Chapter 5 Section 5.1

Review of two-sample t-test Analysis of Variance = ANOVA or AOV

In both cases:

- The <u>response</u> variable is quantitative.
- The <u>explanatory</u> variable is categorical
 - For a two-sample t-test, it has 2 categories.
 - For ANOVA, it has 2 or more categories.
 - However, when k = 2, ANOVA is equivalent to a two-sided two-sample t-test.

Some basic definitions

- A <u>factor</u> is a categorical explanatory variable.
- A <u>level</u> of a factor is one category.
- Categories are sometimes called groups.

Example

Does average time spent studying per week differ by type of major? Take random sample from each type of major, or one random sample and divide into the 3 majors.

- Y = time spent studying per week (hours) [response var.]
- Factor = Category of major (sciences, social sciences, humanities) [explanatory variable]
- The 3 <u>levels</u> of the factor (the 3 groups) are sciences, social sciences, humanities.

Two-sample t-test (Review)

Data: Independent samples from two groups

Summary statistics:

$$n_1, \overline{Y}_1, s_1$$
 n_2, \overline{Y}_2, s_2

Conditions:

- 1. Normal populations (or large *n*'s)
- 2. Equal variances (sometimes)

Write as $Y_{ik} \sim N(\mu_k, \sigma)$, where

$$k = \text{group } (1 \text{ or } 2)$$

 $i = \text{individual within group} = 1, 2, ..., n_k$

Hypotheses:

$$H_0$$
: $\mu_1 = \mu_2$

$$H_1: \mu_1 \neq \mu_2$$

Pooled Two-sample t-test (Review?)

Pooled variance:
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

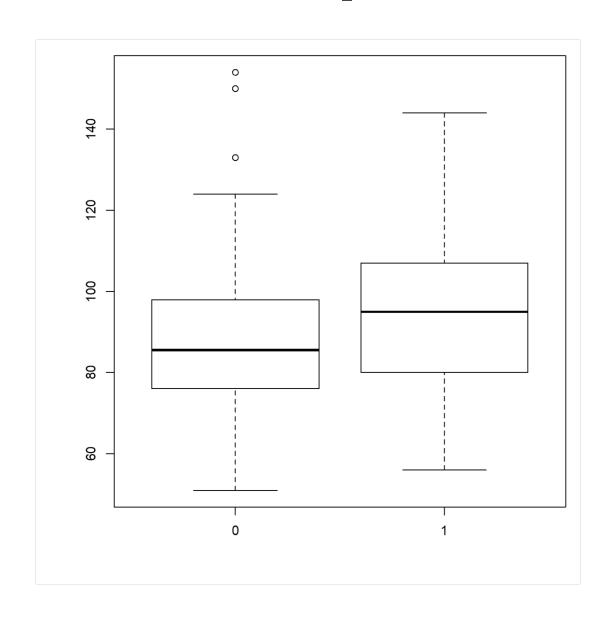
Test statistic:

$$t.s. = \frac{\overline{Y_1} - \overline{Y_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 Explain why on white board.

Reference distribution:

$$t_{n_1+n_2-2}$$

Does Active Pulse Depend on Gender?



Two-sample t-test (R)

