Chapter 6 Randomized Block Design Two Factor ANOVA Interaction in ANOVA

Two factor (two-way) ANOVA

Two-factor ANOVA is used when:

- Y is a quantitative response variable
- There are two categorical explanatory variables, called Factors:
 - Factor A has K levels, k = 1, ..., K
 - Factor B has J levels, j = 1, ..., J
- The combination of level k for A and level j for B has sample size n_{kj} but if all equal, just use n.
- Use N for overall sample size.

Special case: Using "BLOCKS"

Definition: A <u>block</u> is a group of similar units, or the same unit measured multiple times.

Blocks are used to reduce known sources of variability, by comparing levels of a factor within blocks.

Examples (explained in detail in class):

- Factor = 3 methods of reducing blood pressure; Blocks defined using initial blood pressure.
- Factor = 4 methods for enhancing memory; Blocks defined by age.
- Factor = Impairment while driving (alcohol, marijuana, no sleep, control); Blocks = individuals.

Simple Block Design, all $n_{kj} = 1$

A <u>simple block design</u> has two factors with:

- Exactly one data value (observation) in each combination of the factors.
- Factor A is factor of interest, called *treatment*
- Factor B, called *blocks*, used to control a known source of variability

Main interest is comparing levels of the *treatment*.

Notation: Factor A (Treatments) has *K* levels Factor B (Blocks) has *J* levels

 $\rightarrow N = KJ$ data values

Example: Do Means Differ for 4 Exam Formats?

	Adam	Brenda	Cathy	Dave	Emily	Mean
Exam #1:	62	94	68	86	50	72
Exam #2:	87	95	93	97	63	87
Exam #3:	74	86	82	70	28	68
Exam #4:	77	89	73	79	47	73
Mean	75	91	79	83	47	75

Treatments: 4 different exam formats, Blocks: 5 different students

Question: Is there a difference in population means for the 4 exams?

Use students as *blocks* because we know student abilities differ. Controls for that *known* source of variability.

Two-way ANOVA: Main Effects Model Shown here for simple block design

$$Y = \mu + \alpha_k + \beta_j + \varepsilon$$

Grand mean

Effect for *k*th treatment

Effect for jth block

Random error

Mean of all exams for all students

How mean for k^{th} exam differs from overall mean

How mean for *j*th student differs from overall mean

Randomized Block—Calculations

- 1. Find the mean for each treatment (row means), each block (column means), and grand mean.
- 2. Partition the *SSTotal* into three pieces:

$$SSTotal = SSA + SSB + SSE$$

$$SSTotal = \sum (y - \bar{y})^2 = (n - 1)s_Y^2 \text{ (As usual)}$$

$$SSA = \sum J(\bar{y}_k - \bar{y})^2 \text{ Compare row means (exams)}$$

$$SSB = \sum K(\bar{y}_j - \bar{y})^2 \text{ Compare column means (students)}$$

SSE = SSTotal - SSA - SSB (Unexplained error)

Randomized Block ANOVA Table

Source	d.f.	S.S.	M.S.	t.s.	p-value
Trts = A	<i>K</i> -1	SSTr	SSTr/(K-1)	MSTr/MSE	
Blocks	<i>J</i> -1	SSB	SSB/(J-1)	MSB/MSE	
Error	(K-1)(J-1)	SSE	SSE/(K-1)(J-1)		
Total	<i>N</i> -1	SSTotal			

Testing TWO hypotheses:

$$H_0$$
: $\alpha_1 = \alpha_2 = ... = \alpha_K = 0$

 H_a : Some $\alpha_k \neq 0$

$$H_0: \beta_1 = \beta_2 = \dots = \beta_J = 0$$

 H_a : Some $\beta_i \neq 0$

(Factor A: Difference in treatment means)

(Factor B: Difference in block means)

