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Abstract. The issue of data association arises frequently in sensor net-
works; whenever multiple sensors and sources are present, it may be
necessary to determine which observations from different sensors corre-
spond to the same target. In highly uncertain environments, one may
need to determine this correspondence without the benefit of an a priori

known joint signal/sensor model. This paper examines the data associa-
tion problem as the more general hypothesis test between factorizations
of a single, learned distribution. The optimal test between known dis-
tributions may be decomposed into model-dependent and statistical de-
pendence terms, quantifying the cost incurred by model estimation from
measurements compared to a test between known models. We demon-
strate how one might evaluate a two-signal association test efficiently
using kernel density estimation methods to model a wide class of possi-
ble distributions, and show the resulting algorithm’s ability to determine
correspondence in uncertain conditions through a series of synthetic ex-
amples. We then describe an extension of this technique to multi-signal
association which can be used to determine correspondence while avoid-
ing the computationally prohibitive task of evaluating all hypotheses.
Empirical results of the approximate approach are presented.

1 Introduction

Data association describes the problem of partitioning observations into like sets.
This is a common problem in networks of sensors – multiple signals are received
by several sensors, and one must determine which signals at different sensors
correspond to the same source.

In many collaborative sensing scenarios, the signal models are assumed to be
known and fully specified a priori. With such models, it is possible to formu-
late and use optimal hypothesis tests for data association. However, real-world
uncertainty often precludes strong modelling assumptions. For example, it is dif-
ficult to analytically quantify dependence between data of different modalities.
Additionally, nonlinear effects and inhomogenous media create complex interac-
tions and uncertainty. When applicable, a learning/estimation based approach is
appealing, but in the online case requires that one learn the signal distributions
while simultaneously performing the test. For example, this is possible for data



association because it is a test described in terms of the distribution form, in
particular as a test over factorization and independence.

We show that the optimal likelihood test between two factorizations of a
density learned from the data can be expressed in terms of mutual information.
Furthermore, the analysis results in a clear decomposition of terms related to
statistical dependence (i.e. factorization) and those related to modelling assump-
tions. We propose the use of kernel density methods to estimate the distributions
and mutual information from data. In the case of high-dimensional data, where
learning a distribution is impractical, this can be done efficiently by finding
statistics which capture its interaction. Furthermore, the criterion for learning
these statistics is also expressed in terms of mutual information. The estimated
mutual information of these statistics can be used as an approximation to the
optimal likelihood ratio test, by training the statistics to minimize a bound on
the approximation error.

We will begin by describing a data association example between a pair of
sensors, each observing two targets. We show first how the optimal hypothesis
test changes in the absence of a known signal model and express the resulting
test in terms of information. We then discuss how one may use summarizing
features to estimate the mutual information efficiently and robustly using kernel
methods. This can yield a tractable estimate of the hypothesis test when direct
estimation of the observations’ distribution is infeasible. Finally, we present an
algorithmic extension of these ideas to the multiple target case.

2 An Information-Theoretic Interpretation of Data

Association

Data association can be cast as a hypothesis test between density factorizations
over measurements. As we will show, there is a natural information-theoretic
interpretation of this hypothesis test, which decomposes the test into terms
related to statistical dependency and terms related to modelling assumptions.
Consequently, one can quantify the contribution of prior knowledge as it relates
to a known model; but more importantly, in the absence of a prior model one can
still achieve a degree of separability between hypotheses by estimating statistical
dependency only. Furthermore, as we show, one can do so in a low-dimensional
feature space so long as one is careful about preserving information related to
the underlying hypothesis.

Consider the following example problem, which illustrates an application of
data association within tracking problems. Suppose we have a pair of widely
spaced acoustic sensors, where each sensor is a small array of many elements.
Each sensor produces an observation of the source and an estimate of bearing,
which in itself is insufficient to localize the source. However, triangulation of
bearing measurements from multiple sensors can be used to estimate the tar-
get location. For a single target, a pair of sensors is sufficient to perform this
triangulation.
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Fig. 1. The data association problem: two pairs of measurements results in estimated
targets at either the circles or the squares; but which remains ambiguous.

