt + ht
v̂t + ht

≤ log
vt
v̂t
.

Finally, we relate d(v, v̂) to more traditional norms, particu-
larly applied to normalized probability distributions.

Theorem 4: Let v, v̂ be two positive vectors with unit sum,
so that

∑
t
vt =

∑
t
v̂t = 1, and let d(v, v̂) = ε. Then the L1

difference is bounded by

‖v − v̂‖1 =
∑
t

|vt − v̂t| ≤ |1− eε| = ε+O(ε2) (5)

and therefore, the difference in probabilities assigned to any
event E is also bounded:

max
E

∣∣∣∑
t∈E

vt −
∑
t∈E

v̂t

∣∣∣ ≤ 1

2
|1− eε| = 1

2
ε+O(ε2) (6)

Proof: Since
∑

(v − v̂) = 0, we know mint
v̂t
vt
≤ 1 ≤

maxt
v̂t
vt

. Thus, exp(−ε) ≤ v̂t
vt
≤ exp(ε). We then see∑

t

|vt − v̂t| =
∑
t

vt |1− v̂t/vt| ≤ |1− eε|.

Inequality (6) then follows from Scheffé’s identity [16].

max
E

∣∣∣∣∣∑
t∈E

vt −
∑
t∈E

v̂t

∣∣∣∣∣ =
∑

t:v̂t<vt

vt − v̂t =
1

2

∑
t

|vt − v̂t|.

Although we use (6) to interpret the projective error, it is
worth noting that the projective metric measures error on
log v and so is more sensitive to changes in small values than
large ones. Therefore a given value of ε may correspond to
an ε/2 change between vt ≈ vt′ ≈ .5, or a much smaller
change in probability to an entry of v with less probability. This
difference can make our interpretation of the bound through (6)
somewhat pessimistic, particularly when some entries of v are
very small, but empirically it often appears reasonably tight
(see Sec. 5).

4.2 Error Bounds in Parallel LDA

Let us now examine the distributions used while executing
parallel collapsed Gibbs sampling for LDA, as in Algorithm 3.
Consider a sequential version of this algorithm, in which
process j = 1 executes first, then j = 2, and so on, and imagine
that in addition to the local copy cj of c used at each processor,
the processor also updates the true global count c. We design
our algorithm to assess the error between the parallel and
sequential distributions at each step of the algorithm, given
the samples drawn thus far. In other words, we compare the
distributions

p ∝ adbw/c p̂ ∝ adbw/c
j

but draw our sample according to p̂, and update both c and
cj for the next step given this sample. Thus we assess the in-
stantaneous difference in distributions between the sequential
and parallel versions of the algorithm, but do not consider the
accumulation of errors in the distribution; see the discussion
at the beginning of Section 4.

The difficulty with this approach lies in the fact that the
“true” c is not available at the time each processor evaluates its
data. Comparison to c must be retrospective; it can take place
only after the preceding processes have finished. However, the
distributions change at each step, depending on ad and bw,
and moreover these vectors and c, cj all evolve with each step
as topic assignments are changed. Thus it is not obvious that

5

Algorithm 4: Bounding errors in AD-LDA.

Follow Algorithm 1 initialization (1-4);
5 Partition D ⇒ D1 . . . DP , W ⇒W1 . . . WP ;
6 repeat
7 for k = 1 . . . P in sequence do
8 for j = 1 . . . P in parallel do
9 k̄ = k + j − 1 mod P ;

10a hj
t = |{(d, i) : d ∈ Dj , xdi ∈Wk, zdi = t}|;

10b v̂j = c− hj ;
11 forall d ∈ Dj , i ∈ {i : xdi ∈Wk̄} do
12 t← zdi; w ← xdi; adt- -; bwt- -; h

j
t - -;

13 t ∼ Multinomial(ad bw / (v̂j + hj));
14 zdi ← t; adt++; bwt++; h

j
t++;

15a Compute ǫj = d(v̂j , v̂j +
P

k<j(h
k + v̂k − c));

15b Update c = c +
P

j(h
j + v̂j − c);

until convergence ;

‖p − p̂‖1 can be evaluated without re-visiting each datum in
sequence.

