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Abstract—Biological neural systems are well known for their 
robust and power-efficient operation in highly noisy 
environments. Biological circuits are made up of low-precision, 
unreliable and massively parallel neural elements with highly 
reconfigurable and plastic connections. Two of the most 
interesting properties of the neural systems are its self-organizing 
capabilities and its template architecture. Recent research in 
spiking neural networks has demonstrated interesting principles 
about learning and neural computation. Understanding and 
applying these principles to practical problems is only possible if 
large-scale spiking neural simulators can be constructed. Recent 
advances in low-cost multiprocessor architectures make it 
possible to build large-scale spiking network simulators. In this 
paper we review modeling abstractions for neural circuits and 
frameworks for modeling, simulating and analyzing spiking 
neural networks. 
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I. INTRODUCTION

Understanding the principles of brain processing by reverse-
engineering neural circuits and computational modeling is one 
of the biggest challenges of the 21st century [1]. These 
computational models provide the promise of practical 
applications in many domains, including vision, navigation, 
and decision-making. Anatomically, the human brain is 
divided into three regions: the hindbrain, mind-brain and 
forebrain [2]. The forebrain is further divided into two stages: 
the thalamic region and cerebrum. Most concepts discussed in 
this paper deal with the cerebral cortex, the outermost region 
of the cerebrum that is responsible for many functions unique 
to humans, including memory, attention, thought, language, 
etc. Recent developments in multi-electrode recording and 
brain mapping techniques (e.g., fMRI) have generated 
impressive amounts of data on different aspects of brain 
circuitry. These developments have spawned many approaches 
to understanding multiple aspects of brain-circuitry (Figure 1). 

At the circuit level, the human brain has an estimated 100 
billion neural processing elements (neurons) and about 1015

synaptic connections [3]-[4]. Each neuron is a sophisticated 
analog processor that not only integrates information from 
other neurons but also exhibits complex internal dynamics. 
Neurons communicate with other neurons via all-or-none 
digital signals called action potentials or spikes. These spikes 
are propagated using long-range fibers called axons. The 

neurons can be either excitatory or inhibitory, that is they 
increase or decrease the spiking or firing capability of 
downstream neurons. The synaptic connections between 
neurons exhibit different kinds of adaptation (or plasticity) 
based on the firing pattern of the “sending” (pre-synaptic) 
neuron and the “receiving” (post-synaptic) neuron. Several 
excellent overviews of neural circuit models have been 
published from a computer engineering perspective [5]-[8]. 

Figure 1: Brain-based research challenges 
In this overview paper we focus on modeling abstractions, 

simulation frameworks and hardware (HW) architectures for 
modeling brain circuitry (Figure 1).  Section II analyzes brain 
circuits from a VLSI perspective. Section III discusses 
different types of models used to study properties and 
principles of brain-circuits. Section IV focuses on spiking 
neural network (SNN) brain circuit models and analyzes their 
properties. Section V presents HW platforms for simulation of 
large-scale SNNs, with a focus on high-performance graphics 
processors. Section VI outlines a CAD-based software 
framework for development of large-scale SNN models, and 
Section VII concludes with future challenges and directions.

II. VLSI PERSPECTIVES ON BRAIN CIRCUITS

While tremendous advances have been made in neuroscience, 
reverse engineering the brain is still a grand challenge with 
researchers proposing competing hypotheses to explain the 
nature of coding, energy efficiency, and speed of processing 
by brain circuits. But clear parallels can be drawn between 
brain circuits and VLSI circuits [5], and these can be exploited 
to enable the simulation of large-scale, biologically realistic 
brain circuits. 

A. Brain-network organization 

Studies on brain networks have revealed interesting details 
about macroscopic and microscopic structures within the brain 
[9][10]. At a macroscopic level the brain appears to consist of 
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highly-clustered circuits performing similar functions that 
connect to other clusters via hubs in order to reduce the overall 
path length. These “small-world networks” are predominantly 
developed in the brain mainly to conserve wiring cost and also 
to enable an efficient way to transfer information between 
different brain regions [10].  