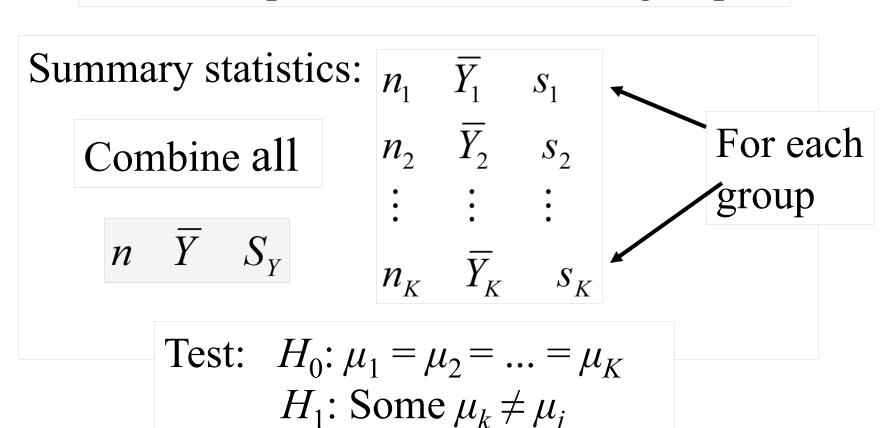
```
> t.test(Active~Gender,var.equal=TRUE)
        Two Sample t-test

data: Active by Gender
t = -2.7436, df = 230, 6-value = 0.006556
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -11.503416   -1.887046
sample estimates:
mean in group 0 mean in group 1
        88.12295     94.81818
```

```
> t.test(Active~Gender,var.equal=TRUE)
       Two Sample t-test
                                            Two-sample t-test
data: Active by Gender
t = -2.7436, df = 230 p-value = 0.006556
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -11.503416 -1.887046
sample estimates:
mean in group 0 mean in group 1
       88,12295
                      94,81818
> summary(aov(Active~Gender))
            Df Sum Sq Mean Sq F value
                                       Pr(>F)
                 2593 2592.96 (7.5274) 0.006556 **
Gender
Residuals
           230 79228 344.47
                                           ANOVA for Means
> oneway.test(Active~Gender,var.equal=TRUE)
       One-way analysis of means
data: Active and Gender
F = 7.5274, num df = 1, denom df = 230 p-value = 0.006556
```

ANOVA: Test for Difference in *K* Population Means

Data: Samples from *K* different groups



Conditions and assumptions

- 1. Normal populations (or large *n* for each group)
- 2. Equal variances for all observations
- 3. All observations are independent, within and between groups.

Write as $Y_{ik} \sim N(\mu_k, \sigma)$, all independent, where

 $i = \text{individual within each group} = 1, 2, ..., n_k$

k = group, with k = 1, 2, ..., K

See picture on white board.

Some possible ways to get independent data

1. K separate populations, take random sample from each.

Ex: Groups = 4 regions of the US

 Y_{ik} = time spent commuting to work

2. Take one random sample and measure response variable Y, and categorical explanatory variable X.

Ex: Groups = type of major (Science, SocSci, Humanities)

 Y_{ik} = time spent studying per week

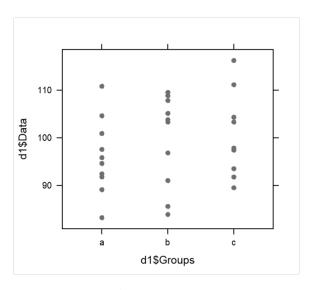
3. Randomized experiment with K treatments

Ex: 30 cities available for experiment with 3 roadside billboards

Randomly assign 10 cities to each type of billboard

 Y_{ik} = Sales of product after 6 months in City *i*, with billboard *k*.

Test: Are Group Means Equal (in the Population)?



$$p$$
-value = 0.39

Summary	y of	Data	Data			
For cate	gories in	Group	S			
No Selec	tor					
Count	Mean	S	tdDev			
10	96.082	20 7.	90629			
10	99.564	10 9.	63299			
10 101.601		9.	09347			

p-value = 0.0015

Summary For cated No Select	gories in (Data Groups
Count 10 10 10	Mean 96.0820 99.5640 111.601	

Effect size = 0.6

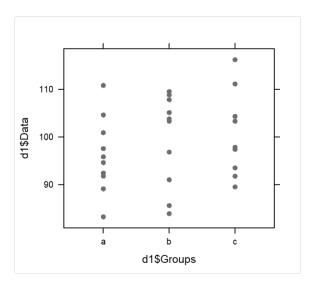
Effect size
$$= 1.6$$

What's different?

