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Abstract

We investigate a hybrid of two styles of algorithms for deriy bounds for op-
timization tasks over graphical models: non-iterative sage-passing schemes
exploiting variable duplication to reduce cluster sizeg (eMBE) and iterative
methods that re-parameterize the problem'’s functionsregnd produce good
bounds even if functions are processed independently KR1.P). In this work
we combine both ideas, augmenting MBE with re-parametioizavhich we call
MBE with Moment Matching (MBE-MM). The results of preliminaempirical
evaluations show the clear promise of the hybrid schemeits/grdividual com-
ponents (e.g., pure MBE and pure MPLP). Most significantly,demonstrate the
potential of the new bounds in improving the power of mecbally generated
heuristics for branch and bound search.

1 Introduction

Graphical models are a popular framework that generalizeyroambinatorial optimization tasks.
In this paper we consider probabilistic graphical modelg.(@8ayesian and Markov networks) [1].
The task of finding the variable assignment maximizing ttiet jorobability of the model is known
as the MAP (maximum aposteriori) or MPE (most probable enggian) problem, and is NP-hard.

Mini-Bucket Elimination (MBE) [2] is a popular bounding setme, which provides an approxima-
tion by applying the exact Bucket Elimination (BE) algonith3] to a simplified version of the
problem obtained by adding duplicates of some variables. tie MAP assignment of the relaxed
problem the duplicates have the same values then this assigryields the exact solution to the
original problem.

The relaxation view of MBE is closely related to the familyitdrative approximation techniques
based on linear programming (LP) forms of max-product: treveighted” max-product algo-
rithm [4], max-product linear programming (MPLP) [5], s@ftc consistency [6, 7], etc. [8, 9].
These algorithms can be thought of as “re-parameterizingast shifting” the original functions,
i.e., jointly modifying them in such a way that the originatdibution remains unchanged.

In this work we use these ideas to define a new scheme we catbmikets with moment match-
ing (MBE-MM). While we do not provide any theoretical guareses of superiority, our empirical
comparison of MBE-MM with pure MBE on various benchmarkswhdhat MBE-MM achieves
better accuracy than pure MBE, while its time overhead igimiicant in most problems. We also
compare and contrast MBE-MM with the Max Product Linear Paogming (MPLP) algorithm [5].
Our experiments demonstrate that for many benchmarks MRhme slow to converge and is less
practical than MBE-MM, which acquires its strength fromyieg on large clusters and can obtain
reasonably accurate bounds in one iteration.

Finally, one of the primary uses of MBE is in generating hstics for best-first and branch and
bound search [10, 11]. These have been shown to be quite fubwamd were highly competi-
tive in recent competitions [12, 13]. We show here that thprowed scheme of MBE-MM can
generate much more powerful heuristics and thus increaspaWwer of Branch and Bound search
significantly.



2 Preliminariesand Background on mini-bucket elimination

Consider a set of probability functioffsover variablex defining a graplt = (X, E). Vertices are
the variables and an edge connects any two variables appearihe scope of the same function.
TheMAP task is to find the assignment maximizing the joint probapilt* = argmaxx]]; fi.

A popular algorithm for solving MAP task iBucket elimination (BE) that places each function
in the bucketof its latest variable according to a certain ordering= (X,...,X,). For each
Bucketx, notedB;, from B,, to B;, we compute a message = maxy, H;;l Aj, where); are
the functions in theé3;, including earlier computed messaggsis placed in the bucket of its latest
variable ino. The optimal assignment is recovered in the second, botijephase, when a value is
assigned to each variableanconsulting the functions created during the top-down ph@ke time
and space complexity of BE are exponential in the graph patemmduced widtho.

Mini-bucket elimination (MBE) is an approximation scheme designed to avoid the spadd¢ime
complexity of BE. Consider a buck&; and an integer bounding parameter MBE creates a
z-partition @ = {Q1,...,Q,} of B;, where each set of function@; € @, calledmini-bucket
includes no more than variables. Then each mini-bucket is processed separgistyas in BE,
generating an upper bound on the exact optimizing solutibime time and space complexity of
MBE is exponential ire, which is typically chosen to be less than In general, greater values of
increase the quality of the bound, untill when= w, MBE finds the exact solution.

