Chapter 5 Section 5.1

Review of two-sample t-test Analysis of Variance = ANOVA or AOV

In both cases:

- The <u>response</u> variable is quantitative.
- The explanatory variable is categorical
- For a two-sample t-test, it has 2 categories.
- For ANOVA, it has 2 or more categories.
- However, when k = 2, ANOVA is equivalent to a two-sided two-sample t-test.

Some basic definitions

- A factor is a categorical explanatory variable.
- A level of a factor is one category.
- Categories are sometimes called groups.

Example

Does average time spent studying per week differ by type of major? Take random sample from each type of major, or one random sample and divide into the 3 majors.

- Y = time spent studying per week (hours) [response var.]
- Factor = Category of major (sciences, social sciences, humanities) [explanatory variable]
- The 3 levels of the factor (the 3 groups) are sciences, social sciences, humanities.

Two-sample t-test (Review)

Data: Independent samples from two groups

Summary statistics:
$$n_1, \overline{Y}_1, s_1$$

 n_2, \overline{Y}_2, s_2

Conditions:

- Hypotheses: 1. Normal populations (or large *n*'s)
- H_0 : $\mu_1 = \mu_2$ 2. Equal variances (sometimes) $H_1: \mu_1 \neq \mu_2$

Write as $Y_{ik} \sim N(\mu_k, \sigma)$, where

k = group (1 or 2)

 $i = \text{individual within group} = 1, 2, ..., n_k$

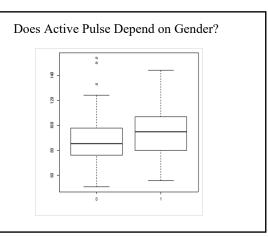
Pooled Two-sample t-test (Review?)

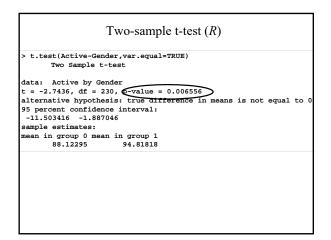
Pooled variance:
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

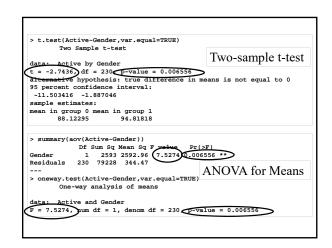
Test statistic:

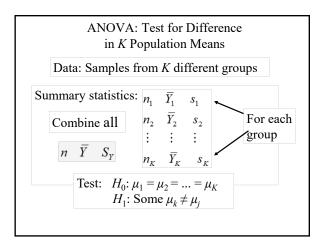
$$t.s. = \frac{\overline{Y_1} - \overline{Y_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

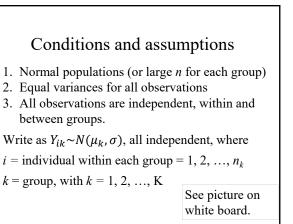
Reference distribution: $t_{n_1+n_2-2}$







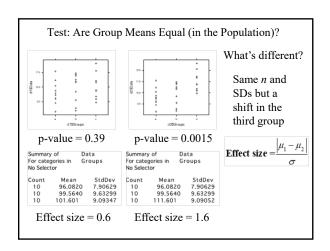


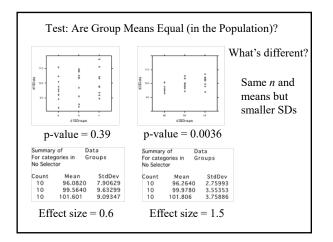


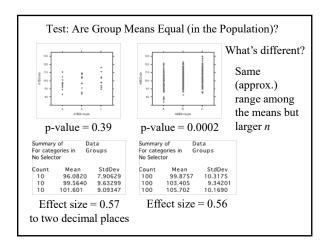
Some possible ways to get independent data

- K separate populations, take random sample from each.
 Ex: Groups = 4 regions of the US
 Y_{ik} = time spent commuting to work
- Take one random sample and measure response variable Y, and categorical explanatory variable X.
 Ex: Groups = type of major (Science, SocSci, Humanities)
 Y_{ik}= time spent studying per week
- 3. Randomized experiment with K treatments
 Ex: 30 cities available for experiment with 3 roadside billboards
 Randomly assign 10 cities to each type of billboard

 Y_{ik} = Sales of product after 6 months in City *i*, with billboard *k*.







