General Linear Test – Summary

Here are the details for the general linear test of H₀: Reduced Model is sufficient H_a: Full Model is needed

	General	Section 2.8 Test for $\beta_1 = 0$	Section 3.7 Lack of fit test $c = \text{number of different } X \text{ values in sample}$ $n_j = \text{number of } Y \text{ values at } X_j$ $Y_{ij} = i^{th} \text{ value of } Y \text{ at } X_j$
Full Model	Varies	$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$	$Y_{ij} = \mu_i + \varepsilon_{ij}$
Reduced Model	Varies	$Y_i = \beta_0 + \varepsilon_i$	$Y_{ij} = \beta_0 + \beta_1 X_j + \varepsilon_{ij}$
Degrees of freedom (full) =	n - # of parameters estimated	n-2	n-c
df_{F}	in full model	(2 parameters are estimated)	(c different means estimated)
Degrees of freedom	n – # of parameters estimated	n – 1	n-2
$(reduced) = df_R$	in reduced model	(1 parameter is estimated)	(2 parameters are estimated)
SSE(F)	$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \text{ where } \hat{Y}_i \text{ is the predicted}$ value using the full model	Usual SSE for simple linear regression	SSPE = Pure error sum of squares $= \sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_j)^2$
SSE(R)	$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \text{ where } \hat{Y}_i \text{ is the predicted}$ value using the reduced model	Usual SSTO for simple linear regression	Usual SSE for simple linear regression
Numerator of test statistic F*	$\frac{\left[SSE(R) - SSE(F)\right]}{\left(df_R - df_F\right)}$	Usual SSR 1	SSLF/(c-2) where $SSLF = Lack$ of fit sum of squares = Usual $SSE - SSPE$
Denominator of test statistic	SSE(F)	Usual MSE for simple linear	SSPE
F*	$\overline{\mathrm{df}_{\mathrm{F}}}$	regression	n-c
Degrees of freedom for F*	$[(df_R - df_F), df_F]$	[1, n-2]	[c-2, n-c]