A Synopsis of ProxmapSort & ProxmapSearch

• invented late 1980’s by Thomas A. Standish, Prof. Emeritus, Dept. of Informatics, UC Irvine
• for in-depth discussion see “Using O(n) ProxmapSort and O(1) ProxmapSearch to motivate CS2 students (Part I)” http://portal.acm.org/citation.cfm?id=1113847.1113874 and “…”(Part II)” http://portal.acm.org/citation.cfm?id=1138403.1138427

The Proxmap

• Basic strategy
 Given an array:
 — map a key to a part of—a subarray of—the destination array A2
 by applying a “mapkey” function to each array item
 — figure out how many keys will map to the same subarray
 this is an array of “hit counts,” H
 — figure out where each subarray will begin so that each subarray is
 exactly the right size to hold all the keys that will map to it
 this is an array of “proxmaps,” P
 — for each key, compute the subarray into which it will map
 this is an array of “locations,” L
 — For each key,
 look up its location
 place it in that cell of A2
 if it “collides” with an key already in that position,
 insert the key into the subarray at position that maintains the order of the keys,
 moving keys > this key to the right one cell in order to free up a space for this key:
 Since the subarray is large enough to hold all keys that map to it, such movement will
 never cause the keys to move into the following subarray.

• Example and associated pseudocode: cell indices begin at 0

A

| 6.7 | 5.9 | 8.4 | 1.2 | 7.3 | 3.7 | 11.5 | 1.1 | 4.8 | 0.4 | 10.5 | 6.1 | 1.8 |

lastUsed = A.length - 1; // last used position of array of keys to sort
MapKey(K) = floor(K); // MapKey(K) will range from 0 to 11, so define H, P to be of size 12
largestMapKey = 11; // compute hit counts
for i = 0 to largestMapKey
 H[i] = 0;
for i = 0 to lastUsed
 pos = MapKey(A[i]);
 H[pos] = H[pos] + 1;
A

| 6.7 | 5.9 | 8.4 | 1.2 | 7.3 | 3.7 | 11.5 | 1.1 | 4.8 | 0.4 | 10.5 | 6.1 | 1.8 |

runningTotal = 0; // compute proxmap – location of start of each subarray
for i = 0 to largestMapKey
 if H[i] = 0
 P[i] = -9; //skip this cell, since no key maps to it
 else
 P[i] = runningTotal;
 runningTotal = runningTotal + H[i];
P

| 6.7 | 5.9 | 8.4 | 1.2 | 7.3 | 3.7 | 11.5 | 1.1 | 4.8 | 0.4 | 10.5 | 6.1 | 1.8 |

1 3 0 1 1 1 2 1 1 0 1 1
-9 4 5 6 7 9 10 -9 11 12
for $i = 0$ to lastUsed // compute location – subarray – in A2 into which each item in A is to be placed
L[i] = P[MapKey(A[i])];

<table>
<thead>
<tr>
<th></th>
<th>6.7</th>
<th>5.9</th>
<th>8.4</th>
<th>1.2</th>
<th>7.3</th>
<th>3.7</th>
<th>11.5</th>
<th>1.1</th>
<th>4.8</th>
<th>0.4</th>
<th>10.5</th>
<th>6.1</th>
<th>1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>1</td>
<td>-9</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>-9</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>11</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

| | 0.4 | 1.1 | 1.2 | 1.8 | 3.7 | 4.8 | 5.9 | 6.1 | 6.7 | 7.3 | 8.4 | 10.5 | 11.1|

for $i = 0$ to lastUsed; // sort items
A2[i] = <empty>;
for $i = 0$ to 12 // insert each item into subarray beginning at start, preserving order
{
 start = L[i]; // subarray for this item begins at this location
 insertionMade = false;
 for $j = start$ to <(an empty cell) or (the end of A2 is found and !insertionMade)>
 {
 if A2[j] == <empty> // if subarray empty, just put item in first position of subarray
 {
 A2[j] = A[i];
 insertionMade = true;
 }
 else if A[i] < A2[j] // item belongs at A2[j]
 {
 int end = j + 1; // Find end of used part of subarray – where first <empty> is
 while (A2[end] != <empty>)
 end++;
 for $k = end - 1$ to j // Move larger keys to the right 1 cell
 A2[$k+1$] = A2[k];
 A2[j] = A[i];
 insertionMade = true; // Add in new key
 }
 }
}

• Rough analysis
 — computing H, P and L all take O(n) time:
 each is computed with one pass through an array,
 with constant time spent at each array location
 — worst case:
 — MapKey places all items into 1 subarray
 resulting in standard insertion sort, and time of O(n^2)
 (plus O(n) time for computing H, P and L)
 — best case:
 — MapKey delivers the same small number of items to each part of the array
 in an order where the best case of insertion sort occurs
 each insertion sort is O(c), c the size of the parts; there are p parts;
 p * c = n, so insertion sorts take O(n); thus, entire sort is O(n)
— average case:
 size of each subarray will be at most c, a constant; insertion sort is then O(c^2) at worst – a constant!
 (actually much better, since we don’t sort c items until the last item is placed in the subarray)
 total time is number of subarrays, (n/c), times O(c^2) = roughly, n/c * c^2 = n * c = O(n);
 thus, entire sort is O(n)

• Having good MapKey is imperative for avoiding worst case
 We must know something about the distribution of the data to come up with a good key

• Save time: save MapKey values so don’t have to re-compute them (notice they're recomputed in code above)

• Save space: if clever, can reuse array H (if made sufficiently large) to store L values, and can store values back into A
 (so you don’t need array A2)

ProxmapSort

• Array A2 is in sorted order, so just read out its items in index order to obtain a sorted list

• Time to read out list is O(n), so ProxmapSort is O(n) best and average cases, O(n^2) worst case

ProxmapSearch

• Build the proxmap structure, keeping MapKey routine, and arrays P and A2

• To search for a key, go to P[MapKey(k)], the start of the subarray that contains the key, if it is in the data set

• Sequentially search the subarray; if find the key, return it (and associated information)
 if find a value > key, the key is not in the data set

• Computing P[MapKey(k)] takes O(1)
 If a mapkey that gives a good distribution of keys was used,
 each subarray is bounded above by a constant c,
 so at most c comparisons are needed to find the key or know it is not present;
 therefore ProxmapSearch is O(1), once the proxmap has been built

 If the worst map key was used, all keys are in the same subarray, so ProxmapSearch,
 in this worst case, will require O(n) comparisons, once the proxmap has been built

Revision History

first written 5/20/06, by Norman Jacobson
revised 6/15/09
updated, including to discuss ProxmapSearch, 3/28/2010
minor bug & typos fixed, 5/19/2010
a few small changes to improve clarity & fix a small bug, 5/19 & 5/29/2011
fix a minor bug in the pseudocode, 6/5/2012