However, complications arise when there are multiple targets within a pair
of sensors’ fields of view. Each sensor determines two bearings; but this yields
four possible locations for only two targets, as depicted in Figure 1. With only
bearing information, there is no way to know which one of these target pairs is
real, and which is the artifact. We will show that it is possible to address this
ambiguity under the assumption that the sources are statistically independent,
without requiring a prior model of the relationship between observations across
sensors.

2.1 Mutual Information

Mutual information is a quantity characterizing the statistical dependence be-
tween two random variables. Although most widely known for its application to
communications (see e.g. [1]), here it arises in the context of discrimination and
hypothesis testing [2].

Correlation is equivalent to mutual information only for jointly Gaussian
random variables. The common assumption of Gaussian distributions and its
computational efficiency have given it wide applicability to association prob-
lems. However, there are many forms of dependency which are not captured by
correlation.

For example, Figure 2(a-c) shows three non-Gaussian joint distributions char-
acterized by a single parameter θ, indicating an angle of rotation with respect
to the random variables x, y. Although the correlation between x and y is zero
for all θ, the plot of mutual information as a function of θ (Figure 2(d)) demon-
strates that for many θ, x and y are far from independent. This illustrates how
mutual information as a measure of dependence differs from correlation.

2.2 Data Association as a Hypothesis Test

Let us assume that we receive N i.i.d. observations of each source at each of
the two sensors. When a full distribution is specified for the observed signals, we
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Fig. 2. Two variables x, y with joint distributions (a-c) are uncorrelated but not
necessarily independent – (d) shows mutual information as a function of the angle of
rotation θ.

have a hypothesis test over known, factorized models

H1 : [A1, B1, A2, B2]k ∼ pH1
(A1, B1)pH1

(A2, B2)

H2 : [A1, B1, A2, B2]k ∼ pH2
(A1, B2)pH2

(A2, B1)

for k ∈ [1 : N ]

(1)

with corresponding (normalized) log-likelihood ratio

1

N
log L =

1

N

N
∑

k=1

[

log
pH1

([A1, B1]k)pH1
([A2, B2]k)

pH2
([A1, B2]k)pH2

([A2, B1]k)

]

(2)

As N grows large, the (normalized) log-likelihood approaches its expected value,
which can be expressed in terms of mutual information (MI) and Kullback-
Leibler (KL) divergence. Under H1 this value is

EH1
[log L] =IH1

(A1;B1) + IH1
(A2;B2)+

D(pH1
(A1), . . . , pH1

(B2)‖pH2
(A1, . . . , B2))

(3)

and similarly when H2 is true:

EH2
[log L] = − IH2

(A1;B2) − IH2
(A1;B2)−

D(pH2
(A1), . . . , pH2

(B2)‖pH1
(A1, . . . , B2))

(4)

The expected value of Equation (3) can be grouped in two parts – an information
part (the two MI terms) measuring statistical dependency across sensors, and
a model mismatch term (the KL-divergence) measuring difference between the
two models. We begin by examining the large-sample limits of the likelihood
ratio test, expressed in terms of its expected value; when this likelihood ratio
is not available we see that another estimator for the same quantity may be
substituted.

Often the true distributions pHi
are unknown, e.g. due to uncertainty in the

source densities or the medium of signal propagation. Consider what might be
done with estimates of the densities based on the empirical data to be tested.
Note that this allows us to learn densities without requiring multiple trials un-
der similar conditions. We can construct estimates assuming the factorization



under either hypothesis, but because observations are only available for the true
hypothesis our estimates of the other will necessarily be incorrect. Specifically,
let p̂Hi

(·) be a consistent estimate of the joint distribution assuming the factor-
ization under Hi and let p̃Hi

(·) denote its limit; then we have

if H1 is true,

p̂H1
→ p̃H1

= pH1
(A1, B1)pH1

(A2, B2)

p̂H2
→ p̃H2

= pH1
(A1)pH1

(B1)pH1
(A2)pH1

(B2)

if H2 is true,

p̂H1
→ p̃H1

= pH2
(A1)pH2

(B1)pH2
(A2)pH2

(B2)

p̂H2
→ p̃H2

= pH2
(A1, B2)pH2

(A2, B1)

(5)

Thus when p̂Hi
assumes the correct hypothesis we converge to the correct dis-

tribution, while assuming the incorrect hypothesis leads to a fully factored dis-
tribution. This is similar to issues arising in generalized likelihood ratio (GLR)
tests [3].