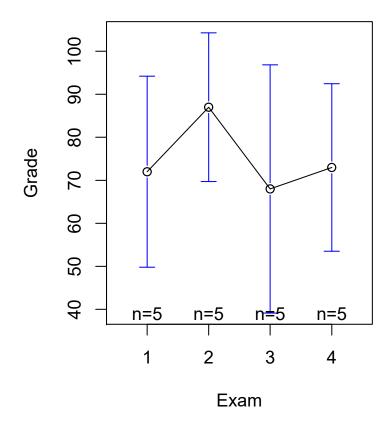
ANOVA Output in R

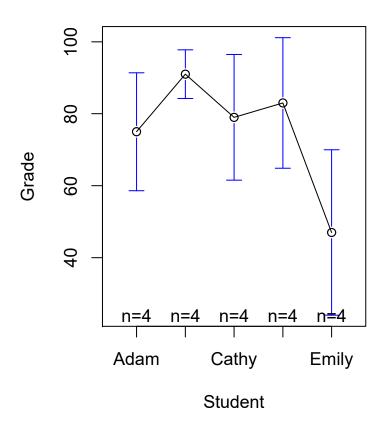
What if we ignored Blocks (Students) and treated it as a one-factor ANOVA? (See Lecture 15 – didn't take into account blocks!)

Ignoring "student effect," exams don't seem to differ; but including student effect, exams do differ. SS(Student) becomes part of SSE if Blocks are ignored, which *inflates* the estimate of the standard deviation.

After Installing Three Packages in R: gplots, gdata, gtools

- > plotmeans(Grade~Exam)
- > plotmeans(Grade~Student)





95% CI's for each group mean are shown in blue.

Fisher's LSD CIs After Two-Way ANOVA in a Simple Block Design

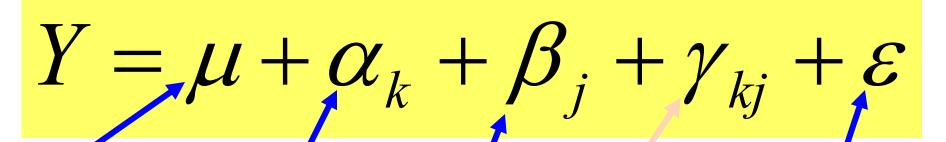
Same as one-way, but we know that

$$\frac{1}{n_i} + \frac{1}{n_j} = \begin{cases} 2/J & \text{for row means} \\ 2/K & \text{for column means} \end{cases}$$

For treatment (row) means:
$$LSD = t * \sqrt{MSE} \sqrt{\frac{2}{J}}$$

For block (column) means:
$$LSD = t * \sqrt{MSE} \sqrt{\frac{2}{K}}$$

Two-way ANOVA model with Interaction



Grand mean

Main effect for Factor A

Interaction effect

Random error

Main effect for Factor B

What's an Interaction Effect?

An *interaction effect* occurs when differences in mean level effects for one factor *depend* on the level of the other factor.

```
Example: Y = GPA
      Factor A = Year in School (FY, So, Jr, Sr)
      Factor B = Major (Psych, Bio, Math)
      FY is hard. \Rightarrow \alpha_1 < 0 (Main effect)
      Bio is easy. \Rightarrow \beta_2 > 0 (Main effect)
Jr in Math is
                     \Rightarrow \gamma_{33} < 0 (Interaction effect)
harder than just Jr
or just Math
```

Example

Fire extinguishers tested to see how quickly they put out fires.

Factor A: 3 different chemicals in the extinguishers A_1 , A_2 , A_3

Factor B: 2 types of fires, B_1 = wood, B_2 = gas

 Y_{kj} = time to put out the fire of type B_j with chemical A_k

Questions of interest:

- Do the 3 chemicals differ in mean time required?
 (If so, there is a Factor A effect.)
- Does mean time to put out fire depend on the type of fire? (If so, there is a Factor B effect.)
- Do the differences in times for the 3 chemicals depend on the type of fire? (If so, there is an interaction between chemical type and fire type.)