Consistent with the “small-world network”, the brain also 
exhibits a hierarchical organization for sensory processing. 
Sensory neural systems organize themselves with primitive 
features in the early stages to more and more complex features 
at the later stages of hierarchy [11]. Many interesting models 
have been developed to exploit this hierarchical organization 
for object recognition [12][13].  

At a microscopic level, the columnar organization of cortical 
circuits offers a simple model to support general purpose 
processing [14]. A typical cortical column has hundreds to 
thousands of highly, and stereotypically interconnected 
neurons that functions as a stable unit, performing simple 
computations and competing with neighboring columns. This 
columnar abstraction of cortical processing has been applied as 
a general template for various pattern recognition tasks [15]. 
Further, for sensory systems, topologies are preserved such that 
neighboring regions of a sensory space (e.g., vision) are 
processed by neighboring cortical columns.  These topological 
maps are also seen in the regions of the brain involved with 
other functions such as auditory processing and motor control. 

B. Speed of Processing 

Using rapid visual categorization experiments it was 
determined that humans can process natural images in 150ms 
[16]. Such speed of processing is mainly achieved through 
massive, parallel processing pathways for visual recognition 
[17]. One might wonder how a signal can be transmitted let 
alone processed so quickly using spikes in a noisy, clock-free 
environment. A recent hypothesis [16] suggests that vision 
processing can be modeled by a wave of spike propagation 
through a hierarchy of layers. Computation can be performed 
as soon as a sub-population of nearly coincident pre-synaptic 
spikes reaches a layer. This mode of computation is quite 
similar to asynchronous logic design, where a pulse 
representation is used to convey results of the computation. 

C. Energy Efficiency 

Nature has evolved an energy-efficient system that is 5-6 
orders of magnitude more efficient than typical digital 
systems. A number of factors appear to contribute to the ultra-
low power operation in neural systems such as sub-threshold 
spiking operations [5], sparse-energy efficient codes for 
signaling [9], proper balance of analog computation (for 
energy efficiency), and digital signaling (for signal restoration 
and reduced noise propagation) [18]. Many interesting ultra-
low power circuits have been developed that use these neural 
processing principles [18].  

D. Coding Strategies 

Studies have shown the presence of a variety of coding 
techniques [19] such as: (1) Firing rate coding where the 
frequency of spiking is used to encode the information, (2) 

Temporal coding, where the exact timing of the spike encodes 
the information, (3) Phase coding, where the phase 
relationship between the spikes and the background oscillation 
from large groups of neurons encodes the information. These 
coding techniques appear to be constrained by energy, signal-
to-noise ratio, processing speed, and other factors [9].  
Whereas currently most VLSI architectures are based on 
centralized clocking with nano-second precise signaling, brain 
circuits utilize asynchronous signaling by a sparse population 
of neurons to encode the information [19]. Another interesting 
theory called Polychronization [20] has been proposed that 
utilizes the axonal connection delays within the brain 
networks to increase the memory capacity to store and retrieve 
patterns.  

E. Self-organization 

A very interesting property of the brain is its ability to 
organize itself based upon the statistics of the environment. 
This self-organization has two phases. One period happens 
during the early stages of life and is called the developmental 
stage, where the coarse grain wiring is defined by various 
genetic growth and environmental factors [21]. The second 
period, which happens during and after the development 
phase, fine-tunes the network according to the sensory 
information and experiential learning [22]-[24]. Exactly how 
these two periods contribute to brain-circuit development is an 
active area of research within the neuroscience community 
[21]- [24]. 

III. MODELING ABSTRACTION

Because of the brain’s sheer complexity, designers of brain 
models need to choose an appropriate level of analysis, termed 
“modeling abstraction” (Figure 1) for their study.  Each level of 
abstraction serves a different purpose and incorporates a subset 
of features of the brain. As we move higher up the abstraction 
ladder the models simplify the complex biological processes as 
to more computationally efficient approximations; thus the 
higher up, the more removed from the biology substrate. 
Higher abstractions have strong explanatory power and tend to 
be easier to apply to practical applications. However, lower-
level abstractions incorporate key biological features that may 
not be included in a higher-order model. We extend the 
modeling abstractions introduced in the previous work [3] with 
more types and provide suitable examples for each. 