3 Background on moment matching strategies

While MBE is usually justified as a relaxation of variable éhiation, most iterative re-
parameterization approaches are described in terms afig@wa LP relaxation of the original model.
Wainwright et al. [14, 4] established the connections betwleP relaxations of integer programming
problems and (approximate) dynamic programming methotlgyusessage-passing in the max-
product algebra; subsequent improvements in algorithrwis as MPLP include coordinate-descent
updates that ensure convergence [5, 9].

Without loss of generality MPLP assumes as input the MAP leralfor functionsd;; defined over
pairs of variables, where thg; = log f;; are a log-transform of the original functiof’s The
objective is simply the sum of the local functions’ maximagdaipper bounds the true optimum:

m}?xzeij(xiyxj) < Zgili)jeij(xhxj% 1)
) )
and message’s; are used to reparameterize the local functiéniSor space reasons we do not show

the derivation of the MPLP, only provide the resulting aljon in Figure 1. The algorithm iterates
updating all edges until convergence, it is guaranteed pwore the objective with each iteration.

Algorithm 1 Algorithm MPLP

Input: graphical mode{X, D, ©, >~), wheref; ; is a potential for each edgg € E
Output: optimizing assignment ™
1: Initialize: Vij, ji € Eset)\,;j (17) = %maxmi 0”’ (17 I]‘)
2: lterate until convergence:
3: for all edgesij, ji € E do
4. Update: ‘ ‘
Ajiwi) = =327 (@) + § maxa [N, (€1) 4 0ij (x4, ;)]
whereX;7 (z;) = 32, Aki(wi)
. end for
. Calculate node beliefdi; (z;) = >, Ari(xs)
7: Return: the optimizing assignment; = arg max,, b(x;)

[e2]9)]

4 Mini-bucket elimination with moment-matching

The source of inaccuracy in MBE is the independent procgssimmini-buckets{@1,...,Q,}
of B;, which is equivalent to creating duplicates of varialg {X; ,...,X; } and then exactly
processing the new buckefB;, , . .., B;, }. Given the assignmet” found by MBE algorithm, we
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Figure 1: Example

can show that if all optimizing values of the duplicates ofteaariable take the same value, then
the solution found by MBE is exact.

One idea for increasing the accuracy of the solution is torasment-matchingan idea closely
related to the notions of cost-shifting ([6], [15]). We u$e tsimple example in Figure 1a to il-
lustrate the idea underlying moment matching. Applying MBI with z = 2 along ordering
o = {Xj3, X2, X1} to the problem in Figure 1a results in partitioning of thedtions into mini-
buckets as shown in Figure 1c. As in cost-shifting for saft@wnsistency [6] the function of bucket
B, can be devided and muptiplied some non-negative fungtien) without changing the expres-
sion, yielding:

Ci(z2,23) = Tféffl‘fl(l'bm) - fa(wy,w3) = Wéﬁllel(l'lalé)g(xl) - fa(xr,23)/g9(x1)  (2)

BucketB; is split into two mini-bucketsB’ andBy, resulting in the problem graph of Figure 1b,
and we can write the upper bound on the functioBjrC as:

Cy(z2,73) < é1(9€27$3) = Hglcf}xfl(fp@)g(fﬁ) : Yg%xf:z(xi/»x:s)/g(ﬂ?i/) (3)

Y

We would like for the optimal values of the two buckets to &gre = 2}’ = 21", since if this
condition holds for the full MBE solution, it will be optimaRAlthough we have not yet seen the rest
of the functions (e.g.f2(x2, x3)), if we assume these functions are uninformative we canreafo
agreement by selecting

9(331) = \/H&lgxfs(%hm) / Hglf;xﬁ(fﬂhxz)- (4)

The functionsmax,, fi1(z1,22) andmax,, f3(z1,z3) are calledmax-marginalsof the functions
f1, f3, and (4) ensures that these max-marginals agree in the maweterizationf; - g and fs/g.

The MBE relaxation in Figure 1b can be shown to be equivalest tagrangian relaxation of the
original problem, and thus to the set of LP relaxations ozt by many variants of max-product
[8]. Moreover, when taken on the original graph our momeatahing updates are equivalent to a
particular schedule of fixed point updates in the LP dual fdation of the MAP problem. These
updates can be viewed as coordinate descent on the uppet givem by independent maximiza-
tion, (1); see for example [16]. However, since the influesfdater functions is not yet known when
the matching step is performed, the single-pass algoritBENIM is not necessarily guaranteed
to improve on the original MBE bound.