Example: Putting out fires

Factor A Chemical (A_1, A_2, A_3)

Factor B Fire type (wood, gas)

Response: Time until fire is completely out (in seconds)

Data:	Wood (j=1)	Gas (j=2)	K=3
A1 (k=1)	52 64	72 60	J = 2 $n = 2$
A2 (k=2)	67 55	78 68	N=12
A3 (k=3)	86 72	43 51	

Interpreting Interaction

Cell means plot (Interaction plot)

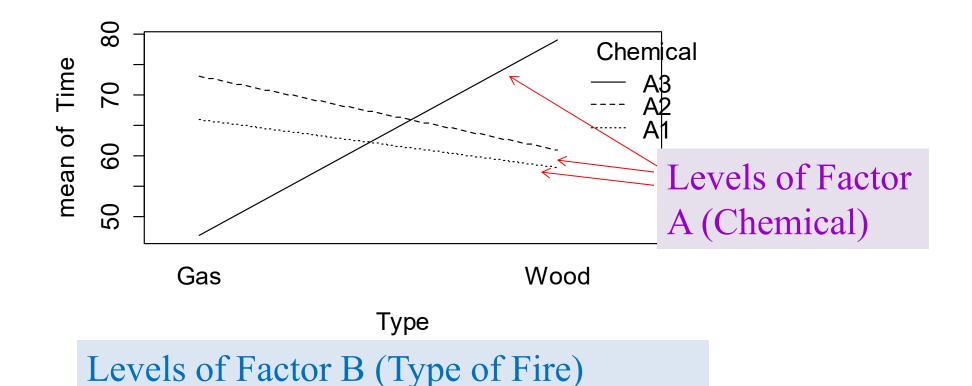
Data:	Wood	Gas
A1	58.0	66.0
A2	61.0	73.0
A3	79.0	47.0

Interaction Plot via R

Generic

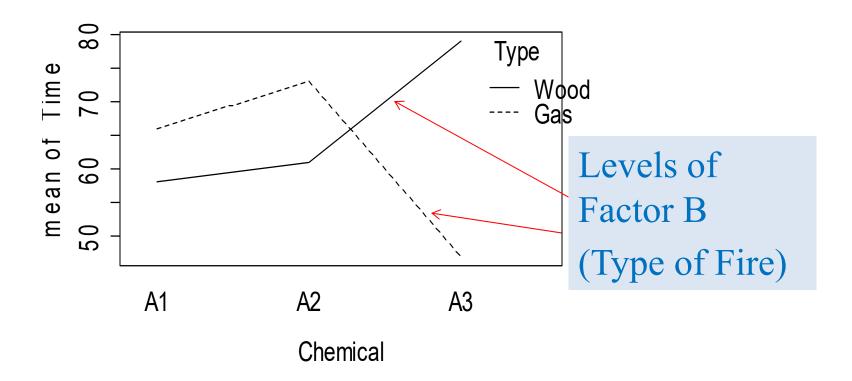
- > interaction.plot(FactorA,FactorB,Y)
- > interaction.plot(Chemical, Type, Time)
 OR
- > interaction.plot(Type,Chemical, Time)

> interaction.plot(Type,Chemical,Time)



Interpretation discussed in class.

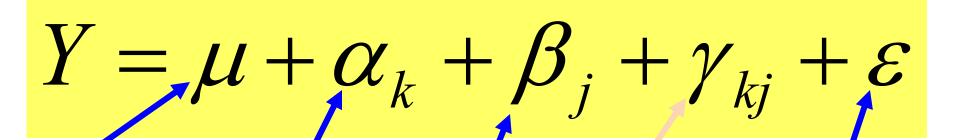
> interaction.plot(Chemical, Type, Time)



Levels of Factor A (Chemical)

Interpretation discussed in class.