We proceed assuming that our estimates have negligible error, and analyze
the behavior of their limit p̃(·); we will examine the effect of error inherent in
finite estimates p̂(·) later. Now the expectation of the log-likelihood ratio can be
expressed solely in terms of the mutual information between the observations.
Under H1 this is

EH1
[log L̃] = EH1

[

log
p̃H1

(A1, B1)p̃H1
(A2, B2)

p̃H2
(A1, B2)p̃H2

(A2, B1)

]

= I(A1;B1) + I(A2;B2)

and similarly under H2,

EH2
[log L̃] = −I(A1;B2) − I(A2;B1)

Notice in particular that the KL-divergence terms stemming from model mis-
match in Equation (3) have vanished. This is due to the fact that both models are
estimated from the same data, and quantifies the increased difficulty of discrimi-
nation when the models are unknown. We can write the expectation independent

of which hypothesis is true as

E[log L̃] = I(A1;B1) + I(A2;B2) − I(A1;B2) − I(A2;B1) (6)

since for either hypothesis, the other two terms above will be zero; this casts the
average log-likelihood ratio as an estimator of mutual information.

We have not assumed that the true distributions p(·) have any particular
form, and therefore might consider using nonparametric methods to ensure that
our estimates converge under a wide variety of true distributions. However, if the
observations are high-dimensional such methods require an impractical number



of samples in order to obtain accurate estimates. In particular, this means that
the true likelihood ratio cannot be easily calculated, since it involves estimation
and evaluation of high-dimensional densities. However, the log-likelihood ratio is
acting as an estimator of the mutual information, and we may instead substitute
another, more tractable estimate of mutual information if available.

Direct estimation of the MI terms above using kernel methods also involves
estimating high-dimensional distributions, but one can express it succinctly using
features which summarize the data interaction. We explore ways of learning such
features, and shall see that the quality criterion for summarization is expressed as
the mutual information between features estimated in a low-dimensional space.

Let us suppose initially that we possess low-dimensional sufficient statistics
for the data. Although finding them may be difficult, we know that for the
data association problem sufficient statistics should exist, since the true variable
of interest, correspondence, is summarized by a single scalar likelihood. More

precisely, let f
Aj

i be a low-dimensional feature of Aj and f̄
Aj

i its complement,

such that there is a bijective transformation between Aj and [f
Aj

i , f̄
Aj

i ] (and
similarly for Bk). If the following relation holds,

pHi
(Aj , Bk) = pHi

(f
Aj

i , f̄
Aj

i , fBk

i , f̄Bk

i )

= pHi
(f

Aj

i , fBk

i )pHi
(f̄

Aj

i |f
Aj

i )pHi
(f̄Bk

i |fBk

i )
(7)

then the log-likelihood ratio of Equation (6) can be written exactly as

E[log L̃] = I(fA1

1 ; fB1

1 ) + I(fA2

1 ; fB2

1 ) − I(fA1

2 ; fB2

2 ) − I(fA2

2 ; fB1

2 ) (8)

Although sufficient statistics are likely to exist, it may be difficult or im-

possible to find them exactly. If the features f
Aj

i and fBk

i are not sufficient,
several divergence terms must be added to Equation (8). For any set of features

satisfying pHi
(Aj , Bk) = pHi

(f
Aj

i , f̄
Aj

i , fBk

i , f̄Bk

i ), we can write

E[log L̃] = I1;1
1 + I2;2

1 − I1;2
2 − I2;1

2 + D1;1
1 + D2;2

1 − D1;2
2 − D2;1

2 (9)

where for brevity we have used the notation

Ij;k
i = I(f

Aj

i ; fBk

i )