Summary of what decreases *p*-value and increases power of the test (easier to reject null hypothesis)

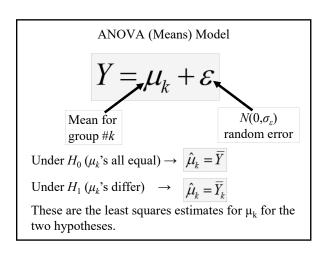
- Bigger difference between the means
 - Increased effect size
- Smaller standard deviations
 - Increased effect size
- Larger sample sizes
 - Not an increase in effect size

Example: Random sample of $n_k = 5$ scores (Ys) from each of K = 4 exams (there are 4 levels)

Is there a difference in population mean score among the four exams?

Overall 20 75.0 18.11

Test: H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ H_1 : Some $\mu_k \neq \mu_j$



"Predicting" in ANOVA Model

If the group means are the same (H_0) :

$$\hat{Y} = \overline{Y}$$
 for all groups \rightarrow *residual* = $Y - \overline{Y}$

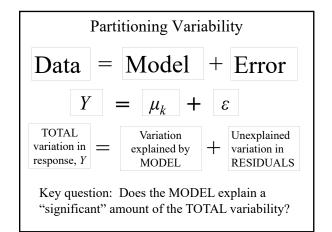
If the group means can be different (H_1) :

$$\hat{Y} = \overline{Y}_k$$
 for k^{th} group \rightarrow residual = $Y - \overline{Y}_k$

Do we do "significantly" better with separate

Compare sums of squared residuals...

$$SSTotal = \sum (Y - \overline{Y})^2$$
 Vs. $SSE = \sum (Y - \overline{Y}_k)^2$



Partitioning Variability ANOVA for Group Means

$$Y = \mu_k + \varepsilon$$

$$(y - \overline{y}) = (\overline{y}_k - \overline{y}) + (y - \overline{y}_k)$$

$$\sum (y - \bar{y})^2 = \sum (\bar{y}_k - \bar{y})^2 + \sum (y - \bar{y}_k)^2$$

$$SSTotal = SSGroups + SSE$$

Using familiar regression terminology

$$\sum (y - \bar{y})^2 = \sum (\bar{y}_k - \bar{y})^2 + \sum (y - \bar{y}_k)^2$$

+ Still unexplained "Explained" by Residuals if model with H_0 is true (same mean) separate means

with separate means

$$\begin{array}{c|c} SSTotal & = & SSGroups \\ & = SSModel \end{array} + \begin{array}{c|c} SSE \end{array}$$

Example: Four Exams n_k Mean S_k Exam #1: **62, 94, 68, 86, 50** 5 72.0 17.89 Exam #2: **87**, **95**, **93**, **97**, **63** 5 87.0 13.93 Exam #3: **74**, **86**, **82**, **70**, **28** 5 68.0 23.24 Exam #4: 77, 89, 73, 79, 47 5 73.0 15.68 Overall 20 75.0 18.11 $SSGroups = 5(72-75)^2 + 5(87-75)^2 + 5(68-75)^2 + 5(73-75)^2 = 1030$ $SSE = (62-72)^2 + (94-72)^2 + \dots + (47-73)^2 = 5200$ $SSTotal = (62-75)^2 + (94-75)^2 + \dots + (47-75)^2 = 6230$

ANOVA Table (for *K* Group Means)

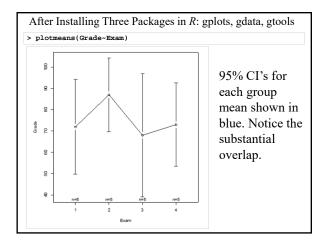
 $H_0: \mu_1 = \mu_2 = \dots = \mu_K$ $H_1: \text{Some } \mu_k \neq \mu_i$

