Regression Inferences in R

Assume you have the data set previously named Data from Problem 1.19, with explanatory variable named ACT and response variable named GPA. Assume further that you have fit a linear model to the data, and that the model is named College. Recall that the summary of this linear model fit looks like:

[image: image1.png]2] Regression_Inferences_in_R.doc - Microsoft Word =18 x|

| e E6t Ve Dt Fomet Tocs Tabe widow tels
IDeeada & @ o-c [- @ 2 nm ~ Times New Roman '+ 12 .\n Iu H

PR

EHEERERREIENE |

> sumary (College)

call:
In(formula = GPA ~ ICT, data = Data

Residual;
Hin 10 Median 30 Hax
-2.74004 -0.33827 0.04062 0.44064 1.22737

Coetricients:

" Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.11405 0.32089 6.585 1.30e-09 7+
T 0.03883 0.01277 3.040 0.00292 *%

Signif. code

0 'FREl 0.001 'FR 0,01 % 0.05 'L 0.1 0 01
Residual standard error: 0.6231 on 118 degrees of freedom

Multiple R-Squared: 0.07262, Adjusted R-squared: 0.06476
F-statistic: 9.24 on 1 and 118 DF, p-value: 0.002917

|

2.4.1- A Language nd Envrarmen

Then enter the value of 1 ~ of2 and the degrees of freedom in the dialog box, with
“Lower tail” selected (or, alternatively, enter the value of o/2 with “Upper tail” selected)

l«lof»]«

[Page 1 sect e [mzs ime a1 | i B o [GF

Wistart| @ [7] >) Handouts w7 |) Regression nferences._... [R Rew « @D 430

A (1 – α)100% confidence interval for the intercept β0 (Section 2.2) would be equal to the estimate (in this case 2.11405) plus or minus the product of the standard error (in this case 0.32089) and the value under the t distribution at n – 2 degrees of freedom with right-tail probability α/2. In this case, n = 120 so n – 2 = 118 (as given under “Residual standard error” in the summary).

Similarly, a (1 – α)100% confidence interval for the slope β1 (Section 2.1) would be equal to the estimate (in this case 0.03883) plus or minus the product of the standard error (in this case 0.01277) and the critical value under the t distribution at n – 2 degrees of freedom with right-tail probability α/2.

To find the value under the t distribution at n – 2 degrees of freedom with left-tail probability 1 – α/2 without having to use the tables in the text, use the qt() command in R. If α = 0.05, then 1 – α/2 = 0.975. Then the value under the t distribution at 118 degrees of freedom with left-tail probability 0.975 can be found by giving the command:

> qt(0.975, 118)
We then have all the quantities needed to calculate the confidence intervals for the slope and intercept of the true regression line. However, we can actually get those confidence intervals directly. To obtain 95% confidence intervals for the regression parameters in the above linear model College, the R command would be:

> confint(College)
Then R will display the lower bound and the upper bound of the confidence interval for each parameter:

 2.5 % 97.5 %

(Intercept) 1.47859015 2.74950842

ACT 0.01353307 0.06412118

To obtain a different confidence interval, say, a 99% confidence interval, you would type:

> confint(College, level=0.99)

If you want simultaneous confidence intervals for both the intercept and slope, using the Bonferroni method with joint confidence level α, set the level equal to 1 – α / 2.
If you want to conduct the hypothesis test H0: β1 = 0 (Section 2.1), the test statistic t* is already calculated for you in the model summary (see the top of the first page). Notice that for the slope (after the word “ACT”) under t value we have a t-value of 3.040. Now you can look up the critical value for the t distribution as described above for any given significance level. However, the two-sided P-value is already given to you under Pr(>|t|), which in this case is given to be “0.00292,” a small value. (Note: the summary will not display a P-value smaller than 2e-16, but will simply display <2e-16, which is essentially zero.) The two stars in the last column of the summary tell you that the given P-value is between 0.001 and 0.01 (in the significance codes line). So you would definitely reject H0 at any reasonable significance level, and conclude that there is a linear association between the two variables; i.e. the population slope is not 0.
You would test H0: β0 = 0 in the same way. Note that in this example, the P value for the intercept is 1.30e-09, which means 1.30 x 10-9, so you would strongly reject H0 at any reasonable significance level.

However, if you want to test H0: β1 = k or H0: β0 = k, where k is some non-zero value, you have to do a little more work. You have to calculate the test statistic t* yourself, using

t* = (Estimate – k) / Std. Error

where the values for Estimate and Std. Error come from the linear model summary. You would then have to calculate the critical value for the t distribution at the desired α level, as described above, and make the comparison appropriate for your decision rule. You can also calculate the two-sided P value using the absolute value of the result you got for t*. The R command to get the two-sided P-value is:

> 2 * pt(|t*|, n-2, lower.tail = FALSE)

Of course, in place of |t*| put the absolute value of t*, and in place of n-2 put the value of n – 2.

