Lecture 11

Review Section 3.5 from last Monday (on board)

Overview of today's example (on board)

Section 3.6, Continued: Nested F tests, review on board first

Section 3.4:

Interaction for quantitative variables (on board)

Polynomial Regression

Especially quadratic

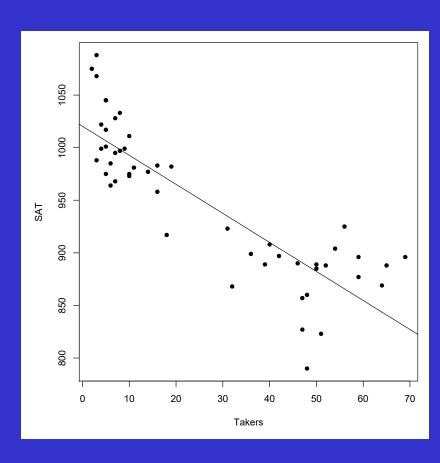
Second-order models (including interaction)

Example: 1982 State SAT Scores (First year state by state data available)

Unit = A state in the United States

Response Variable:

Y = Average combined SAT Score

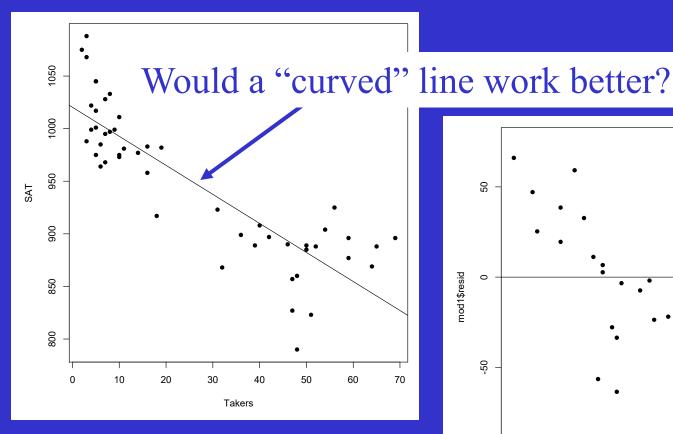

Potential Predictors:

 X_1 = Takers = % taking the exam out of all eligible students in that state

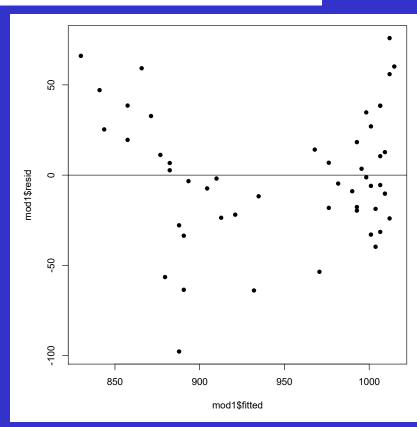
 X_2 = Expend = amount spent by the state for public secondary schools, per student (\$100's)

Is *Y* related to one or both of these X variables?

Example: State SAT with X₁ only

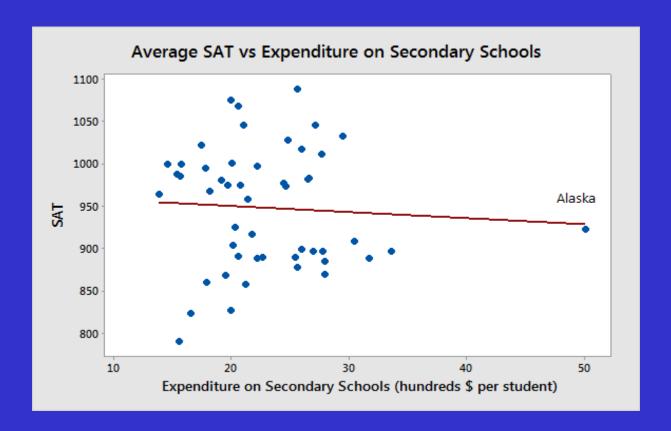


Y = Combined SAT X = % Taking SAT


Things to notice:

- Two clusters in the X range. Why?
- Possible curved relationship
- As %Takers goes up, average SAT goes down.