Two-way ANOVA (with Interaction)



Grand mean

Main effect for Factor A

Interaction effect

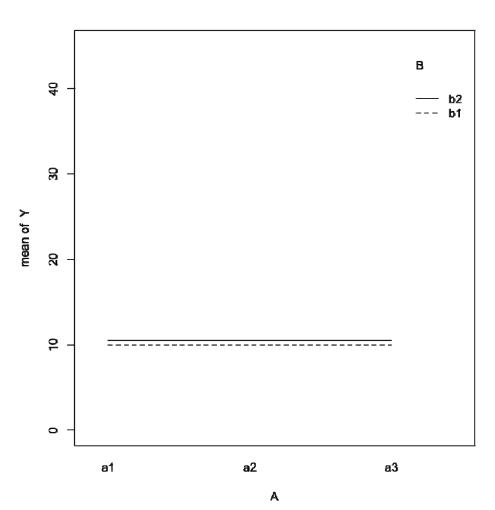
Random error

Main effect for Factor B

Generic Interaction Plots: 7 Cases

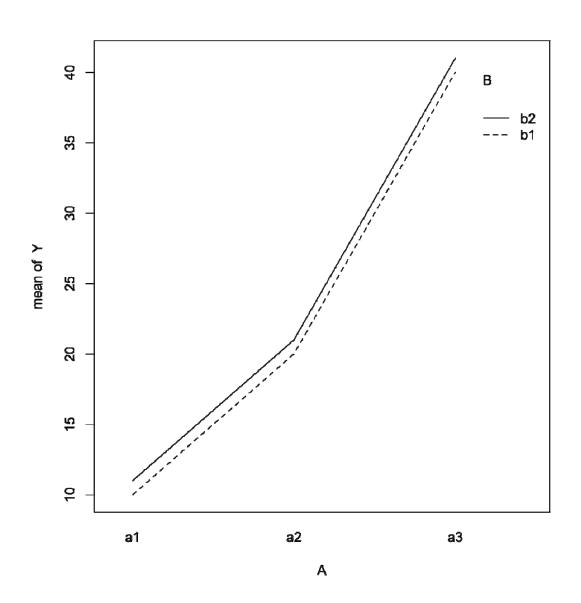
Suppose A has three levels and B has two levels.

Grand mean only (no treatment effects)



$$Y = \mu + \varepsilon$$

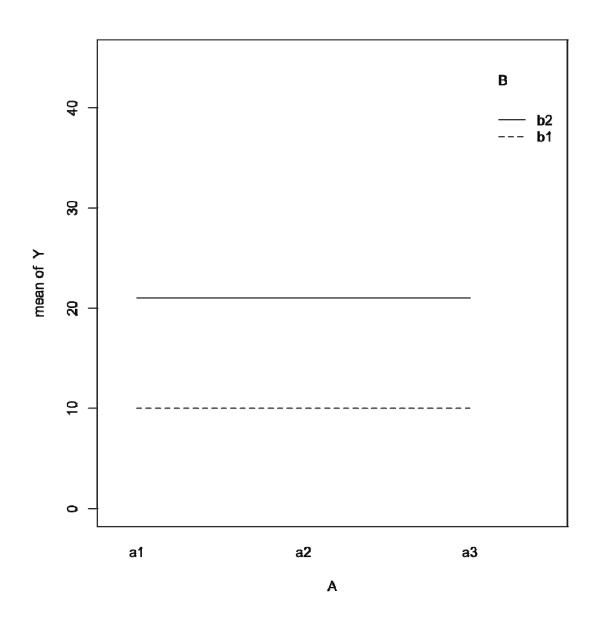
Treatment A Effect, No Treatment B Effect



$$Y = \mu + \alpha_k + \varepsilon$$

Means
differ for
levels of A,
not for
levels of B.