Figure 2: Levels of Modeling Abstraction. 
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A. Cellular and Biophysical Models 

Cellular level models incorporate molecular, electrical and 
morphological properties of neurons, detailed compartmental 
models of axons and dendrites from anatomical observations, 
and various kinds of ion channels to simulate the synaptic 
connections (e.g., GENESIS [25], NEURON [26] tools). A 
major goal of these models is to study detailed ionic channels 
and their influence on neuronal firing behavior [27]. While 
these models are biologically accurate, they incur tremendous 
computational costs for simulation. Further, these models 
require a large parameter space with some parameters 
insufficiently constrained by biological experiments, thus 
necessitating costly parameter sweeps.  Hence large-scale 
simulation of the brain is extremely challenging at this level. 

B. Neural Circuit Models 

Neural circuit models abstract away many molecular and 
cellular details and consider the brain as a massive circuit 
composed of four basic components: neurons for computation, 
synapses for learning and storage, axons for communication, 
and neuromodulatory systems to control the attention and 
learning [8][28][22]. This approach is very similar to circuit 
theory used in analog and digital design, where circuits are 
studied using basic electronic components. Models of this type 
(and to some extent cellular level models) are able to exhibit 
network dynamics such as a persistent firing, random 
asynchronous firing, synchronous firing, and chaotic activity 
[29]. Section IV presents details of spiking neural networks as 
an exemplar for these neural circuit models.  

C. Application Specific Models 

Application Specific Models further simplify details of the 
brain-circuit (e.g., using signal processing transformations or 
algorithmic approximations), for use in specific applications 
such as object recognition, audition, navigation, etc. These 
models do not explain all the principles or behaviors of a 
specific brain region, but are developed from the 
understanding of some aspects of brain circuit properties. 
Several application specific models [12][13] have been 
developed to explain the human visual hierarchy [4] and 
consist of layers of simple and complex cells having 
progressively larger receptive fields. For example, the simple 
cell responses can be calculated by a convolution operation 
and the complex cell response is calculated by finding the 
maximum response over a pool of simple cells [13]. Another 
application specific model recognizes line-based objects [30] 
and is based on the idea that simple and complex cells in the 
visual cortex, V1, respond to oriented lines [4]. Thus a 
hierarchy of line-based feature detectors was developed. Each 
feature detector responds to a spatial combination of line 
segments, with the first layer responding to line-triplets and 
higher layers responding to more complicated feature 
combinations [30].  

D. Generic Models 

Generic models use algorithms that are not restricted to one 
application, sensory domain or dataset; they exploit studies 
showing that brain-circuits have a template architecture, where 

similar circuits are used for processing and learning various 
sensory signals [7][31][32]. These generic models can also 
incorporate top-down feedback to incorporate predictive 
signaling. Unlike neural circuit level models, most generic 
models do not incorporate detailed neural mechanisms such as 
the notion of spikes, synchronization, or oscillations. Rather, 
these models consist of algorithmic steps such as clustering, 
temporal pooling, associative memory etc [7][31][32]. 

E. Theoretical Models 

Theoretical models are essentially developed to understand the 
statistics of sensory data and to explain high-level 
mathematical principles that can elucidate the function of the 
cortex [24][33]. Theoretical models can also address cognitive 
aspects such as consciousness (Global Workspace [34]) and 
brain function (Neural Darwinism [35]). 

Ideally a model that spans several levels of abstraction could 
provide a good tradeoff between accuracy and simulation 
complexity. In the next sections we discuss the design and 
framework for spiking-based computation, since spike-based 
neural circuit models exhibit an interesting hybrid-computation 
paradigm that can be realized in VLSI circuits.  