Example: State SAT with X₁ only



Y = Combined SAT X = % Taking SAT

Residuals vs fitted values

Example: State SAT with X₂ only

Y = Combined SAT X = Expenditure

Not clear what pattern is; Alaska is very influential.

Polynomial Regression

For a single predictor *X*:

$$Y = \beta_o + \beta_1 X + \beta_2 X^2 + \dots + \beta_p X^p + \varepsilon$$

$$Y = \beta_o + \beta_1 X + \varepsilon \quad \text{(Linear)}$$

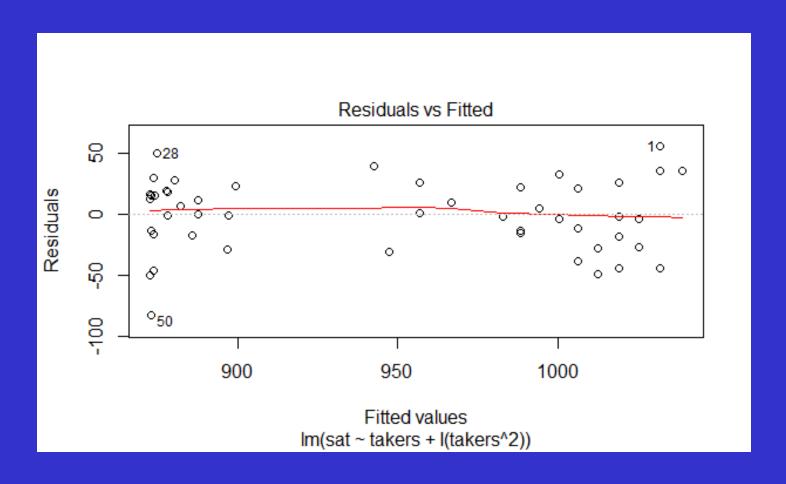
$$Y = \beta_o + \beta_1 X + \beta_2 X^2 + \varepsilon$$
 (Quadratic; curve)

$$Y = \beta_o + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \varepsilon$$
 (Cubic)

Polynomial Regression in R

Method #1: Create new columns with powers of the predictor.

To avoid creating a new column...


```
Method #2: Use I( ) in the lm( )
quadmod=lm(SAT~Takers+I(Takers^2))
```

```
Method #3: Use poly
quadmod=lm(SAT~poly(Takers,degree=2,raw=TRUE))
```

Quadratic Model

```
> Quad<-lm(sat~takers+I(takers^2), data=StateSAT)</pre>
> summary(Quad)
Call:
lm(formula = sat ~ takers + I(takers^2), data = StateSAT)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1053.13112 9.27372 113.561 < 2e-16 ***
takers
        -7.16159 0.89220 -8.027 2.32e-10 ***
I(takers^2) 0.07102 0.01405 (5.055 6.99e-06 ***
Residual standard error: 29.93 on 47 degrees of freedom
Multiple R-squared: 0.8289, Adjusted R-squared: 0.8216
F-statistic: 113.8 on 2 and 47 DF, p-value: < 2.2e-16
```

Residual Plot Looks Good (Two clusters still obvious)

How to Choose the Polynomial Degree?

- Use the minimum degree needed to capture the structure of the data.
- Check the t-test for the highest power.
- (Generally) keep lower powers—even if not "significant."