The major difference between MBE and LP relaxations is thiregrily in the decisions of what
variable scopes will be used, and in the amount of iteratjjrgening performed. At one end, MBE
is non-iterative but typically uses functions over manyiafales, whose scopes are easily selected
using heuristics and thebound parameter. In contrast, LP relaxations typicallykwom the original
graph, performing many iterations to tighten the boundeesions to these methods may tighten the
bound by incrementally increasing the function sizes #gljglising heuristics to determine which
scopes to include [16]. MBE-MM is thus a single-pass bourad tises the iterative viewpoint to
inform its heuristic decisions. The algorithm is preseritedigorithm 2.



Algorithm 2 Algorithm MBE-MM

Input: An optimization taskP = (X, D, F, [, maxz); An ordering of variables = { X, ..., X,, }; parametek.
Output: bounds on the MAP cost and the corresponding assignment for the expatdédariables (i.e., node duplication).
1: Initialize Generate an ordered partition of functidhs= { f1, ..., f; } into bucketsB, . . ., B,,, whereB; alongo.
2: Backward:
3: for i + n down to 1 (Processing buckBt) do
4. Partition functions in bucke®; into {Q;, ..., Qi }, where eacl®);, has no more than variables.
5: Find the set of variables common to all the mini-buckéts:= S;; N--- N Sips whereS;, = var(Qq,)
6: Find the function of each mini-buck€?;, : F;, < l_‘[fEQik f
7. Find the max-marginals of each mini-buckgt, : n;, = MaTyar(Q;,)/S; (Fiy)
8: Update functions of each mini-buckx;, : F;, <« Fy, - y/piq -+ - Hip /;Lik
9: Generate messag%k =mazx, Fi, and place each in the largest index variablem(Qik )
10: end for

11: Return: The set of all buckets, and the vector of m-best costs bounds in the firgtbuck

MBE scope heuristic MBE 2 heuristic h-MBE
with MM no MM with MM no MM
15 | -104.3317 | -103.8327 | -104.3453 | -104.0717 | -104.801258
30 | -158.3137 | -156.9928 | -158.4953 | -157.7176 | -163.787114
21 | -2035111 | -197.8175 | -202.6335 | -199.2458 | -200.366564
20 -118.3357 -114.7234 | -117.7419 | -116.0857 | -116.049293
21 | -140.7592 | -138.9552 | -141.6805 | -139.0275 | -142.253279
29 | -290.5953 | -283.8814 | -289.9581 | -286.074 | -289.030586
20 -323.97 -316.8191 | -324.8728 | -318.3267 | -320.589194
16 -193.9027 | -190.9309 | -196.6335 -195.4372 | -196.125622
20 -348.4941 | -340.3035 | -349.1526 -340.6459 | -343.058959
29 -265.3413 | -253.4084 | -265.9065 -265.1594 | -265.642738
16 -141.221 -139.7527 | -141.4497 | -140.0774 | -141.511359
33 -236.7164 -222.4415 | -235.9544 | -229.6678 | -236.635487
28 -251.2962 | -247.1016 | -251.6741 | -252.9009 -250.083186
25 | -269.8636 | -263.5919 | -269.1398 | -264.0459 | -269.68553

Instances n

pedigreel.uai 298
pedigreel3.uai| 888
pedigreel9.uai| 693
pedigree20.uai| 387
pedigree23.uai| 309
pedigree31.uai| 1006
pedigree37.uai| 726
pedigree38.uai| 581
pedigree39.uai| 953
pedigree4l.uai| 885
pedigree50.uai| 478
pedigree51.uai| 871
pedigree7.uai 867
pedigree9.uai 935

Nhooooaoaaoabawh X

Figure 2: Upper bounds on the log(MPE) for pedigree instsuscenputed by MBE with and with-
out moment matching (MM), using scope-based and 12-dist@actitioning heuristics and h-MBE
algorithm, all with z-bound=10. For each instance we refftnumber of variables, the largest
domain sizé&: and the induced width along the ordering usedrhe best bounds are shown in bold.

5 Empirical results

In our empirical evaluation we investigate the impact of neatamatching and other cost-shifting
schemes (e.g. h-MBE [15]) on the mini-bucket algorithm. \lé® @ompare MBE-MM with MPLP.

We experimented with two sets of instances, containingctsdepedigree (Figure 2) and Weighted
CSP instances (Figure 5) from the UAI 2008 evaluation [12f $tlve the MAP task for all the
instances. One factor that can influence the performanceB Mgnificantly is the way functions
are partitioned into the mini-buckets. The issue was extelysstudied by Rollon and Dechter [17],
who introduced and evaluated a set of partitioning hegggtiat we use in our experiments.