IV. SPIKE-BASED COMPUTATION

Spike-based neural networks (SNN) model, to varying 
degrees, properties of the neuron and synaptic state, but most 
importantly they use an explicit representation of spike timing 
[6][28]. A spike-based model is inherently event driven, where 
an incoming spike changes the state of the post-synaptic 
(downstream) neuron.  

A model of a simple local spiking circuit is illustrated in 
Figure 3(a) and the dynamics of a typical neuron is shown in 
Figure 3(b). In Figure 3(a), the excitatory neuron group 
(Group B) receives input spikes from the spike generator 
group (Group A). Furthermore each excitatory neuron is 
connected to an inhibitory neuron (Group C), which in turn 
inhibits the neurons in the local neighborhood of Group B. 
This circuit performs a form of winner-take-all (WTA) 
computation. The inhibition strength determines if the network 
is a hard-WTA network (only the winning neuron in the group 
fires) or soft-WTA network (a small group of strongly excited 
neurons fires).  In Figure 3(a), the inhibitory group also  
stabilizes the excitatory group activity. A highly active 
excitatory group causes more inhibition and hence self-
regulates its overall activity. Figure 3(c) shows the synaptic 
input connections to the center neuron, and receiving inputs 
from a large number of other neurons.  When a sufficient 
number of input spikes (i.e., pre-synaptic) arrive “together” 
(i.e., temporally close), the post-synaptic neuron generates a 
spike of its own. The neurons are continually learning and 
modifying the strength of their connections based on their 
inputs [36].  The synaptic strength (weight) of a connection is 
increased if input (i.e., pre-synaptic) spikes consistently come 
before the output (i.e., post-synaptic) spikes; in other words, 
the temporal order of spikes is consistent with the input 
causing the neuron to spike. If however, the order is anti-
causal (i.e., input spike occurs after output), the synaptic 
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weight is decreased. This learning rule is called STDP (spike-
timing dependent plasticity) [22] and has many interesting 
properties that enable a network to learn from spatial-temporal 
spike patterns [36]-[38]. 
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Figure 3: (a) Simple spiking neural network model. Axonal 
delay shown as X ms. (b) Membrane potential of the center 
neuron (c) synaptic connections for the center neuron.

Other neural circuits have been developed for unsupervised 
learning [37], and working memory [6]. More interesting 
dynamics and memory storage can be achieved if axonal 
delays are incorporated into the circuits [20]; interestingly -- 
unlike in VLSI circuits -- neural circuit delays can be viewed 
as a benefit, rather than a detriment to be minimized. It is also 
possible to create a generic recurrent microcircuit of spiking 
neurons that acts as a dynamical system that converts recent 
input data into a high-dimensional state [15]. This high-
dimensional state can be easily classified or processed. 
Interesting applications are emerging using such a “reservoir” 
SNN [39]. 

V. HW ARCHITECTURES FOR SPIKE-BASED COMPUTATION

Large-scale SNN simulators are essential for simulating 
different aspects of human vision and other applications. For 
example, to model the behavior of the primary visual cortex, 
numerous neurons are required to process input images at 
different retinal (i.e., pixel) locations, spatial orientations, 
spatial frequencies, color, velocity, binocular disparity etc. 
These simulations can easily surpass a million neural elements 
even for low resolution input images, and while offering large 
amounts of parallelism, pose tremendous challenges for 
achieving fast simulation. Many dedicated hardware 
architectures and multiprocessor approaches have been used to 
increase the simulation speed of large-scale SNNs. Earlier 
works utilized supercomputers such as the IBM Blue Gene 
[27] or large-scale distributed clusters [40]. Techniques for 
distributed simulation of SNN are helpful for any kind of HW 
platform because it is difficult to fit the large-scale SNNs 
within one HW device. However, the cost and development 
time required pose fundamental limitations for these 
distributed approaches.  