Dj,k
i = D(p̃(Aj , Bk)‖p̃(f

Aj

i , fBk

i )p̃(f̄
Aj

i |f
Aj

i )p̃(f̄Bk

i |fBk

i ))

The data likelihood of Equation (9) contains a difference of the divergence
terms from each hypothesis. Notice, however, that only the divergence terms
involve high-dimensional data; the mutual information is calculated between
low-dimensional features. Thus if we discard the divergence terms we can avoid
all calculations on the high-dimensional compliment features f̄ . We would like to
minimize the effect on our estimate of the likelihood ratio, but cannot estimate
the terms directly without evaluating high-dimensional densities. However, by
nonnegativity of the KL-divergence we can bound the difference by the sum of
the divergences:

∣

∣

∣D
1;1
1 + D2;2

1 − D1;2
2 − D2;1

2

∣

∣

∣ ≤ D1;1
1 + D2;2

1 + D1;2
2 + D2;1

2 (10)



We then minimize this bound by minimizing the individual terms, or equiv-
alently maximizing each mutual information term (which can be done in the
low-dimensional feature space). Note that these four optimizations are decou-
pled from each other.

Finally, it is unlikely that with finite data our estimates p̂(·) will have con-
verged to the limit p̃(·). Thus we will also have divergence terms from errors in
the density estimates:

E[log L̃] =Î1;1
1 + Î2;2

1 − Î1;2
2 − Î2;1

2

+ D(p̃H1
‖p̂H1

) − D(p̃H2
‖p̂H2

)
(11)

where the Î indicate the mutual information of the density estimates. Once again
we see a difference in divergence terms; in this case minimization of the bound
means choosing density estimates which converge to the true underlying distri-
butions as quickly as possible. Note that if p̂H1

(·) is not a consistent estimator
for the distribution p̃Hi

(·), the individual divergence terms above will never be
exactly zero.

Thus we have an estimate of the true log-likelihood ratio between factoriza-
tions of a learned distribution, computed over a low-dimensional space:

E[log L̃] =Î(fA1

1 ; fB1

1 ) + Î(fA2

1 ; fB2

1 ) − Î(fA1

2 ; fB2

2 )

− Î(fA2

2 ; fB1

2 ) + divergence terms
(12)

where maximizing the Î with regard to the features f
Xj

i minimizes a bound
on the ignored divergence terms. We can therefore use estimates of the mutual
information over learned features as an estimate of the true log-likelihood ratio
for hypothesis testing.

3 Algorithmic Details

The derivations above give general principles by which one may design an algo-
rithm for data association using low-dimensional sufficient statistics. Two pri-
mary elements are necessary:

1. a means of estimating entropy, and by extension mutual information, over
samples, and

2. a means of optimizing that estimate over the parameters of the sufficient
statistic.

We shall address each of these issues in turn.

3.1 Estimating Mutual Information

In estimating mutual information, we wish to avoid strong prior modelling as-
sumptions, i.e. jointly Gaussian measurements. There has been considerable re-
search into useful nonparametric methods for estimating information-theoretic
quantities; for an overview, see e.g. [4].



Kernel density estimation methods are often used as an appealing alterna-
tive when no prior knowledge of the distribution is available. Similarly, these
kernel-based methods can be used to estimate mutual information effectively.
Using estimates with smooth, differentiable kernel shapes will also yield simple
calculations of a gradient for mutual information, which will prove to be useful in
learning. An issue one must consider is that the quality of the estimate degrades
as the dimensionality grows; thus we perform the estimate in a low-dimensional
space.