Same *n* and SDs but a shift in the third group

Effect size =
$$\frac{\left|\mu_1 - \mu_2\right|}{\sigma}$$

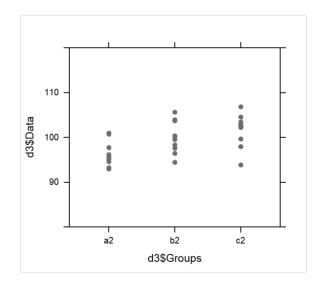
Test: Are Group Means Equal (in the Population)?



p-value = 0.39

Summary For cated No Select	gories in (Data Groups
Count 10 10 10	Mean 96.0820 99.5640 101.601	

Effect size = 0.6



p-value = 0.0036

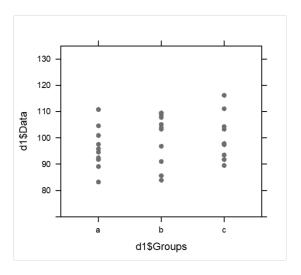
Summary For categ No Select	jories in	Data Groups
Count	Mean	StdDev
10	96.2640	2.75993
10	99.9780	3.55353
10	101.806	3.75886

Effect size = 1.5

What's different?

Same *n* and means but smaller SDs

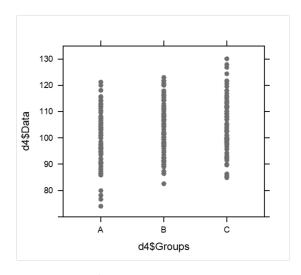
Test: Are Group Means Equal (in the Population)?



$$p$$
-value = 0.39

Summary For cated No Select	gories in	Data Groups
Count 10 10 10	Mean 96.0820 99.5640 101.601	

Effect size = 0.57 to two decimal places



p-value = 0.0002

Summary	∕ of	Data			
For cate	gories in	Groups			
No Select	tor				
_					
Count	Mean	StdDev			
100	99.8757	7 10.3175			
100	103.405	9.34201			
100	105.702	10.1690			
	For cated No Select Count 100 100	For categories in No Selector Count Mean 100 99.8757 100 103.405			

Effect size = 0.56

What's different?

Same (approx.) range among the means but larger *n*

Summary of what decreases *p*-value and increases power of the test (easier to reject null hypothesis)

- Bigger difference between the means
 - Increased effect size
- Smaller standard deviations
 - Increased effect size
- Larger sample sizes
 - Not an increase in effect size

Example: Random sample of $n_k = 5$ scores (Ys) from each of K = 4 exams (there are 4 levels)

Exam #1: 62, 94, 68, 86, 50 Exam #2: 87, 95, 93, 97, 63 Exam #3: 74, 86, 82, 70, 28 Exam #4: 77, 89, 73, 79, 47

n_1	Mean S_i
5	72.0 17.89
5	87.0 13.93
5	68.0 23.24
5	73.0 15.68

Is there a difference in population mean score among the four exams?

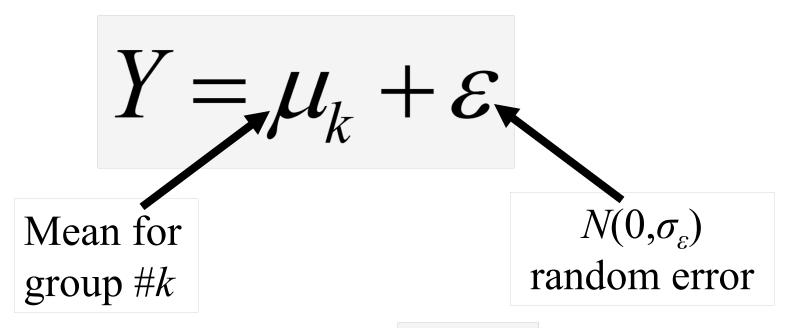
Overall 20 75.0 18.11

Test: H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ H_1 : Some $\mu_k \neq \mu_j$