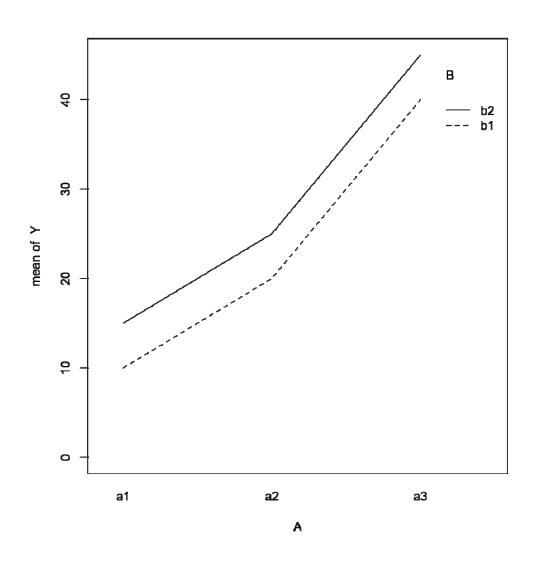
Treatment B Effect, No Treatment A Effect



$$Y = \mu + \beta_j + \varepsilon$$

Means
differ for
levels of B,
not for
levels of A.

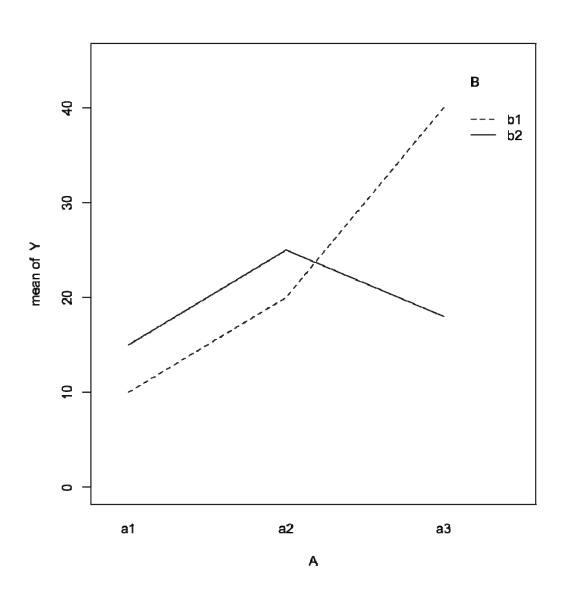
Treatments A and B Have Effects, No Interaction



$$Y = \mu + \alpha_k + \beta_j + \varepsilon$$

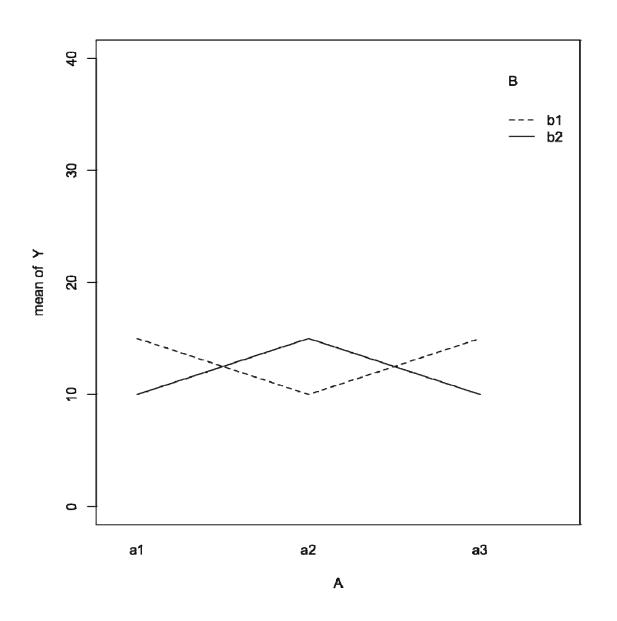
Differences
between the 2
levels of Factor B
don't depend on
level of Factor A
(and vice versa).