The advent of high-performance graphics architectures 
(e.g., NVIDIA GPUs) provides an interesting platform for 
large-scale SNN simulations [41]. Some fundamental benefits 

and limitations of such graphics architectures for simulating 
SNNs are: 
1. Large fine-grained parallelism: Contemporary GPUs with 
hundreds of scalar processors can execute thousands of 
threads concurrently. Maximum performance can be achieved 
as long as a group of threads are executing the same 
instruction. However, when different threads within the same 
group require different instructions, thread divergence occurs, 
causing poor parallelism performance.   
2. Large off-chip memory bandwidth: A typical GPU’s off-
chip memory bus is based on a 512- (or 256-) bit wide DDR 
interface, resulting in a 5-fold increase in GPU memory 
bandwidth over the CPU. Through memory coalescing, this 
GPU memory bandwidth is exploited by clustering memory 
access patterns from different threads within a 128, 64, or 32-
byte memory address space. 
3. Special Function Units: Each streaming multiprocessor 
may have multiple special functional units (SFUs) allowing 
single instruction calculation of exponentials and other 
mathematical functions. 

The mapping of SNNs on to GPUs is non-trivial due to the 
random memory access structure in SNNs and large memory 
requirements to store the connectivity and network state 
(synapses and neurons) information. We proposed various 
optimization techniques to overcome the above limitations and 
effectively map SNNs on to GPUs [41], including: (1) 
Exploiting both neuronal and synaptic parallelism to maximize 
thread level parallelism, (2) Efficient representation of large-
scale SNNs that improves the off-chip memory coalescing, 
and (3) Minimizing thread divergence by delaying the 
execution of diverging conditions by buffering them and 
running them concurrently later.  Using these optimization 
techniques, a SNN simulation with 100,000 neurons and 10 
million synapses can be executed close to real-time [41]. 
Further, the GPU-SNN simulation was about 26 times faster 
than the CPU for 100K neurons with 50 million synapses. 

Large-scale SNN simulations are memory dominated and 
hence overall speed-up is limited due to saturation of off-chip 
memory-bandwidth. Off-chip memory requirements can be 
reduced by providing large, persistent local shared memory to 
store the neuron state, and also by providing on-chip 
communication networks for direct spike transfer between 
multiprocessors. Such improvements have been incorporated 
into an application specific multiprocessor in the Spinnaker 
project [7] for large-scale SNN simulations. But to truly 
approach the power and area efficiency of brain circuits it is 
essential to directly model neuronal circuits using hybrid 
analog-digital architectures [5][18]. Wafer-scale integration 
[42] and memristor architectures [43] have been proposed to 
implement neuronal circuits with high-efficiency. These and 
other approaches are currently being investigated in the EU 
FACETS [44] and the DARPA SyNAPSE [45] projects.  

VI. FRAMEWORK FOR SPIKE-BASED MODELING
ON HIGH-PERFORMANCE ARCHITECTURES 

Currently, SNNs have been used mostly to model various parts 
of the human brain, such as the visual cortex, hippocampus, or 
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prefrontal cortex. But spike-based computations also hold 
promise as a generic technique that can be applied to 
processing other kinds of spatial-temporal information 
[15][38].  A CAD-based software framework would enable the 
modeling and development of SNNs for a wide range of 
practical applications, and their simulation on a wide range of 
hardware platforms. 

Figure 4 shows a framework for SNN development and 
depicts four stages of the spike-based modeling framework: 
(A) Network Specification, (B) Network Optimization and 
Mapping, (C) SNN Simulation, and (D) Parameter tuning.  We 
have released a downloadable open-source version of the GPU 
spiking simulator and related tools used for our research [49]. 
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and Mapping
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Other HW
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Figure 4: Framework for Spike-based Neural Network 
Development 
A. Network Specification (Figure 4:A)  

Since most implementations of SNNs for vision and other 
applications require large populations of neural elements 
(~100K to 1 Million), it is infeasible to explicitly describe 
every neuron type and connections. Instead, the following 
high-level constructs can be used to describe SNNs [46]: 
• Neuron population or Grouping: Denotes a population of 

neurons that share a specific topology and cell type. All 
neurons in one group have similar spiking dynamics and 
parameters (e.g., Group A and Group B in Figure 3a). 

• Connection projection: Specifies the connection topology 
between two groups. Commonly used connection topologies 
are one-to-one, one-to-all, random, center-surround and 
Gaussian. More flexible user-defined topologies can also be 
supported.  