To use kernel methods for density estimation requires two basic choices, a
kernel shape and a bandwidth or smoothing parameter. For the former, we use
Gaussian kernel functions Kσ(x) = (2πσ2)−

1

2 exp{−x2/2σ2}, where σ controls
the bandwidth. This ensures that our estimate is smooth and differentiable ev-
erywhere. There are a number of ways to choose kernel bandwidth automatically
(see e.g. [5]). Because we intend to use these density estimates for likelihood eval-
uation and maximization, it is sensible to make this the criterion for bandwidth
as well; we therefore make use of a leave-one-out maximum likelihood bandwidth,
given by

arg max
σ



−
1

N

∑

j

log





1

N − 1

∑

i6=j

Kσ(xj − xi)







 (13)

Because our variables of interest are continuous, it is convenient to write the
mutual information in terms of joint and marginal entropy, as:

I(f
Aj

i ; fBk

i ) = H(f
Aj

i ) + H(fBk

i ) − H(f
Aj

i , fBk

i ) (14)

There are a number of possible kernel-based estimates of entropy available [4].
In practice we use either a leave-one-out resubstitution estimate:

ĤRS(x) = −
1

N

∑

j

log





1

N − 1

∑

i6=j

Kσ(xj − xi)



 (15)

or an integrated squared error estimate from [6]:

ĤISE =H(1) −
1

2

∫

(1 − p̂(x))2 dx (16)

where 1 is the uniform density on a fixed range, and

p̂(x) =
1

N

∑

j

Kσ(x − xj)

These methods have different interpretations – the former is a stochastic estimate
of the true entropy, while the latter can be considered an exact calculation of an
entropy approximation. In practice both of these estimates produce similar re-
sults. Both estimates may also be differentiated with respect to their arguments,
yielding tractable gradient estimates useful in learning.



3.2 Learning Sufficient Statistics

In order to learn sufficient or relatively sufficient statistics, we must define a
function from our high-dimensional observation space to the low-dimensional
space over which we are able to calculate mutual information. By choosing a
function which admits a simple gradient-based update of the parameter values,
we can use gradient ascent to train our function towards a local information
maximum [7, 8].

Often, quite simple statistic forms will suffice. For example, all of the ex-
amples below were performed using a simple linear combination of the input
variables, passed through a hyperbolic tangent function to threshold the output
range:

f(x = [x1 . . . xd]) = tanh(
∑

i

wix
i) (17)

That is, using the method of [7, 8] we apply gradient ascent of mutual information
between the associated features with respect to the weight parameters wi.

However, the methods are applicable to any function which can be trained
with gradient estimates, allowing extension to much more complex functional
forms. In particular, multiple layer perceptrons are a generalization of the above
form which, allowed sufficient complexity, can act as a universal function ap-
proximator [9].

We may also wish to impose a capacity control or complexity penalty on the
model (e.g. regularization). In practice, we put a penalty on the absolute sum
of the linear weights (adding to the gradient a constant bias towards zero) to
encourage sparse values.

4 Data Association of Two Sources

We illustrate the technique above with two examples on synthetic data. The
first is a simulation of dispersive media – an all-pass filter with nonlinear phase
characteristics controlled by an adjustable parameter α. The phase response
for three example values of α are given in Figure 3(a). Sensor A observes two
independent signals of bandpassed i.i.d. Gaussian noise, while sensor B observes
the allpass-filtered versions of A.

If the filter characteristics are known, the optimal correspondence test is
given by applying the inverse filter to B followed by finding its correlation with
A. However when the filter is not known, estimating the inverse filter becomes
a source reconstruction problem. Simple correlation of A and B begins to fail as
the phase becomes increasingly nonlinear over the bandwidth of the sources. The
upper curve of Figure 3(b) shows the maximum correlation coefficient between
correct pairings of A and B over all time shifts, averaged over 100 trials. Dotted
lines indicate the coefficient’s standard deviation over the trials. To determine
significance, we compare this to a baseline of the maximum correlation coefficient
between incorrect pairings. The region of overlap indicates nonlinear phases for
which correlation cannot reliably determine correspondence.
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Fig. 3. Data association across a nonlinear phase all-pass filter: tunable filter (a) yields
correlations (b) and mutual information (c).

Figure 3(c) shows an estimate of mutual information between the Fourier
spectra of A and B, constructed in the manner outlined above. As α increases,
the mutual information estimate assumes a steady-state value which remains
separated from the baseline estimate and can accurately determine association.