A and B Effects Plus Interaction



$$Y = \mu + \alpha_k + \beta_j + \gamma_{kj} + \varepsilon$$

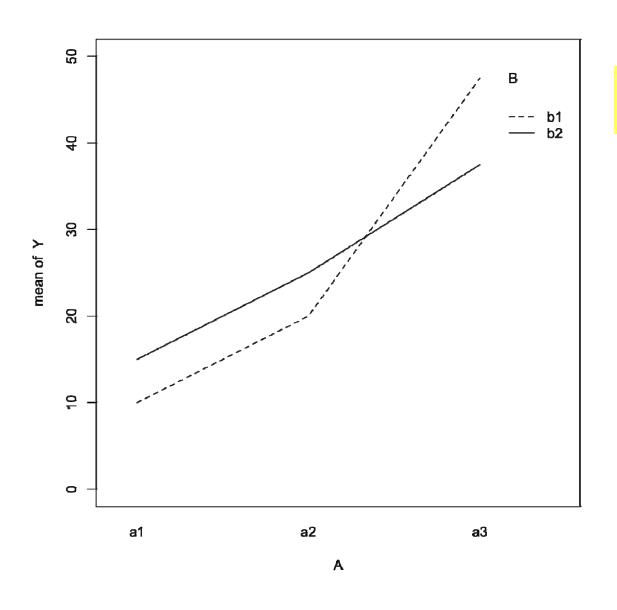
No A Effect but a B Effect Plus Interaction



$$Y = \mu + \beta_j + \gamma_{kj} + \varepsilon$$

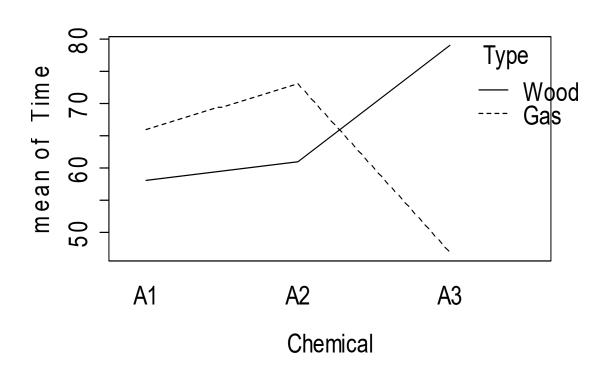
Cannot say means of A do not differ! They do, at *each* level of B.

A Effect but No B Effect Plus Interaction



$$Y = \mu + \alpha_k + \gamma_{kj} + \varepsilon$$

Cannot say
means of B do
not differ! They
do, at *each* level
of A.



However, looks like almost no *overall* A effect or B effect!

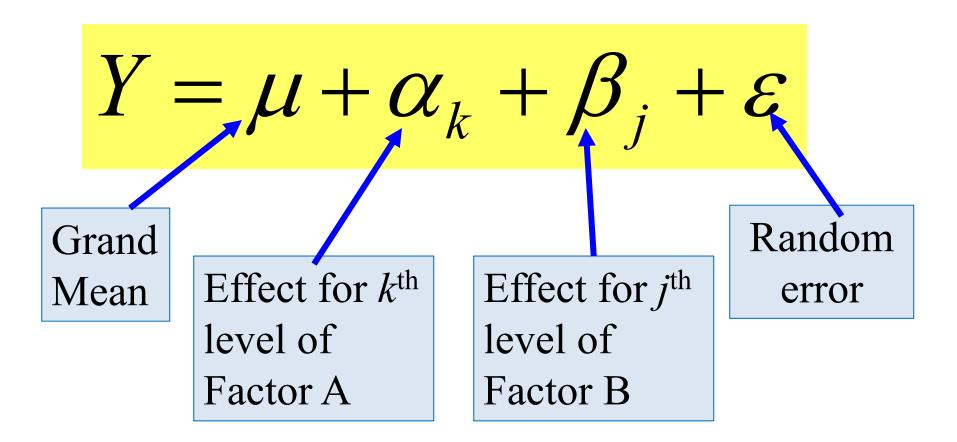
Looks like a significant interaction

No interaction: lines would be parallel.

Interaction:
Differences
in A depend
on level of B.

Chapter 6 Section 6.3 The Gory Details!