5.1 Impact of moment-matching on the accuracy of the bound

Figure 2 presents the upper bounds computed by MBE with atiebuti moment-matching (denoted
MBE-MM and MBE) and by h-MBE on the pedigrees with z-bound=T8e first two schemes use
two partitioning heuristics: scope-based and contenedbagth 12 distance measure (see [15] for
details). The h-MBE uses scope-based partitioning. Welsgdbth cost-shifting methods, h-MBE
and MBE-MM produce better bounds than the pure MBE with no miotamatching. Figure 3 shows
the corresponding runtimes (sec) of the MBE-MM and MBE. Tingtime of the h-MBE scheme is
omitted due to drastic differences in implementation teaders speed comparison meaningless.

5.2 Theimpact of iterations (M PLP)

As can be seen from [8] and [18], MBE-MM applied to originaitiars is equivalent to a single itera-
tion of MPLP. Algorithm MPLP improves on this approach bymimg multiple updates, decreasing
the bound with each iteration. The MBE-MM scheme, on therdtlaed, can influence accuracy by



MBE scope heuristic MBE |2 heuristic
Instances n k w time(sec) | time(sec) | time(sec) | time(sec)

with MM no MM with MM no MM
pedigreel.uai 298 4 15 1.043 0.827 1.51 1.019
pedigreel3.uai| 888 3 30 3.039 2.139 4.05 3.283
pedigreel9.uai| 693 5 21 3.72 2.367 5.602 3.808
pedigree20.uai| 387 4 20 1.403 0.957 2.019 1.652
pedigree23.uai| 309 5 21 1.583 0.948 2.803 1.562
pedigree31.uai| 1006 5 29 3.733 3.075 4.755 3.611
pedigree37.uai| 726 5 20 3.007 2114 5.227 4.281
pedigree38.uai| 581 5 16 5.59 2.549 13.594 7.512
pedigree39.uai| 953 5 20 4.003 2.681 5.458 4.219

pedigree4l.uai| 885 5 29 4.136 2.916 5.607 4.13
pedigree50.uai| 478 6 16 19.945 6.607 28.057 20.161
pedigree5l.uai| 871 5 33 3.682 2.579 5.568 3.969
pedigree7.uai | 867 4 28 3.13 2.273 3.973 3.396
pedigree9.uai | 935 7 25 3.194 2.369 4.496 3.505

Figure 3: Runtime (sec) for pedigree instances computed B Mith and without moment match-
ing (MM), using scope-based and |12-distance partitioniegristics with z-bound=10.

pedigree37.uai log(MPE) as a function of time (sec), MPLP and MBE with i-Bound=10 pedigree39.uai log(MPE) as a function of time (sec), MPLP and MBE with i-Bound=10
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Figure 4: Upper bounds on log(MPE) as a function of time féected pedigrees. We plot MPLP
ran on the original factors, MBE and MBE-MM with z-Bound=18dapartitioning heuristics with
distance measures I1 and linf. MBE and MBE-MM are not itemtso their result doesn’t change
with time. MPLP ran for 1500 iterations. NB: for pedigree8@ tesults for I1 and linf overlap.

combining factors into larger clusters. Both of these enbarent schemes increase their runtime.
In our experiments we explore which method trades time fouery more effectively.

Figure 4 illustrates the typical behavior of algorithms efested pedigrees, presenting the depen-
dence of the upper bound on the log(MPE) on time for MPLP, ameg against MBE-MM and
pure MBE. Since MBE algorithms are not iterative, the ressdth not change with the time. Note
that in these figures we plot the results for MBE-MM and MBEhnitbound=10. The cutoff for
the MPLP algorithms was 1500 iterations.

We can see that even though MPLP algorithm improves the baithdnore time, as theory sug-
gests, it can not achieve the same accuracy as MBE-MM witbngatbounds. It shows that the
orthogonal use of large cluster can yield far better acéesamven though MBE-MM is not iterative.