The second example relates observations of non-overlapping Fourier spectra.
Suppose that we observe a time series and would like to determine whether
some higher-frequency observations are unrelated, or are a result of observing
some nonlinear function (and thus harmonics) of the original measurements.
We simulate this situation by creating two independent signals, passing them
through a nonlinearity, and relating high-passed and low-passed observations.
Sensor A observes the signals’ lower half spectrum, and sensor B their upper
half.

Synthetic data illustrating this can be seen in Figures 4-5. For Figure 4 we
create a narrowband signal whose center frequency is modulated at one of two
different rates, and pass it through a cubic nonlinearity. In the resulting filtered
spectra (shown in Figure 4(a-d)), the correct pairing is clear by inspection. Scat-
terplots of the trained features (see Figure 4(e-h)) show that indeed, features of
the correct pairings have high mutual information while incorrect pairings have
nearly independent features.

Figure 5 shows the same test repeated with wideband data – Gaussian noise
is passed through a cubic nonlinearity, and the resulting signal is separated
into high- and low-frequency observations, shown in Figure 5(a-d). The resulting
structure is less obvious, both visually and to our estimates of mutual informa-
tion (Figure 5(e-h)), but the correct pairing is still found.

5 Extension to Many Sources

For the problem described above, the presence of only two targets means the
data association problem can be expressed as a test between two hypotheses.
However, as the number of targets is increased, the combinatorial nature of
the hypothesis test makes evaluation of each hypothesis infeasible. Approximate
methods which determine a correspondence without this computational burden



(a) A1 (b) A2 (e) A1 ↔ B1 (f) A1 ↔ B2
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Fig. 4. Associating non-overlapping harmonic spectra: the correct pairing of data sets
(a-d) is easy to spot; the learned features yield MI estimates which are high for correct
pairings (e,h) and low for incorrect pairings (f,g).

offer an alternative which may be particularly attractive in the context of sen-
sor networks. We describe an extension of the above method to perform data
association between many targets without requiring evaluation of all hypotheses.

Let us re-examine the problem of Section 2, but allow both sensors to receive
separate observations from M independent targets, denoted A1, . . . , AM and
B1, . . . , BM . One may still apply estimates of MI to approximate the hypothesis
test as described in Section 2.2, but direct application will require that mutual
information be estimated for each of the M 2 data pairs – a potentially costly
operation.

However, we suggest an approximate means of evaluating the same test which
does not compute each MI estimate. We can solve the data association problem
by finding features which summarize all the signals received at a particular
sensor. A test can then be performed on the learned feature coefficients directly,
rather than computing all individual pairwise likelihoods.

Let us denote the concatenation of all signals from sensor A by [A1, . . . , AM ].
One can learn features which maximize mutual information between this con-
catenated vector and a particular signal Bj ; we denote the feature of Bj by f

Bj

A ,

and the feature of [A1, . . . , AM ] by f
[A1,...,AM ]
j .

Again, let us consider the linear statistics of Section 3.2:

f
Bj

A = tanh(
∑

i

wiB
i
j) (18)

f
[A1,...,AM ]
j = tanh(

∑

i,k

wi,Ak
Ai

k) (19)

where Ai
k (Bi

j) indicates the ith dimension of the signal Ak (Bj).
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(c) B1 (d) B2 (g) A2 ↔ B1 (h) A2 ↔ B2

Fig. 5. Associating non-overlapping wideband harmonic spectra: though the correct
pairing is harder to see than Figure 4, the estimated MI is still higher for the correct
hypothesis (e,h).

We now consider tests based on the absolute deviation of the feature coeffi-
cients for each signal Ak:

∑

i

|wi,Ak
|

Under the assumption of independent sources, mutual information exists only
between the correctly associated signals; i.e. if As and Bt represent a correct
association, we have

I(As;Bt) = I([A1, . . . , AM ];Bt)

= I(As; [B1, . . . , BM ])

We may then analyze the mutual information of a particular feature

I(f
[A1,...,AM ]
t ; fBt

A ) = I(tanh(
∑

i,k

wi,Ak
Ai

k); fBt

A )

= I(
∑

i,k

wi,Ak
Ai

k; fBt

A )

=
∑

k

I(
∑

i

wi,Ak
Ai

k; fBt

A )

= I(
∑

i

wi,As
Ai

s; f
Bt

A )

Thus, for k 6= s the weights wi,Ak
have no contribution to the mutual informa-

tion. This tells us that among all features with maximal MI, the one with mini-
mum absolute deviation

∑

i,k |wi,Ak
| has support only on As. Whether distribu-

tions exist such that no linear feature captures dependence (i.e. I(fA
t ; fBt

A ) = 0
for all linear f) is an open question.