Recall: Main Effects Model



Factorial Anova—Example: Putting out fires

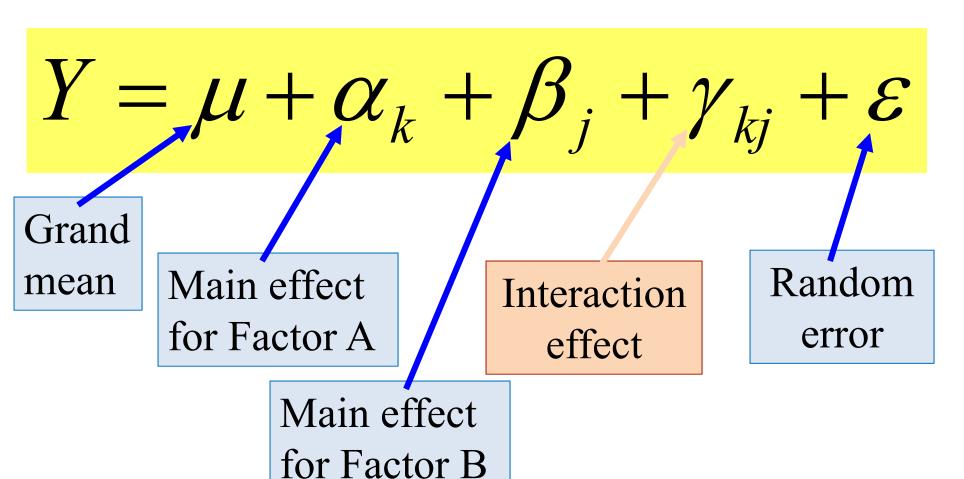
Factor A: Chemical (A1, A2, A3)

Factor B: Fire type (wood, gas)

Response: Time required to put out fire (seconds)

Data:	Wood	Gas	Row mean
A1	52 64	72 60	62
A2	67 55	78 68	67
A3	86 72	43 51	63
Col mean	66	62	

Two-way ANOVA (with Interaction)



Factorial Design

Assume:

Factor A has K levels, Factor B has J levels.

To estimate an interaction effect, we need *more than* one observation for each combination of factors.

Let n_{kj} = sample size in (k,j)th cell.

Definition: For a balanced design, n_{kj} is constant for all cells.

$$n_{kj}=n$$

n = 1 in a typical randomized block design

n > 1 in a balanced factorial design

Fire Extinguishers

Factor A Chemical (A1, A2, A3)

Factor B: Fire type (wood, gas)

Response: Time required to put out fire (seconds)

Data:	Wood	Gas
A1	52 64	72 60
A2	67 55	78 68
A3	86 72	43 51

$$K = 3$$

$$J = 2$$

$$n = 2$$

$$N = 12$$

Estimating Factorial Effects

$$\overline{y}_{kj}$$
 = mean for $(k, j)^{th}$ cell \overline{y}_k = mean for k^{th} row

$$\overline{y}_k = \text{mean for } k^{th} \text{ row}$$

$$\overline{y}_{j} = \text{mean for } j^{th} \text{ column}$$
 $\overline{y} = \text{Grand mean}$

$$\overline{y} = Grand mean$$

$$y = \mu + \alpha_k + \beta_j + \gamma_{kj} + \varepsilon$$

$$(y - \overline{y}) = (\overline{y}_k - \overline{y}) + (\overline{y}_j - \overline{y}) + (\overline{y}_{kj} - \overline{y}_k - \overline{y}_j + \overline{y}) + (y - \overline{y}_{kj})$$

Total = Factor A + Factor B + Interaction + Error

$$SSTotal = SSA + SSB + SSAB + SSE$$

Partitioning Variability (Balanced)

$$SSTotal = \sum (y - \overline{y})^2 = (N - 1)s_y^2 \text{ (As usual)}$$

$$SSA = \sum_k Jn(\overline{y}_k - \overline{y})^2 \text{ (Row means)}$$

$$SSB = \sum_j Kn(\overline{y}_j - \overline{y})^2 \text{ (Column means)}$$

$$SSAB = \sum_{k,j} n(\overline{y}_{kj} - \overline{y}_k - \overline{y}_j + \overline{y})^2 \text{ (Cell means)}$$

$$SSE = \sum (y - \overline{y}_{kj})^{2} = SSTotal - SSA - SSB - SSAB$$

$$SSTotal = SSA + SSB + SSAB + SSE$$
 (Error)