Interaction

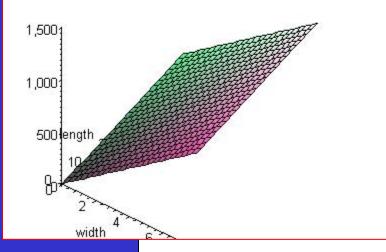
Recall:

 $Active = \beta_o + \beta_1 Rest + \beta_2 Gender + \beta_3 Rest * Gender + \varepsilon$

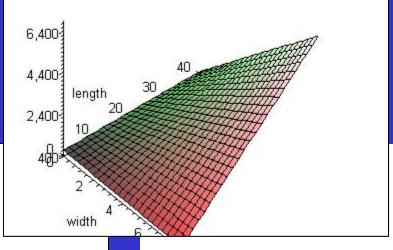
Product allows for different Active/Rest slopes for different genders

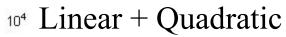
In General: Interaction is present if the relationship between two variables (e.g. Y and X_1) changes depending on a third variable (e.g. X_2).

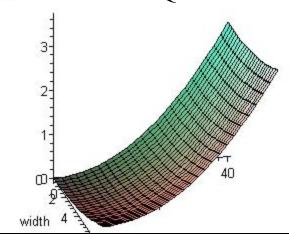
Modeling tip: Include a product term to account for interaction.

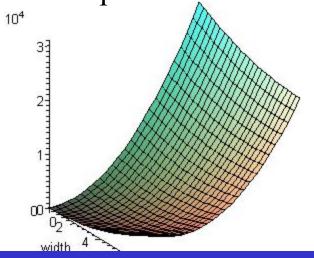

Complete Second-order Models

Definition: A complete second-order model for two predictors would be:


$$Y = \beta_o + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \varepsilon$$


First order Quadratic Interaction


Just linear for both


Linear + $X_1 X_2$ Interaction

Complete second-order

Second-order Model for State SAT

Example: Try a full second-order model for Y = SAT using $X_1 = Takers$ and $X_2 = Expend$.

$$Y = \beta_o + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \varepsilon$$

secondorder=lm(SAT~Takers+I(Takers^2) +Expend+I(Expend^2)+Takers:Expend, data=StateSAT)

Second-order Model for State SAT

summary(secondorder)

```
lm(formula = sat ~ takers + I(takers^2) + expend + I(expend^2) +
   takers:expend, data = StateSAT)
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                        36.14094 24.727 < 2e-16 ***
(Intercept) 893.66283
            -7.05561 0.83740 -8.426 9.96e-11 ***
takers
I(takers^2) 0.07725 0.01328 5.816 6.28e-07 ***
expend
             10.33333 2.49600 4.140 0.000155 ***
I(expend^2) -0.11775 0.04426 -2.660 0.010851 *
takers:expend -0.03344 0.03716 -0.900 0.373087
Residual standard error: 23.68 on 44 degrees of freedom
Multiple R-squared: 0.8997, Adjusted R-squared: 0.8883
F-statistic: 78.96 on 5 and 44 DF, p-value: < 2.2e-16
```

Do we really need the quadratic terms? Nested F-test

anova(secondorder) [FULL MODEL]

```
Df Sum Sq Mean Sq F value
                                           Pr(>F)
              1 181024
                        181024 322.8794 < 2.2e-16 ***
takers
I(takers^2)
                 22886
                         22886
                                40.8198 9.035e-08
              1
                 11700 11700 20.8678 3.956e-05 ***
expend
I(expend^2)
                        5278 9.4148 0.003677 **
              1
                  5278
takers:expend
                   454
                           454
                                 0.8098
                                        0.373087
Residuals
             44 24669
                           561
```

firstorder=lm(SAT~Takers*Expend) [REDUCED = NO QUADRATIC]

anova(firstorder)

Response: SA1					
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Takers	1	181024	181024	152.6279	3.245e-16 ***
Expend	1	8709	8709	7.3428	0.009429 **
Takers:Expend	1	1720	1720	1.4499	0.234710
Residuals	46	54558	1186		

anova(firstorder, secondorder) [COMPARE]

```
Model 1: SAT ~ Takers * Expend

Model 2: SAT ~ Takers + I(Takers^2) + Expend + I(Expend^2) + Takers:Expend

Res.Df RSS Df Sum of Sq F Pr(>F)

1 46 54558

2 44 24669 2 29889 26.656 2.608e-08 ***
```

The quadratic terms are significant as a pair (as well as individually).