Helpful R Command

```
> means=tapply(X=Grade,INDEX=Exam,FUN=mean) #FUNction = mean
> means
1 2 3 4
72 87 68 73
> sds=tapply(Grade, Exam, sd) #we don't have to state "X=", etc.
> Sds
                            #standard deviations
17.88854 13.92839 23.23790 15.68439
> ns=tapply(Grade,Exam,length) #length = sample size
> ns
1 2 3 4
5 5 5 5
```

ANOVA (Means) Model



Under
$$H_0$$
 (μ_k 's all equal) $\rightarrow \hat{\mu}_k = \overline{Y}$

Under
$$H_1$$
 (μ_k 's differ) $\rightarrow \hat{\mu}_k = \overline{Y}_k$

These are the least squares estimates for μ_k for the two hypotheses.

"Predicting" in ANOVA Model

If the group means are the same (H_0) :

$$\hat{Y} = \overline{Y}$$
 for all groups \rightarrow residual = $Y - \overline{Y}$

If the group means can be different (H_1) :

$$\hat{Y} = \overline{Y}_k$$
 for k^{th} group \rightarrow residual = $Y - \overline{Y}_k$

Do we do "significantly" better with separate means?

Compare sums of squared residuals...

$$SSTotal = \sum (Y - \overline{Y})^2$$
 VS. $SSE = \sum (Y - \overline{Y}_k)^2$

Partitioning Variability

Key question: Does the MODEL explain a "significant" amount of the TOTAL variability?

Partitioning Variability ANOVA for Group Means

$$Y = \mu_k + \varepsilon$$

$$(y - \overline{y}) = (\overline{y}_k - \overline{y}) + (y - \overline{y}_k)$$

$$\sum (y - \overline{y})^2 = \sum (\overline{y}_k - \overline{y})^2 + \sum (y - \overline{y}_k)^2$$

$$SSTotal = SSGroups + SSE$$

Using familiar regression terminology

$$\sum (y - \overline{y})^2 = \sum (\overline{y}_k - \overline{y})^2 + \sum (y - \overline{y}_k)^2$$

Residuals if H_0 is true (same mean)

"Explained" by model with separate means

+ Still unexplained with separate means

SSTotal

SSGroups = SSModel

+ SSE

Example: Four Exams

$$SSGroups = 5(72-75)^2 + 5(87-75)^2 + 5(68-75)^2 + 5(73-75)^2 = 1030$$

$$SSE = (62-72)^2 + (94-72)^2 + \dots + (47-73)^2 = 5200$$

$$SSTotal = (62-75)^2 + (94-75)^2 + \dots + (47-75)^2 = 6230$$

Decomposition: Four Exams

```
Group Mean
Exam #1: 62, 94, 68, 86, 50
Exam #2: 87, 95, 93, 97, 63
                                    87.0
                   Overall (Grand Mean) = 75.0
      Observed Grand
                       Group
                                Residual
                       effect
      value
               mean
Exam #1: 62 = 75.0
                                   -10
Exam \#1: 94 = 75.0
                                    22
Exam #2: 87 = 75.0
Exam #2: 95 = 75.0
                          12
             Etc.
```

ANOVA Table (for *K* Group Means)

 $H_0: \mu_1 = \mu_2 = \dots = \mu_K$

 H_1 : Some $\mu_k \neq \mu_i$

Note: n = total

sample size

Source	d.f.	S.S.	M.S.	t.s.	p-value
Groups	K-1	SSGroups	$\frac{SSGroups}{K-1}$	$\frac{MSGroups}{MSE}$	use $F_{K-1,n-K}$
Error	n-K	SSE	$\frac{SSE}{n-K}$		
Total	n-1	SSTotal		•	