Note: n = total sample size

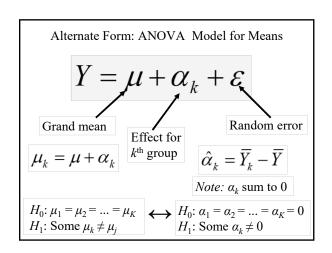
Source	d.f.	S.S.	M.S.	t.s.	p-value
Groups	K-1	SSGroups	SSGroups K-1	MSGroups MSE	$\mathrm{use} F_{_{K-1,n-K}}$
Error	n-K	SSE	$\frac{SSE}{n-K}$		
Total	n-1	SSTotal			

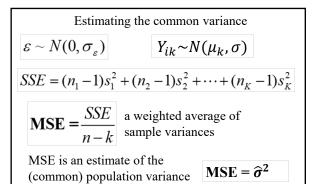
Small p-value \rightarrow Reject $H_0 \rightarrow$ There is a evidence of a difference among the <u>population</u> means of the K groups.

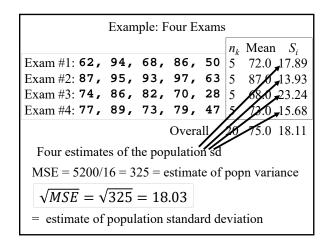
ANOVA Output in R > model=aov(Grade-as.factor(Exam)) > model Terms: as.factor(Exam) Residuals Sum of Squares 1030 5200 Deg. of Freedom 3 16 Residual standard error: 18.02776 Estimated effects may be unbalanced > summary(model) Df Sum Sq Mean Sq F value Pr(>F) as.factor(Exam) 3 1030.0 343.3 1.0564 0.395 Residuals 16 5200.0 325.0 > 1-pf(1.0564,3,16) ##f the P-value hadn't been given [1] 0.3950020



Partition Variability (different formulas) + df
Between groups: (d.f. = K - 1) $SSGroups = n_1(\bar{y}_1 - \bar{y})^2 + n_2(\bar{y}_2 - \bar{y})^2 + \dots + n_K(\bar{y}_K - \bar{y})^2$ Within groups: (d.f. = n - K) $SSE = (n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_K - 1)s_K^2$ Total: (d.f. = n - 1) $SSTotal = \sum (y - \bar{y})^2 = (n - 1)s_Y^2$ SSTotal = SSGroups + SSE







Section 5.2: Checking Conditions for ANOVA

 $arepsilon \sim N(0, \sigma_arepsilon)$ Check with residuals.

Zero mean: Always holds for sample residuals.

Constant variance:

Plots and numerical checks:

- · Plot residuals vs. fits
- Plot Y versus group, or boxplot for each group
- Compare standard deviations of groups; check if largest is more than twice value of smallest.

Note: This is less crucial if the sample sizes are equal.

Checking Conditions, continued

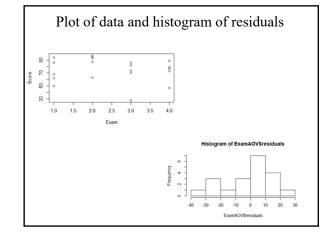
Normality:

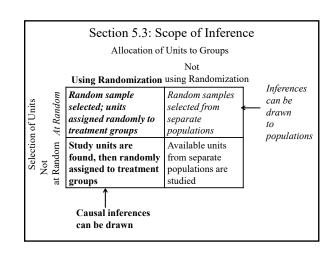
Histogram of residuals

Normal probability plot of residuals

Independence:

Pay attention to data collection method. (See earlier slide.)





Some Examples

Exercise 5.19 – Life spans Not random

Exercise 5.28 – Fenthion Random samples

Exercise 5.30 – Blood pressure Random samples,

cause/effect?

Example 5.1 – Fruit flies Random allocation

Now do example of seat location.