As a means of exploiting this property, we impose a regularization penalty
on the feature coefficients during learning. In particular, we augment the infor-
mation gradient on the concatenated vector feature with a sparsity term, giving

∂I(f
[A1,...,AM ]
j ; f

Bj

A )

∂wi0,Ak0

− α max
i,k

|wi,Ak 6=k0
| (20)

where the parameter α controls the strength of the regularization. This imposes
a penalty on the absolute deviation of the weights which is proportional to the
maximum weight from a different signal, giving sparse selection of signals –
if only one of the M signals has nonzero coefficients, it has no regularization
penalty imposed.

A decision can be reached more efficiently using the coefficient deviations,
since only a few (O(M)) statistics must be learned; a simple method such as
greedy selection or the auction algorithm may be applied to determine the final
association.

In the following example, we show the application of this technique to as-
sociating harmonics of wideband data passed through a nonlinearity; each of
four signals is created in the same manner as those of the final example in
Section 4. The signals’ Fourier coefficients are shown in Figure 6; sensor A ob-
serves the lower half-spectrum and sensor B the upper. For demonstration pur-
poses, we calculate statistics both for each Bk with [A1, . . . , AM ], and each Ak

with [B1, . . . , BM ]. Again, we use the ISE approximation of Equation (16) to
calculate the information gradient.

Statistics trained in this way are shown in the upper half of Figure 7. To see
how one would use these statistics to determine association, we can write the
total absolute deviation of the statistic coefficients grouped by observation, and
normalize by its maximum. This gives us the pairwise values shown in the lower
part of Figure 7. In this example, a greedy method on either set of statistics
is sufficient to determine the correct associations. More sophisticated methods
might compute and incorporate both sets into a decision.

6 Discussion

We have seen that the data association problem may be characterized as a hy-
pothesis test between factorizations of a distribution. An information-theoretic
analysis led to a natural decomposition of the hypothesis test into terms related
to prior modelling assumptions and terms related to statistical dependence. Fur-
thermore, this analysis yielded insight into how one might perform data associa-
tion in a principled way in the absence of a prior model. The approach described
is similar to a nonparametric generalized likelihood ratio test.

In addition, we have presented an algorithm which utilizes these principles
for the purposes of performing data association. This allows us to perform cor-
respondence tests even when the source densities are unknown or there is un-
certainty in the signals’ propagation by learning statistics which summarize the
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Fig. 6. Associating many signal pairs: a naive approach to finding the association
above would require 42 estimates of mutual information.

[ B1 B2 B3 B4 ] [ A1 A2 A3 A4 ]

A1: B1:

A2: B2:

A3: B3:

A4: B4:

0.097 0.202 0.144 1.000 0.058 1.000 0.029 0.041
1.000 0.029 0.013 0.040 0.084 0.001 0.016 1.000

0.005 0.094 1.000 0.033 0.000 1.000 0.666 0.185
0.746 1.000 0.000 0.131 1.000 0.629 0.000 0.758

Fig. 7. Statistics learned on concatenated signals (above); each feature’s region of
support indicates probable associations. The row-normalized absolute sum (L1 norm)
of the statistics subdivided by signal index (below) may be used to determine corre-
spondence; bold type indicates the correct association

mutual information between observed data vectors in a compact form. This was
equivalent to approximating the likelihood ratio test with mutual information
estimates in a low-dimensional space.

We have also suggested an approximate method of determining correspon-
dence between larger signal sets based on the same techniques. Although this
does not correspond directly to the optimal hypothesis test, it has the advantage
that it does not require that mutual information be estimated for all M 2 signal
pairs. Finally, we demonstrated the efficacy of this method with experiments on
synthetic data.
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