Luckily the bounds from Section 4.1 enable ‖p − p̂‖1 to be
bounded efficiently. To do so, we must slightly modify our
algorithm and the quantities it keeps track of; these changes
are given in Algorithm 4. We first separate the topic counts
associated with data in the current process, and denote this
vector hj . We denote the remainder of the counts (those
associated with other processes) as v̂j . Each step of the Gibbs
sampler in processor j affects only hj ; v̂j remains constant. We
can thus save v̂j , and use it to retrospectively bound the error.

Once all processes have finished, we can compare the cj used
by each processor to the c that would have been computed
sequentially. However, instead of comparing cj and c (which
evolve during the process), we compare v̂j and its sequentially
obtained version, v. As v̂j represents the topic counts of data
assigned to other processes at the beginning of j’s operations,
v represents what these topic counts would have been had j
waited until all prior processes had finished. The vector v can
be easily computed given the process outputs, by summing up
the changes in each preceding process’ counts, and the error
computed as:

εj = d(v̂j , v = v̂j +
∑
k<j

(hk + v̂k − c))

We then have the following result:
Theorem 5: The probability of drawing an incorrect sample at

each step of the Gibbs sampler due to the parallel computation,
given the values of all preceding samples, is bounded by (eεj−
1)/2 = εj/2 +O(ε2j).

Proof: Using the preceding theorems, we have that for an
arbitrary nonnegative vector hj and positive vectors ad, bw,

d(v̂j , v) ≥ d(v̂j + hj , v + hj) by (4)

= d(1/(v̂j + hj) , 1/(v + hj)) by (1)

= d(adbw /(v̂
j + hj) , adbw /(v + hj)) by (3)

= d(p̂j , p) by (2)

Applying Theorem 4 completes the proof.
Moreover, to track εj for each processor requires only P · T
additional storage and sequential work at re-synchronization.
In experiments (Sec. 5) we find values of ε ranging from 10−1

to 10−4, depending on the data and parameter settings.

4.3 Approximate Scaling Analysis

In this section we sketch out a simple, approximate analysis
of the error and its dependence on parameters such as the
number of data, number of partitions, and number of topics.
We emphasize that while some of the assumptions of this
scaling analysis may be unrealistic in practice, it will provide
an idea of how the approximation error might depend on our
choices, which we verify experimentally in Section 5.

Suppose that the random variation of our topic count vector
c is centered around Nω for some normalized vector ω, and
take cj = Nω for each j. Let us assume for the sake of
approximation that the topic into which each sample falls is
i.i.d. and distributed according to probability mass function
ω, and note that for processor i, the sequential version of the
algorithm will have processed approximately Ki = N(i−1)/P 2

data since the last resynchronization step. Then, the sequen-
tially sampled value of c for any given parallel iteration is
approximately normal, with mean Kiωt and covariance given
by Σtt = Kiωt(1− ωt) and Σtt′ = −Kiωtωt′ for t 6= t′.

The projective metric bound consists of a series of maxima
over the stochastic realization (samples) produced in each
of the P partitions, and over a topic pair (t, t′) within the
projective metric definition itself. We will approximate these
maxima using simple plug-in estimates taken from the sam-
ples’ expected behavior. In particular we take K = KP .
N/P , and select the coordinate t with the largest variance,
arg maxt σ

2
t = ωt(1− ωt). Finally, we substitute the two-sigma

distance in coordinate t as a reference “maximum” value which
might be observed in practice. This gives a projective metric
comparision between the vector Nω and Nω ± 2

√
Kσ2, or

d(p̂ , p) ≈ max
t

log

(
Nωt + 2

√
Kσ2

t

Nωt

Nωt

Nωt − 2
√
Kσ2

t

)

≈ 4 max
t

√
1

NPωt
.

If the topic counts are approximately uniform, ωt ≈ 1/T , this
expression simplifies to

≈ 4

√
T

NP
.

Thus, this analysis suggests that the error should increase with
the square root of the number of topics T , and decrease with
the square root of both the number of partitions P and the total
number of data N . The general form of this approximation is
intuitive, since we expect more potential sensitivity when the
topic count vector is small (N small or T large), and increasing
P increases the rate of synchronization among processes and
reduces the number of data being processed in parallel at any
one time. We shall see in Section 5 that these approximations
are reasonably accurate in practice.