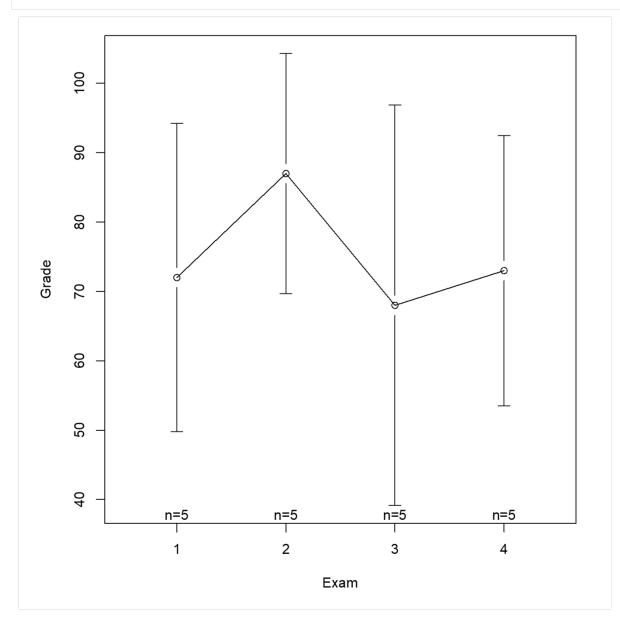
Small p-value \rightarrow Reject $H_0 \rightarrow$ There is a evidence of a difference among the <u>population</u> means of the K groups.

ANOVA Output in *R*

```
> model=aov(Grade~as.factor(Exam))
> model
Terms:
                as.factor(Exam) Residuals
Sum of Squares
                           1030
                                     5200
                                       16
Deg. of Freedom
Residual standard error: 18.02776
Estimated effects may be unbalanced
> summary(model)
                Df Sum Sq Mean Sq F value Pr(>F)
as.factor(Exam) 3 1030.0 343.3 1.0564 $\infty$0.395
Residuals 16 5200.0 325.0
> 1-pf(1.0564,3,16) #if the P-value hadn't been given
 [1] 0.3950020 -
```

After Installing Three Packages in R: gplots, gdata, gtools

> plotmeans(Grade~Exam)



95% CI's for each group mean shown in blue. Notice the substantial overlap.

Partition Variability (different formulas) + df

Between groups: (d.f. = K - 1)

$$SSGroups = n_1(\overline{y}_1 - \overline{y})^2 + n_2(\overline{y}_2 - \overline{y})^2 + \dots + n_K(\overline{y}_K - \overline{y})^2$$

Within groups: (d.f. = n - K)

$$SSE = (n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_K - 1)s_K^2$$

Total: (d.f. = n - 1)

$$SSTotal = \sum (y - \overline{y})^2 = (n-1)s_Y^2$$

SSTotal = SSGroups + SSE

Example: Four Exams

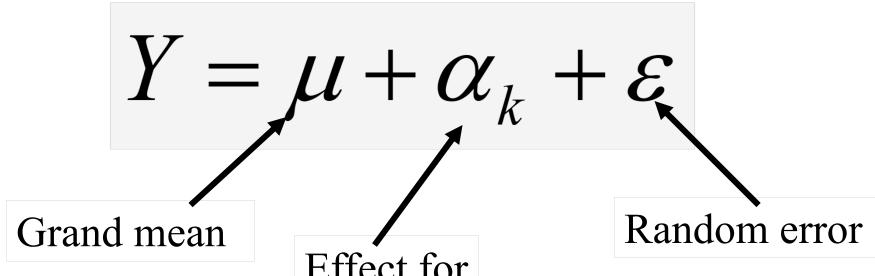
					n_k	Mean	S_i
Exam #1: 62,	94,	68,	86,	50	5	72.0	17.89
Exam #2: 87,	95,	93,	97,	63	5	87.0	13.93
Exam #3: 74 ,	86,	82,	70,	28	5	68.0	23.24
Exam #4: 77,	89,	73,	79,	47	5	73.0	15.68
			Overa	ıll	20	75.0	18.11

$$SSGroups = 5(72-75)^2 + 5(87-75)^2 + 5(68-75)^2 + 5(73-75)^2 = 1030$$

$$SSE = 4(17.89)^2 + 4(13.93)^2 + 4(23.24)^2 + 4(15.68)^2 = 5200$$

$$SSTotal = 19(18.11)^2 = 6230$$
 (up to roundoff)