Total = Factor A + Factor B + Interaction + Error

Decomposition: Fire extinguishers

Data:	Wood	Gas
A 1	52 64	72 60
A2	67 55	78 68
A3	86 72	43 51

Cell Means:	Wood	Gas	Row mean	Trt A effect
A1	58.0	66.0	62	-2
A2	61.0	73.0	67	+3
A3	79.0	47.0	63	-1
Col mean	66	62	64	
Trt B effect	+2	-2		

Interaction effects	Wood	Gas	Row mean	Trt A effect
A1	-6	6	62	-2
A2	-8	8	67	+3
A3	14	-14	63	-1
Col mean	66	62/	64	
Trt B effect	-2	/-2		

$$58 - 66 - 62 + 64 = -6$$

Decomposition: Fire Extinguishers

Top left cell: 52,64 Top right cell: 72,60

```
Observed Grand Trt A Trt B Inter-
Value Mean Effect Effect action Residual

52 = 64 + -2 + 2 + -6 + -6
64 = 64 + -2 + 2 + -6 + 6
72 = 64 + -2 + -2 + 6 + 6
```

60 = 64 + -2 + -2 + 6 + -6

Etc.

Two-way ANOVA Table (with Interaction)

Source	d.f.	S.S.	M.S.	t.s.	p	
Factor A	<i>K</i> –1	SSA	SSA/(K-1)	MSA/MSE		
Factor B	<i>J</i> –1	SSB	SSB/(J-1)	MSB/MSE		
$A \times B$	(K-1)(J-1)	SSAB	SSAB/df	MSAB/MSE		
Error	KJ(n-1)	SSE	SSE/df			
Total	<i>N</i> -1	SSY	$H_0: \alpha_1 = \alpha_2 = \dots = \alpha_K = 0$			

$$H_0: \beta_1 = \beta_2 = \dots = \beta_J = 0$$

$$H_0$$
: All $\gamma_{kj} = 0$

(Looking back) If n = 1 then df(interaction) = 0

Recall: Randomized Block ANOVA Table

Source	d.f.	S.S.	M.S.	t.s.	p-value
Trts/A	K-1	SSTr	SSTr/(K-1)	MSTr/MSE	
Block	J-1	SSB	SSB/(J-1)	MSB/MSE	
Error	(K-1) (J-1)	SSE	SSE/(K-1)(J-1)		
Total	N-1	SSTotal			

Fire Example: Two-way ANOVA Table, with Interaction

Source	d.f.	S.S.	M.S.	t.s.	p
Chemical	2	56	28.0	0.42	0.672
Type	1	48	48.0	0.73	0.426
$A \times B$	2	1184	592.0	8.97	0.016
Error	6	396	66.0		
Total	11	1684	H_0 : $\alpha_1 = \alpha_1$	$\alpha_2 \neq \ldots \neq \alpha_n$	$\alpha_K = 0$

$$H_0: \beta_1 = \beta_2 = \dots = \beta_J = 0$$
 $H_0: \text{All } \gamma_{kj} = 0$

$$H_0$$
: All $\gamma_{kj} = 0$

Two-way ANOVA with *R*Option #1 - aov

Two-way ANOVA with R

Option #2 – anova(lm), when predictors are categorical

```
> anova(lm(Time~Chemical+Type+Chemical:Type))
Analysis of Variance Table
```

Response: Time

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Chemical	2	56	28	0.4242	0.67247	
Type	1	48	48	0.7273	0.42649	
Chemical: Type	2	1184	592	8.9697	0.01574	*
Residuals	6	396	66			

If sample sizes are <u>not</u> equal, order matters.

New example (on website):
Y = GPA
Explanatory variables are:
Seat location (front, middle, back)
Alcohol consumption
(none, some, lots)