5 EXPERIMENTS

We empirically validate our results using an OpenMP imple-
mentation of AD-LDA to show the speed-up of our modified
algorithm, along with the scaling of our error bounds with
problem size, number of data partitions, and topics, and their
behavior over time (iteration number). We use several instances
of bag-of-words text data from the UCI Machine Learning
Repository [17], whose relative sizes (in terms of number of
documents, unique words, and total number of words in the

6

Data Set |D| |W | N N/|D|
KOS 3,430 6,906 467,714 136

NIPS 1,500 12,419 1,932,365 1288

Enron 39,861 28,102 6,412,172 160

MEDLINE 8,200,000 141,043 737,869,083 90

Fig. 2. Bag-of-words text data sets used in the experiments and
their relative sizes, available from [17].

corpus) are listed in Fig. 2. The data sets consist of blog entries
from dailykos.com (KOS), full papers from the NIPS conference
(NIPS), publicly released emails from the Enron trial (Enron),
and abstracts from the MEDLINE database (MEDLINE). Stan-
dard processing was used to create the bag-of-words data from
the original text, with minor differences across the four data
sets. For all data sets except MEDLINE, text was made lower-
case and punctuation characters replaced by whitespace, then
text was split on whitespace. We removed frequently occurring
stopwords (such as ’the’), terms that occurred fewer than ten
times in the corpus, and terms shorter than three characters.
Stemming or lemmatization were considered unnecessary due
to the large volume of data. MEDLINE was processed so as
to preserve various multi-word-expressions such as names of
diseases, conditions, chemicals, and therapies (e.g., “hepatitis-
b” or “x-ray”).

On the largest of these (MEDLINE), for T = 1000 and P =
16, we achieve ≈ 85% parallel efficiency on 8 cores (a speedup
of ≈ 6.8), with error bound ≈ 4 × 10−4. However, MEDLINE
is prohibitively large for running multiple experiments at dif-
ferent settings, and for running single-threaded executions for
comparison. For this reason, subsequent experiments focus on
the three smaller data sets (KOS, NIPS, and Enron), on which
sequential execution is more tractable. Moreover, by running a
single-threaded version which simulates the parallel execution
of each algorithm, we can track not only our own error bound
(which can be computed in a distributed execution) but also
the true value of the quantity it bounds, the error between
each Gibbs sampling distribution given full versus only local
information. The latter value cannot be computed by a parallel
implementation, but will help give context to our bounds. For
interpretability, we compute one-half the L1 error between the
two sampling distributions, 1

2
‖p− p̂‖1, which as discussed in

Theorem 4 bounds the probability of an erroneous sample.
Following the parameter choices of [7], we select α = .1,
β = .01, and T = 200 for all three data sets except where
noted.

Timing and speed-up. Fig. 3a shows the speed-up of our
modified version of AD-LDA on an eight-core desktop ma-
chine, having subdivided the data into P partitions where
P is the number of cores in use. Our modifications to AD-
LDA do not significantly affect its parallel efficiency, since the
algorithms differ only in the addition of error tracking steps.
Like the original formulation we obtain nearly linear speed-up
in the number of cores. Distributed memory implementations
of AD-LDA may see less efficiency due to slower communica-
tions; see Wang et al. [8] for a study.

Fig. 3b shows timing information for all three data sets
as P is increased on an 8-core machine. Up to P = 8, the
time required decreases approximately linearly (as indicated
in Fig. 3a). Efficiency then flattens (all 8 cores are in use), and
as P continues to increase, efficiency begins to degrade. For
very large P , each of the P 2 partitions contains relatively little

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of Cores

S
pe

ed
up

 F
ac

to
r

Enron
NIPS
KOS
Ideal

1 2 3 4 5 6 7 8 16 32 64 128 256
10

1

10
2

10
3

10
4

Partitions, P
T

im
e

(s
)

Enron
NIPS
KOS
Ideal

(a)

(b)

Fig. 3. Parallel efficiency of the modified AD-LDA sampler. (a)
Speedup factor (sequential time divided by parallel time) for
each data set as the number of cores used increases, and P
equal to the number of cores. (b) Computation time using up to 8
cores, as P increases. Dashed lines show ideal (linear) speedup
behavior. For moderate P , AD-LDA is quite close to optimal on
all three data sets, indicating a high parallel efficiency. As P
becomes large and P 2 approaches the number of data, there
are too few data per partition and efficiency declines.

data (for example, for the KOS data at P = 256, the P 2 = 65536
partitions contain on average only ≈ 7 tokens per partition).
The synchronization time eventually outweighs the work per
partition, reducing efficiency. For larger data sets such as Enron
(≈ 100 tokens per partition at P = 256) this effect is reduced.