If you are conducting a one-sided test like Ha: β1 > k or Ha: β1 < k, you would obtain t* the same way, but when you find the critical value for comparison with t*, do not divide the value of (in half. Also, if you are calculating the P-value, do not multiply by 2, do not use the absolute value of t*, and if you are testing Ha: β1 > k you should omit the setting lower.tail = FALSE.
Next, suppose you want confidence intervals for the mean response E{Yh} at different specified levels of your explanatory variable, whether or not those levels occur in the original data (Section 2.4). If you want the confidence interval for only a single value Xh, for example ACT = 30, you can use
> predict(College, list(ACT=30), se.fit = TRUE, interval = "confidence")

If you want to get confidence intervals for E{Y} at several Xh values, the easiest method is to first define a data frame, let’s call it new, that consists of the values at which you want confidence intervals. But in order for this to work correctly, you have to use the name of the explanatory variable for your data. Recall that in our example, that variable is named ACT. Suppose you want a confidence interval for the mean response when Xh = 20. Then first give the command

> new <- data.frame(ACT=20)

Or, if you want CIs at Xh = 20, Xh = 25, and Xh = 30, you can do three at once this way:

> new <- data.frame(ACT=c(20,25,30))

This creates a data frame object in R called new. Remember, instead of ACT, use the name of the explanatory variable in your data.

Now, if you want 90% confidence intervals at these three values, give the command:

> predict(College, new, se.fit = TRUE, interval = "confidence", level = 0.90)

Make sure you use the name of your linear model in place of College. Then R will return, for each level of Xh that you specified, the fitted value (Yh) followed by the lower and upper bounds of the confidence interval for mean response.
This will also give you the standard errors for the fitted values. If you don’t need them, you can change the value of se.fit to FALSE or just delete that argument. However, if you need to predict the mean of m new observations at the given values of Xh, or you need to obtain a confidence band for the regression line at these values, you will need these standard errors for equations (2.39), (2.39a) and (2.40) in the text. In that case, you may want to save the output from the predict() function. Just choose a name for the output, say CI, and type CI <- in front of the predict() function. Then if you need, for example, the second fitted value (that is, Ŷh when Xh = 25) among the three, it is stored as CI$fit[2,1], and its corresponding standard error is stored as CI$se.fit[2]. If your dataframe new only involved one value for Xh, then the corresponding value for Ŷh is stored as CI$fit[1] and its standard error is stored as CI$se.fit.
You can change the value of level if you need a 95% or a 99% confidence interval to 0.95 or 0.99, respectively. The default level is 0.95, so if you need a 95% confidence interval you can also just leave the level argument out. If you want simultaneous confidence intervals for the mean response at g different levels of the predictor, using the Bonferroni method with joint confidence level α, set the level equal to 1 – α / g.
If you need prediction intervals instead (Section 2.5), just change "confidence" to "prediction" in the command after interval=. Everything else is the same.

If you want 95% confidence intervals for all the fitted values corresponding to the original data, type:

> predict(College, se.fit = TRUE, interval = "confidence", level = 0.95)

This will also give you the standard errors for the fitted values. Again, you can change the level if you need a 90% or a 99% confidence interval, and if you need prediction intervals instead, change "confidence" to "prediction" in the command after interval=. In this example, you would receive 120 confidence intervals or prediction intervals, most of them repeated multiple times since there are many students in the sample with the same ACT score. If you were only interested in intervals at specific levels of the explanatory variable (which occur in the original data), you would have to match up the returned intervals with the original data. This would be cumbersome, so the previous method is preferred.

Stat 110-201, Fall 2012 - We did not cover the following procedure in class:
To obtain the Working-Hotelling 1 – α confidence band for the regression line at Xh, you first need the multiplier W, using the F distribution. If 1 – α = 0.90 and n – 2 = 118, for example, then the multiplier is found by typing in R:

> W <- sqrt(2 * qf(0.90, 2, 118))

Then the confidence band at Xh can be found using equation (2.40) and the stored values of Ŷh and its standard error. For the previous example involving three levels of Xh, , the 90% confidence band when Xh = 25 could be found by typing:

> c(CI$fit[2,1] – W * CI$se.fit[2], CI$fit[2,1] + W * CI$se.fit[2])
But if your data frame new consisted only of Xh = 20 (rather than the three values of 20, 25 and 30), you would instead just type:
> c(CI$fit[1] – W * CI$se.fit, CI$fit[1] + W * CI$se.fit)