• Synaptic properties: Specifies if the synaptic strength is 
fixed or plastic, the type of synaptic plasticity [22] (STDP), 
and other connection specific properties. 

• Spike Generators: Special groups that accept data from 
external sources and generate Poisson spikes. Poisson spike 
generators allow for easy conversion of a real-valued signal 
to a spike train. 

• Output effectors: Groups that convert spikes to real-values 
that are typically used for motor control and decision-
making.  

B. Network optimization and mapping(Figure 4: B) 

In the network mapping stage, the SNN is optimized and 
mapped onto different simulators including HW based SNN 
simulators. Each optimization is specific to the underlying 
architecture on which the SNN will be simulated. For 
example, in GPU based simulators the out-going connections 
can be sorted based on axonal delays to improve the 
parallelism and memory bandwidth [41]. Similarly other 
network optimizations are essential for remapping the SNNs 
to run on distributed GPU clusters [40] or on future nano-
architectures.  

C. SNN simulation (Figure 4: C) 

SNNs can be simulated using a discrete clock approach, an 
event-driven approach, or a mixture of the two [28].  In the 
pure clock-driven approach, the entire state of the SNN is 
updated every time step (1ms or smaller time-steps). The 
clock-driven approach generates spikes only at discrete time 
steps and hence can lead to some inaccuracies in spiking 
behavior and can change the spiking dynamics of simulated 
network [28]. In contrast, event-driven spiking simulators can 
generate spikes at any arbitrary time resolution, not just at 
specific timing steps. Most hardware simulators (e.g., 
Verilog/VHDL) work in event-driven mode. The main 
advantage of pure event-driven spiking simulators is better 
simulation performance and accuracy in simulating spiking 
dynamics. Simulation performance is high because state 
updates need to be computed only when a neuron spikes. The 
accuracy is higher than clock-driven because event-driven 
simulation calculates exact timings of spikes (avoiding 
temporal binning) [28]. Our existing GPU based spiking 
simulator [41] adopts a mixed-approach. The neurons are 
updated every time-step, and synaptic connections are updated 
in an event-driven fashion thus reducing the overall 
computation required. Many other HW platforms are being 
investigated for large-scale SNN simulations [8] [40]-[42]. 

D. Parameter Tuning (Figure 4: D) 

In many applications, the selection of suitable parameter 
values for SNN simulations is extremely challenging because 
of the large number of parameters in a given model and 
complicated SNN dynamics. Sample SNN parameters that 
require tuning include the neuron dynamics, synaptic time 
constants, and synaptic strengths [47]. Most SNN models are 
hand tuned to avoid unstable states or locked synchronous 
oscillatory states (where all neurons fire synchronously). For 
some experiments the simulation model developer has a good 
understanding of the expected responses [38] and optimization 
techniques can be exploited [48]. GPUs and other parallel 
architectures are well suited for tuning and screening multiple 
networks concurrently to find a good set of candidate models. 
Based on the response from the simulator and SNN model, the 
parameter tuning stage (Figure 4:D) can adapt the model 
parameters and/or network connectivity to maximize some 
fitness function. In general the fitness function is highly non-
linear and hence stochastic optimization techniques, such as 
simulated annealing or evolutionary strategies can be adopted 
to search the parameter landscape [48].
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VII. DISCUSSION AND CONCLUSTION

Even though rapid progress is being made towards 
understanding details of brain circuits, many challenging 
problems remain to be solved. Some of them include 
unsupervised learning techniques in deep-hierarchical SNNs, 
multi-modal sensory integration and learning, techniques for 
stable operation of large-scale SNNs, and the role of feedback 
connection within brain-circuits. In this brief overview we 
explored various abstractions for modeling brain circuits and 
also frameworks for simulation of large-scale SNNs on high-
performance architectures. Our ongoing research addresses the 
development of large-scale SNN based cortical vision models 
for various applications, and researching the role of 
neuromodulation in attention and learning tasks.   
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