Do we really need the terms with Expend? Nested F-test

Simultaneously test all three terms involving "Expend" in the second order model with "Takers" to predict SAT scores.

anova(secondordermodel)

Response: SAT								
	Df	Sum Sq	Mean Sq	F value	Pr(>F)			
Takers	1	181024	181024	322.8794	< 2.2e-16 ***			
I(Takers^2)	1	22886	22886	40.8198	9.035e-08 ***			
Expend	1	11700	11700	20.8678	3.956e-05 ***			
I(Expend^2)	1	5278	5278	9.4148	0.003677 **			
Takers:Expend	1	454	454	0.8098	0.373087			
Residuals	44	24669	561					

Do we really need the terms with Expend? Nested F-test

Simultaneously test all three terms involving "Expend" in the second order model with "Takers" to predict SAT scores.

anova(secondordermodel)

```
Response: SAT
                Sum Sq
                          Mean Sq
                                    F value
                                              Pr(>F)
                                    322.8794
                                              < 2.2e-16 ***
                181024
                          181024
Takers
I(Takers^2)
                 22886
                           22886
                                    40.8198
                                              9.035e-08 ***
Expend
                 11700
                            17432 explained by adding
I(Expend^2)
Takers:Expend 1
                   454
                            the three predictors
Residuals
                 24669
```

Compare to F(3,44)

P-value=0.000028 (next slide)

$$t.s. = \frac{17432/3}{24669/44} = 10.36$$

anova(secondorder) [FULL MODEL]

```
Df Sum Sq Mean Sq
                                 F value
                                            Pr(>F)
               1 181024
                         181024 322.8794 < 2.2e-16 ***
takers
I(takers^2)
                 22886
                         22886
                                40.8198 9.035e-08
               1
                 11700 11700
                                20.8678 3.956e-05 ***
expend
               1
I(expend^2)
              1
                  5278
                          5278 9.4148
                                         0.003677 **
takers:expend
                    454
                           454
                                 0.8098
                                         0.373087
Residuals
                           561
              44
                 24669
```

Takersmodel=lm(SAT~Takers+I(Takers^2)) [REDUCED MODEL] anova(Takersmodel)

```
Response: SAT
                                         F value
              Df
                   Sum Sq
                              Mean Sq
                                                    Pr(>F)
Takers
                   181024
                              181024
                                         202.089
                                                  < 2.2e-16 ***
I(Takers^2)
                    22886
                               22886
                                         25.549
                                                    6.992e-06 ***
Residuals
                                 896
               47
                    42101
```

anova(Takersmodel,secondorder) [COMPARE]

```
Model 1: SAT ~ Takers + I(Takers^2)

Model 2: SAT ~ Takers + I(Takers^2) + Expend + I(Expend^2) + Takers:Expend

Res.Df RSS Df Sum of Sq Pr(>F)

1 47 42101

2 44 24669 3 17432 10.364 2.787e-05 ***
```

Three "new" predictors reduce the SSE by 17432, a sig. amount.

Second-order Model for State SAT

summary(secondorder)

Do we really need the interaction? T-test for takers:expend

SUMMARY

- Full second-order model is better than the model with no quadratic terms
- Full second-order model is better than the quadratic model with "Takers" only
- Model with no interaction seems acceptable
- Comparing Adjusted R-squared:
 - Full model: 88.83%; No interaction: 88.88%
 - No quadratic terms: 76.38%
 - Takers only, quadratic: 82.16%
 - Expend only, quadratic: -3.59%, partly because of the extreme outlier for Alaska!