In Table 5 we see the upper bounds produced by MBE-MM with t@r@ent-based heuristics using
I2 and linf distance measures and z-bound=10 and MPLP rah,f600 and 1500 iterations for
select WCSP instances. We see that even for a large numberatiohs MPLP does not achieve
the same accuracy as MBE-MM for more than half of these igt&n

5.3 MBE-MM and MPLP as search guiding heuristic

One of the most popular applications of bounding schemegrnemting heuristics for informed
search algorithms. We tested pure MBE, MBE-MM and MPLP athors as heuristic genera-
tors for the well-known AND/OR Branch and Bound algorithm®]bn pedigree, grid, WCSP and
mastermind instances for various z-bounds. We used scagadipartitioning for both MBE and
MBE-MM. Figure 6 shows the anytime results for the AOBB witiffetent heuristic generators.
For each time cutoff we report the number of instances foctwhigorithm obtained any solution,



MBE-MM MPLP

Instance n w 12 finf 5 iter 500 iter 1500 iter
1502.uai | 209 6 -2.8954 -2.8954 -2.6753 | -2.6886 -2.6886
29.uai 82 14 | -3.6906 -3.6888 | -3.2006 | -3.2259 -3.2259

404.uai 100
408.uai 200
42.uai 190
503.uai 143
505.uai 240
54.uai 67

19 -5.2229 -5.0545 | -3.5222 | -3.7092 -3.7432
35 -3.1147 | -8.1177 | -3.6974 | -3.9934 -4.0735
26 -3.1872 -3.0472 | -2.1092 | -2.3906 -2.5227
9 -3.1872 | -3.1872 | -2.9683 | -3.2905 -3.4497
22 -1.1207 | -2.1888 | -2.7076 | -3.0725 -3.2433
11 -3.0701 -2.9848 | -1.8466 | -2.0719 -2.0812
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Figure 5: The upper bounds on the log(MPE) for the select W@Stamnces by MBE-MM with two
content-based heuristics using 12 and linf distance measwith z-bound=10 and MPLP ran for 5,
500 and 1500 iterations. For each instance we report the @udilvariables:, the largest domain
sizek and the induced width along the ordering usedl'he best bounds are shown in bold.

the number of instances, for which an exact solution wasdpbnt not yet proved to be optimal,
and a number of instances for which the optimality of soluticas proved. For each time interval
we show the results in bold only when all 3 numbers are highear for the competing schemes.

We can see that neither of the bounding schemes generatesticeénformation that would allow
the search to produce consistently better results. Thelsedgorithm that uses MBE-MM in most
cases produce better results than the one that uses pureNti&thle exception is the set of WCSP
instances, where algorithm with MBE heuristic consistepgrforms the best. MPLP and MBE-
MM take turns in producing better results, depending onithe tut-off, cluster sizes and instance
set.

