Using R Commander to find binomial probabilities:

1. To find values for the $\mathbf{p d f}$, i.e. $\mathbf{P}(\mathbf{X}=\mathbf{k})$ for various values of k :

Distributions \rightarrow Discrete distributions \rightarrow Binomial distribution \rightarrow Binomial probabilities
(then fill in n and p in the popup box)
This command results in a table with possible values from 0 to n listed, then the probability for each value listed next to them.
EXAMPLE: Find the probability of 2 successes when $\mathrm{n}=4$ and $\mathrm{p}=0.2$:
Distributions \rightarrow Discrete distributions \rightarrow Binomial distribution \rightarrow Binomial probabilities
Fill into the popup box:
Binomial trials 4
Probability of success .2
Results, with the one we were looking for in bold:
Pr
00.4096
10.4096
20.1536
30.0256
40.0016
2. To find cumulative (tail) probabilities, either $\mathrm{P}(\mathrm{X} \leq \mathrm{k})$ or $\mathrm{P}(\mathrm{X} \geq \mathrm{k})$

Distributions \rightarrow Discrete distributions \rightarrow Binomial distribution \rightarrow Binomial tail probabilities
Then fill in the values of k, n and p in the popup box, and which "tail" you want.
If you check "lower tail" the result will be $\mathrm{P}(\mathrm{X} \leq \mathrm{k})$
However, if you check "upper tail" the results will be $\mathrm{P}(\mathrm{X}>\mathrm{k})$, not $\mathrm{P}(\mathrm{X} \geq \mathrm{k})$.
EXAMPLE: For $\mathrm{n}=4$ and $\mathrm{p}=0.2$, find the $\mathrm{P}(\mathrm{X} \leq 1)$:
Distributions \rightarrow Discrete distributions \rightarrow Binomial distribution \rightarrow Binomial tail probabilities
Fill in the popup box:
Variable value $(\mathrm{s})=1$
Binomial trials $=\mathrm{n}=4$
Probability of success $=p=0.2$
Lower tail
Result is:
[1] 0.8192
Notice that this is the sum from the table above of $\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)=.4096+.4096=.8192$.
EXAMPLE: For $\mathrm{n}=4$ and $\mathrm{p}=0.2$, find the $\mathrm{P}(\mathrm{X} \geq 2)$:
You have 2 choices:
Method 1: Use $1-\mathrm{P}(\mathrm{X} \leq 1)$, which we found in the previous example.
You will need to subtract the results from 1, since you have just found $\mathrm{P}(\mathrm{X} \leq 1)$
So $\mathrm{P}(\mathrm{X} \geq 2)=1-\mathrm{P}(\mathrm{X} \leq 1)=1-.8192=.1808$.
Method 2: Note that $\mathrm{P}(\mathrm{X} \geq 2)=\mathrm{P}(\mathrm{X}>1)$, so follow instructions for Method 1, but use "upper tail". This will give you the answer directly - no need to subtract from 1 . Here is the result: [1] 0.1808

In general, note that $\mathrm{P}(\mathrm{X} \geq \mathrm{k})=1-\mathrm{P}(\mathrm{X} \leq \mathrm{k}-1)=\mathrm{P}(\mathrm{X}>\mathrm{k}-1)$.