Alternate Form: ANOVA Model for Means



$$\mu_k = \mu + \alpha_k$$

Effect for kth group

$$\hat{\alpha}_k = \overline{Y}_k - \overline{Y}$$

Note: α_k sum to 0

$$H_0$$
: $\mu_1 = \mu_2 = \dots = \mu_K$

 H_1 : Some $\mu_k \neq \mu_i$

$$\longleftrightarrow$$

$$H_0: \mu_1 = \mu_2 = \dots = \mu_K$$
 \longleftrightarrow $H_0: \alpha_1 = \alpha_2 = \dots = \alpha_K = 0$

 H_1 : Some $\alpha_k \neq 0$

Estimating the common variance

$$\varepsilon \sim N(0, \sigma_{\varepsilon})$$

$$Y_{ik} \sim N(\mu_k, \sigma)$$

$$SSE = (n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_K - 1)s_K^2$$

$$\mathbf{MSE} = \frac{SSE}{n-k}$$

 $\mathbf{MSE} = \frac{SSE}{n-k}$ a weighted average of sample variances

MSE is an estimate of the (common) population variance

$$\mathbf{MSE} = \widehat{\boldsymbol{\sigma}}^2$$

Example: Four Exams

					n_k Mean S_i
Exam #1: 62,	94,	68,	86,	50	5 72.0 17.89
Exam #2: 87,	95,	93,	97,	63	5 87.0 13.93
Exam #3: 74,	86,	82,	70,	28	5 68.0 23.24
Exam #4: 77,	89,	73,	79,	47	5 87.6 13.93 5 68.0 23.24 5 12.0 15.68

Overall/

Four estimates of the population sd

MSE = 5200/16 = 325 = estimate of popn variance

$$\sqrt{MSE} = \sqrt{325} = 18.03$$

= estimate of population standard deviation

Section 5.2: Checking Conditions for ANOVA

$$\varepsilon \sim N(0, \sigma_{\varepsilon})$$
 Check with residuals.

Zero mean: Always holds for sample residuals.

Constant variance:

Plots and numerical checks:

- Plot residuals vs. fits
- Plot Y versus group, or boxplot for each group
- Compare standard deviations of groups; check if largest is more than twice value of smallest.

Note: This is less crucial if the sample sizes are equal.

Checking Conditions, continued

Normality:

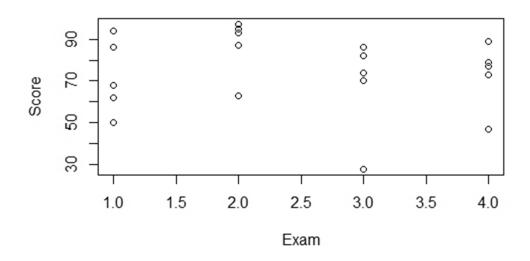
Histogram of residuals

Normal probability plot of residuals

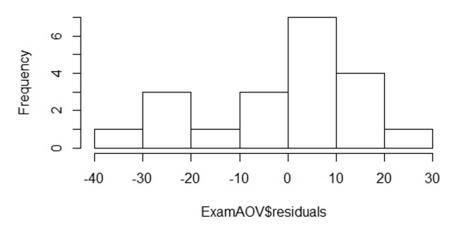
Independence:

Pay attention to data collection method. (See earlier slide.)

Plot of data and histogram of residuals



Histogram of ExamAOV\$residuals



Section 5.3: Scope of Inference

Allocation of Units to Groups

Not **Using Randomization** using Randomization

Inferences Random sample Random samples At Random can be Selection of Units selected; units selected from drawn assigned randomly to separate to populations treatment groups populations Available units Study units are at Random found, then randomly from separate assigned to treatment populations are studied groups

Causal inferences can be drawn

Some Examples

Exercise 5.19 – Life spans Not random

Exercise 5.28 – Fenthion Random samples

Exercise 5.30 – Blood pressure Random samples,

cause/effect?

Example 5.1 – Fruit flies Random allocation

Now do example of seat location.