Instances z-bound Heuristic 1sec 5sec 10 sec 1min 5min 1h 24h
MBE 17:2:1 20:7:2 21:8:4 21:11:8 21:12:10 22:14:11 22:17:14
10 MBE-MM 21:10:4 21:12:6 22:13:6 22:13:11 22:15:12 22:15:14 22:19:18
MPLP 17:7:2 20:7:4 20:9:6 22:13:9 22:14:10 22:16:12 22:18:18
MBE 15:2:1 16:3:1 16:5:1 19:7:4 20:9:9 20:13:11 22:16:14
8 MBE-MM 18:4:2 20:7:4 20:7:5 21:12:9 21:13:11 21:14:12 21:18:16
pedigrees MPLP 15:5:1 17:6:2 19:6:4 22:10:7 22:11:9 22:16:10 22:19:17
MBE 10:2:1 1431 16:3:1 17:6:4 17:8:6 20:11:11 21:1411
6 MBE-MM 14:3:1 17:3:2 19:4:3 21:6:6 21:10:8 21:13:11 21:17:13
MPLP 13:3:0 16:4:0 19:4:1 20:7:5 21:9:6 22:11:9 22:16:13
MBE 7:1.0 10:1:0 11:1:0 14:1:1 15:2:1 18:6:4 19:8:7
4 MBE-MM 9:2:1 11:2:1 11:2:1 14:2:2 16:4:4 18:7:5 19:10:9
MPLP 9:1:0 10:1:0 12:1:0 17:3:1 20:4:4 21:8:5 21:11:8
MBE 21:9:9 23:17:12 24:17:14 26:21:18 27:21:20 27:22:24 27:24:27
15 MBE-MM 27:22:21 28:22:24 28:23:24 29:24:25 29:25:27 29:25:28 29:26:29
MPLP 26:20:16 28:21:22 28:21:24 28:22:25 28:22:25 28:23:27 29:25:29
MBE 15:3:3 18:7:3 19:8:7 21:12:10 21:15:12 24:20:18 24:22:24
10 MBE-MM 22:12:11 23:17:11 23:19:17 24:20:20 25:21:23 26:23:25 27:24:27
grids MPLP 22:12:11 23:16:12 23:17:14 24:20:19 25:21:23 26:23:25 27:24:27
MBE 811 9:4:1 9:4:1 9:6:3 10:7:5 14:12:11 15:15:15
5 MBE-MM 10:2:1 11:3:1 12:3:2 14:7:4 18:8:7 18:14:11 19:19:19
MPLP 9:2:1 11:3:1 11:3:2 15:7:5 18:9:8 19:14:11 20:20:20
MBE 3:0:0 7:1:.0 711 8:1:1 9:3:2 10:8:5 11:11:11
3 MBE-MM 7:1:1 8:1:1 8:1:1 9:3:3 9:5:4 12:8:6 13:13:13
MPLP 7:3:1 9:3:1 9:3:1 10:5:3 11:8:4 14:10:8 15:15:15
MBE 128:128:56 128:128:61 128:128:72 128:128:88 128:128:107 128:128:128 128:128:128
15 MBE-MM 128:128:33 128:128:38 128:128:42 128:128:73 128:128:96 128:128:120 128:128:128
MPLP 96:96:1 116:116:16 124:124:18 125:125:35 126:126:56 126:126:94 126:126:126
MBE 126:126:19 128:128:25 128:128:37 128:128:61 128:128:90 128:128:113 128:128:128
10 MBE-MM 128:128:27 128:128:34 128:128:42 128:128:60 128:128:88 128:128:119 128:128:128
mastermind MPLP 92:92:0 103:103:16 116:116:17 128:128:33 128:128:59 128:128:93 128:128:112
MBE 102:102:46 105:105:54 105:105:60 105:105:75 105:105:88 105:105:98 105:105:105
5 MBE-MM 92:92:19 103:103:22 105:105:25 105:105:45 105:105:67 105:105:79 105:105:105
MPLP 58:58:0 73:73:9 82:82:16 97:97:26 105:105:44 105:105:56 105:105:81
MBE 94:94:27 100:100:37 105:105:51 105:105:68 105:105:75 105:105:93 105:105:104
3 MBE-MM 65:65:0 75:75:15 88:88:16 104:104:17 105:105:22 105:105:61 105:105:79
MPLP 53:53:0 59:59:1 68:68:13 78:78:16 90:90:17 105:105:38 105:105:73
MBE 6:6:4 6:6:4 6:6:5 6:6:6 6:6:6 6:6:6 6:6:6
WCsP 5 MBE-MM 5:5:4 5:5:4 5:5:5 5:5:5 5:5:5 5:5:5 5:5:5
MPLP 5:5:4 5:5:4 5:5:5 5:5:5 5:5:5 5:5:5 5:5:5

Figure 6: Anytime results for the AOBB with different heuiisfor pedigree, grid, mastermind and
WCSP instances for various z-bound. For each time cutoff wertéhe 3 numbers: the number of
instances for which algorithm obtained any solution, thecesolution or for which the optimality
of solution was proved. For example, the expression "20:iit2he first row of the 3rd column
means that in 5 seconds, MBE with z-bound=10 found any swist{possibly suboptimal) for 20
instances, found exact solution for 7 out of them and prokiedbptimality of the solution for 2.



6 Conclusion

We presented Mini-bucket elimination with moment-matchia new bounding scheme for op-
timization tasks in graphical model. We discussed the cotore between moment-matching in
MBE-MM and methods used in the previously developed algor#: a) shifting costs procedure,
used, for example, in horizontal MBE [15], Max-sum diffusif20] or Soft arc-consistency algo-
rithm [6]; b) update in the MPLP, which is derived as a stephia block coordinate descent in
the dual of the LP relaxation of the original problem. We destoated empirically that moment-
matching improves MBE performance across all instancesfaenedny partitioning heuristic (we
only showed two schemes here for lack of space, but our seselte consistently better). We also
demonstrated that in many cases MBE-MM can find a more aechmtnd than MPLP faster, even
for small z-bounds, and has a performance comparable wiiladmtal-MBE presented earlier by
[15]. The most impressive aspect is the ability to improvarsle algorithm with heuristic function
that do not require more computational power (i.e., whenfixéxl). Future work includes devel-
oping of a hybrid scheme that would use the output of MBE-MMaasarting point for the MPLP
algorithm this extending MPLP to be executed over the mirdkiet clusters.
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