Proof. A correction for Power(a, n).

\[\text{Power}(a, n) \quad a \text{ real } \quad a^n \]

\[n \text{ non-neg int.} \]

- \[\Rightarrow \text{ if } (n = 0) \text{ return 1}. \]

- \[\Rightarrow \left\{ \begin{array}{l}
\text{if } (n \text{ is even}) \rightarrow \text{ \text{Power}(\text{Power}(a, \frac{n}{2}))^2) \\
\text{if } (n \text{ is odd}) \rightarrow \text{ \text{Power}(a, \frac{n-1}{2})^2 \cdot a)}
\end{array} \right. \]

End.

Theorem. For any real \# a, and any non-neg int \(n \), Power(a, n) returns \(a^n \)

\[\forall n \quad \text{Power}(a, n) = a^n \quad (Q(n)) \]

Proof. By induction on \(n \).

Base. \(n = 0 \)

\[a^0 = 1 \]

\[\text{Power}(a, 0) \text{ returns 1} \]

Induction step. Assume for \(k = 0, 1, \ldots, n-1 \), and \(n \geq 1 \).

\[\text{Power}(a, k) \text{ returns } a^k \]

Prove \[\text{Power}(a, n) \text{ returns } a^n \].
Case 3: \(n \) is even and \(n \geq 1 \).
\[
n = 2k \text{ for some integer } k. \quad n \geq 2 \quad k \geq 1.
\]

Rewrite \(n = 2k \) as \(n = 2k \).

Show \(k \leq \frac{n}{2}, \ldots, n-1 \).
\[
0 \leq k \leq n-1.
\]

Show \(k \leq n-1. \quad n \geq 2. \quad \frac{n}{2} \leq n-1. \)

By the I.H.

\[
\text{Power}(a, \frac{n}{2}) = a^{\frac{n}{2}}
\]

\[
\text{Power}(a, n) \text{ when } \left[\text{Power}(a, \frac{n}{2})\right]^2
\]

\[
\Rightarrow \left(a^{\frac{n}{2}}\right)^2 = a^{n/2 \cdot 2} = a^n
\]

Case 2: \(n \) is odd and \(n \geq 1 \)

\[
2k+1 = n \quad k \geq 0.
\]

Rewrite \(n = 2k+1 \) as \(\left[\frac{n}{2}\right] = \left\lfloor \frac{2k+1}{2} \right\rfloor \)

\[
\Rightarrow \left\lfloor k + \frac{1}{2} \right\rfloor = -k.
\]
\[n = 2k + 1 \quad k \geq 0 \quad m \geq 1. \]

Reason: all \(P_{\text{noun}}(a, L^{m+1}) = P_{\text{noun}}(a, k) \)

\[0 \leq k \leq n - 1 \]

\[n = 2k + 1 \]

\[n - 1 = 2k \geq a \]

By the I.H. \(P_{\text{noun}}(a, L^{m+1}) = P_{\text{noun}}(a, k) = a^k \)

\[P_{\text{noun}}(a, n) \text{ returns } \left[\left(P_{\text{noun}}(a, k) \right)^2 \cdot a \right] = (a^k)^2 \cdot a = a^{2k} \cdot a = a^{2k+1} = a^n \]

Reasoning definition of nested paren.

Base: () properly nested

Reason rule: If \(x \) is properly nested then \((x) \) is P.N.

If \(x+y \) are P.N.

then \(xy \) is P.N.

There: If \(s \) is properly nested then \# of left paren in \(s \) is equal to the \# of right paren in \(s \).

If \(s \) is a sequence of paren,

\[N[((), s)] = \# \text{ of left paren in } s. \]
\[N[(),s] = \# \text{ right parens}. \]

Then for \(n \geq 2 \), if \(s \) is properly nested seq of parens of length \(n \) symbols then \(N[(,s)] = N[(),s] \).

Proof: By induction on the length of the seq.

Base case: \(n = 2 \), \(s = () \).
\[N[(,())] = N[(),()] = 1. \]

Assume for \(k = 2, \ldots, n-1 \), any properly nested seq of length \(k \) has the same \# of left parens \& right parens.

Prove claim holds true for length \(n \) sequences.

If \(s \) is properly nested \& length \(n \),
\(s = (x) \) where \(x \) is properly nested,
\(s = xy \) where \(x + y \) are properly nested.

Case 1: \(s = (x) \) By I.H. \(N[(,x)] = N[(),x] \)
\[N[(,s)] = 1 + N[(,x)] = 1 + N[(),x] = N[(),s]. \]

Case 2: \(s = xy \) By I.H. \(N[(,x)] = N[(),x] \)
\(N[(,y)] = N[(),y] \)
\[N[(,s)] = N[(,x)] + N[(,y)] = N[(),x] + N[(),y] = N[(),s]. \]

\(\Box \)
Number Theory: \(a \divides b \).

\[a \divides b \quad \text{a "divides" b.} \]

\[b \text{ is a multiple of } a. \]

\[a \text{ is a factor/divisor of } b. \]

\[b = k \cdot a \quad k \text{ int.} \]

\[6 \divides 48 \quad 48 = 6 \cdot 8. \]

\[6 \divides 49 \]

\[-3 \divides 90 \quad 90 = -3(-30) \]

\[5 \divides -45 \]

Modular arithmetic

\[17 \text{ mod } 3 = 2. \]

\[-17 \text{ mod } 3 = 1 \]

For any \(n \) and any \(d \geq 1 \).

There are unique integers \(q, r \)

\[n = q \cdot d + r \quad r \in \{0, \ldots, d-1\} \]

\[n = 9 \quad d = 5 \]

\[-9 = \frac{-12}{5} + 1 \quad -9 \text{ mod } 5 = 1 \]

\[-9 \text{ div } 5 \]
\[n \mod d = \left\lfloor \frac{n}{d} \right\rfloor \quad \left\lfloor \frac{-9}{5} \right\rfloor = -2 \]

\[n \mod d = n - (n \div d) \cdot d. \]

\[-9 - (-2) \cdot 5 = 1.\]