Behavior over time. We can also examine the behavior of
our error bound as the Gibbs sampler progresses. Fig. 4 shows
the error bound produced by Algorithm 4 on the largest of
the data sets (Enron), as a function of the iteration number
and for P = 4. For comparison, we also show the actual error
experienced by the sampler (dashed line).

Fig. 4a shows that our algorithm’s bound and the true error
behave similarly, and in practice are separated by an approxi-
mately constant factor over time (here, between about 2 and 3).
The sampling error increases initially during the algorithm, as
many topic assignments at each processor are changing rapidly.
The error then begins to decline, eventually reaching a steady-
state level of fluctuation. Notably the increased error appears to
correspond to the period during which perplexity drops most
sharply, perhaps because during this period the assignments
are changing rapidly as the algorithm moves toward a region
of high probability. Similar shapes are also observed for the
other data sets but are omitted for space. If we examine the
shape of the bound as P increases in Fig. 4b, we see that the
peak is attenuated for very high values of P , due to the more
frequent re-synchronization.

7

0 20 40 60 80 100
10

−3

10
−2

10
−1

Iteration

S
am

pl
e

E
rr

or
 P

ro
ba

bi
lit

y

Enron Bound
Enron Error

0 20 40
10

−3

10
−2

10
−1

Iteration

S
am

pl
e

E
rr

or
 P

ro
ba

bi
lit

y

(a)

(b)

P = 4

...

P = 256

Fig. 4. (a) Sampling error as a function of iteration number
on the Enron data set with P = 4 partitions. The solid curve
shows the error bound computed using our method, while the
dashed curve shows the maximum actual error experienced at
each iteration (computed using sequential sampling). Errors are
high early on, while many assignments are changing, then fall off
to a lower steady-state value after the chain has mixed. (b) This
effect is attenuated as the number of partitions P is increased,
and fewer data are changing between re-synchronization steps.

We should not be too concerned by this shape; although
errors can be cumulative (see discussion in Section 4), since
the algorithm initialization is arbitrary it is fair to imagine
“initializing” both sequential and distributed LDA to the AD-
LDA state after some number of iterations and then running
the algorithm correspondingly longer. This would bypass the
period of high error but throw away some iterations during
which Gibbs sampling can be considered to have mixed. For
this reason, in later comparisons we condense our summary
of each run to a scalar, “steady-state” error by averaging the
values over the second half of the run.

Effect of word-block coordination. We would also like to
know how much the subdivision of data used in Algorithms 3
and 4 affects the accuracy of our sampling distributions. For
this comparison, we evaluate the true sampling distribution
error values observed in a simulated parallel execution, and
compare three algorithms: the original AD-LDA (Algorithm 2),
which subdivides into P partitions along documents; a version
of AD-LDA which subdivides the data into P 2 partitions
along documents; and our modified version (Algorithm 3),
which subdivides into P 2 partitions along both documents and
words. Fig. 5 shows the maximum and average steady-state
error observed during a given iteration for each version.

The original AD-LDA (red) has a high maximum error
(≈ .97), since for example samples of rare words may be
tightly coupled across partitions. Of course, such high-error
sampling distributions are rare; the average error is much
lower (≈ 10−2), but neither improves with increasing P ,
since regardless of P resynchronization takes place only after

4 8 16 32 64 128 256

10
−4

10
−2

10
0

Partitions

S
am

pl
e

E
rr

or
 P

ro
ba

bi
lit

y

Doc (P), max error
Doc (P), avg error
Doc (P2), max error

Doc (P2), avg error
Doc+Word, max error
Doc+Word, avg error

Fig. 5. Approximation quality as a function of partitions P for
different versions of AD-LDA, showing maximum (solid) and
average (dashed) steady-state error during the execution. The
original AD-LDA (Algorithm 2, red) does not resynchronize more
often with increasing P and so does not improve. Partitioning
into P 2 groups and resychronizing each P (green) improves
average error but not maximum error. Partitioning by word-block
(Algorithm 3, blue) improves both worst-case and average error
by orders of magnitude.

all data have been sampled. The same partitioning method
but using P 2 partitions and resynchronizing every P (green)
has the same maximum error but improves its average error
as P increases. Finally, the word-block coordinated version
proposed here (blue) has worst-case error two to three orders
of magnitude better (≈ 10−3), even lower than the average
behavior of the other versions; its average-case behavior is
better still (≈ 10−4).

Scaling behavior. Next, we examine the scaling behavior
of our error bound with the data size N (number of words
in the corpus), the number of partitions P , and the number
of topics T . The results of these experiments on all three
data sets are shown in Fig. 6. For comparison, we show both
the projective metric bound obtained by our algorithm (solid
blue lines) and the maximum L1 error experienced at each
iteration by the sampler (dashed lines). All three data sets
appear in each figure: KOS (circles), NIPS (squares), and Enron
(triangles). Also shown in each figure is a reference line (red) to
indicate the scaling behavior anticipated by the approximations
in Section 4.3. All plots are logarithmic in both scales for clarity.

Fig. 6a shows the error values as a function of data set size
(one point per data set). As expected, the error decreases for
larger data sets. Both the actual error and our bound decrease
at approximately the same rate, which is roughly similar to the
1/
√
N behavior given by our analysis.

Fig. 6b shows the error level as a function of the number of
partitions P . Increasing the number of partitions also increases
the number of times per iteration that the algorithm synchro-
nizes and updates its counts. Thus as expected, we see that
both the actual error and our bound decrease as the number
of partitions grows. Again, across all sizes of partitionings, our
error bound remains reasonably close to the actual maximum
error observed during sampling, and again the trend is quite
close to the anticipated 1/

√
P scaling behavior.

Finally, Fig. 6c shows the error level as a function of the
number of topics T . Increasing the number of topics increases
both the actual error and our bound. In this case, the actual
error appears to scale in a similar way to our anticipated

√
T

8

behavior, but the error bound increases at a slightly faster
rate. Intuitively, our bound depends on the stability of the
log-counts over each iteration; for a sufficiently large number
of topics, some topic will have only a few counts, and will
thus be unstable in our projective metric sense. The bound
often becomes loose in these cases. This suggests that for very
large values of T , such as nonparametric models in which T
is effectively infinite [9], more research may be be required to
provide a tight estimate of the error.

6 CONCLUSION

We have presented a variant of AD-LDA which has a number
of advantages over the original. It reduces the number of
sources of error by decreasing the shared resources between
processors executing in parallel. Moreover, by using this mod-
ification and tracking slightly more information at each proces-
sor, the algorithm is able to retrospectively construct a bound
on the probability of drawing an incorrect sample at each step
once the processors resynchronize. Our empirical results show
that the bounds closely track the actual maximum error expe-
rienced by AD-LDA, and quantitatively support the anecdotal
evidence that AD-LDA provides accurate approximations.

This modification gives us the means to check the behavior
of AD-LDA during execution, obtaining some assurance that
our distributed implementation is not causing serious errors.
Empirically, we see that larger data sets and smaller parallel
blocks typically lead to better approximations, and that error
increases during early mixing but falls off as the model stabi-
lizes.

Although we have presented our bounds for LDA and text
data, it should also be extensible to more general problems. In
theory, our results are applicable to hierarchical and nonpara-
metric variants of LDA as well [9], [18]. However, since we
rely on the stability of the log-counts in distributed copies of
shared data during sampling, in practice the resulting error
bounds may become loose and may require additional re-
search. Another possible extension is to analyze asynchronous
exchanges [9].

ACKNOWLEDGMENTS

The authors thank Arthur Asuncion, Max Welling, and
Padhraic Smyth for many useful discussions on LDA and
its distributed implementations, as well as the anonymous
reviwers for their suggestions.

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

REFERENCES

[1] D. Blei and J. Lafferty, “A correlated topic model of Science,” Ann.
Appl. Stat., vol. 1, no. 1, pp. 17–35, 2007.

[2] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman, “Dis-
covering object categories in image collections,” in Proc. ICCV,
2005.

[3] T. Rubin and M. Steyvers, “A topic model for movie choices and
ratings,” in Proc. Intl. Conf. Cog. Model., Manchester, UK, 2009.

[4] R. Nallapati, W. Cohen, and J. Lafferty, “Parallelized variational
em for latent Dirichlet allocation: An experimental evaluation of
speed and scalability,” in Proc. ICDMW, 2007, pp. 349–354.

[5] M. Welling, Y. W. Teh, and B. Kappen, “Hybrid variational/Gibbs
collapsed inference in topic models,” in Proc. UAI, 2008, pp. 587–
594.

10
6

10
7

10
−2

Number of Word Tokens, N

M
ax

im
um

 E
rr

or

KOS Bound
KOS Max L1
NIPS Bound
NIPS Max L1
Enron Bound
Enron Max L1
 reference1/
√

N

(a)

10
1

10
2

10
−3

10
−2

Number of Partitions, P

M
ax

im
um

 E
rr

or

KOS Bound
KOS Max L1
NIPS Bound
NIPS Max L1
Enron Bound
Enron Max L1
 reference1/
√

P

(b)

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Number of Topics, T

M
ax

im
um

 E
rr

or

KOS Bound
KOS Max L1
NIPS Bound
NIPS Max L1
Enron Bound
Enron Max L1
 reference
√

T

(c)

Fig. 6. Error scaling as a function of (a) the size of the data set,
N ; (b) the number of partitions, P ; (c) the number of topics, T .
Each plot shows both the projective metric error bound (solid,
blue) and maximum L1 error experienced (dashed, black) for
the KOS (circles), NIPS (squares), and Enron (triangle) data
sets. Also shown in each plot is a reference line showing the
estimated scaling behavior of Section 4.3. In all cases, the
estimated behavior appears roughly similar to the observed
curves for both the error bound and the true error probability.

[6] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh, “On smoothing
and inference for topic models,” in Proc. UAI, June 2009.

[7] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Distributed
inference for latent Dirichlet allocation,” in Proc. NIPS, Dec. 2007.

[8] Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and E. Y. Chang, “PLDA:
Parallel latent Dirichlet allocation for large-scale applications,” in
Proc. AAIM, June 2009.

[9] A. Asuncion, P. Smyth, and M. Welling, “Asynchronous dis-

9

tributed learning of topic models,” in Proc. NIPS, 2009, pp. 81–88.
[10] T. L. Griffiths and M. Steyvers, “Finding scientific topics.” Proc

Natl Acad Sci, vol. 101 Suppl 1, pp. 5228–5235, April 2004.
[11] T. Minka, “Estimating a Dirichlet distribution,” 2003.

[Online]. Available: http://research.microsoft.com/en-us/um/
people/minka/papers/dirichlet/

[12] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet alloca-
tion,” JMLR, vol. 3, pp. 993–1022, 2003.

[13] F. Yan, N. Xu, and Y. Qi, “Parallel inference for latent Dirichlet
allocation on graphics processing units,” in NIPS, Dec. 2009.

[14] P. J. Bushell, “Hilbert’s metric and positive contraction mappings
in a Banach space,” Arch. Rational Mech. Anal., vol. 52, no. 4, pp.
330–338, Dec. 1973.

[15] A. T. Ihler, J. W. Fisher III, and A. S. Willsky, “Loopy belief
propagation: Convergence and effects of message errors,” JMLR,
vol. 6, pp. 905–936, May 2005.

[16] L. Devroye and G. Lugosi, Combinatorial Methods in Density Esti-
mation. New York: Springer, 2001.

[17] A. Asuncion and D. Newman, “UCI machine learning
repository,” 2007. [Online]. Available: http://www.ics.uci.edu/
∼mlearn/MLRepository.html

[18] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Sharing clusters
among related groups: Hierarchical Dirichlet processes,” in Proc.
NIPS, 2005, pp. 1385–1392.

Alexander Ihler is an Assistant Professor in
the Department of Computer Science at the
University of California, Irvine. He received his
Ph.D. in Electrical Engineering and Computer
Science from MIT in 2005 and a B.S. with honors
from Caltech in 1998. His research focuses on
machine learning, graphical models, and algo-
rithms for exact and approximate inference, with
applications to areas including sensor networks,
computer vision, data mining, and computational
biology. His many research articles include two

best paper awards, at Neural Information Processing Systems (NIPS) for
his work on belief propagation and at Information Processing in Sensor
Networks (IPSN) for his work on sensor localization.

David Newman is a Research Scientist in the
Department of Computer Science at the Univer-
sity of California, Irvine. His research focuses
on theory and application of topic models and
related text mining and machine learning tech-
niques. Newman’s work combines theoretical
advances with practical applications to improve
the way people find and discover information.
Newman received his Ph.D. from Princeton Uni-
versity.

