Set 2: State-spaces and Uninformed Search

ICS 271 Fall 2013
Kalev Kask
Problem-Solving Agents

• Intelligent agents can solve problems by searching a state-space

• State-space Model
 – the agent’s model of the world
 – usually a set of discrete states
 – e.g., in driving, the states in the model could be towns/cities

• Goal State(s)
 – a goal is defined as a desirable state for an agent
 – there may be many states which satisfy the goal
 • e.g., drive to a town with a ski-resort
 – or just one state which satisfies the goal
 • e.g., drive to Mammoth

• Operators
 – operators are legal actions which the agent can take to move from one state to another
Example: Romania
Example: Romania

• On holiday in Romania; currently in Arad.
• Flight leaves tomorrow from Bucharest
• **Formulate goal:**
 – be in Bucharest
• **Formulate problem:**
 – **states**: various cities
 – **actions**: drive between cities
• **Find solution:**
 – sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Problem Types

• Static / Dynamic
 Previous problem was static: no attention to changes in environment

• Observable / Partially Observable / Unobservable
 Previous problem was observable: it knew its initial state.

• Deterministic / Stochastic
 Previous problem was deterministic: no new percepts were necessary, we can predict the future perfectly

• Discrete / continuous
 Previous problem was discrete: we can enumerate all possibilities
State-Space
Problem Formulation

A problem is defined by four items:

initial state e.g., "at Arad"

actions or successor function $S(x) = \text{set of action–state pairs}$
 - e.g., $S(\text{Arad}) = \{\langle \text{Arad} \rightarrow \text{Zerind}, \text{Zerind} \rangle, \ldots \}$

goal test, (or goal state)
e.g., $x = \"at Bucharest\", \text{Checkmate}(x)$

path cost (additive)
 - e.g., sum of distances, number of actions executed, etc.
 - $c(x,a,y)$ is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state
State-Space Problem Formulation

• **A statement of a Search problem has 4 components**
 – 1. A set of states
 – 2. A set of “operators” which allow one to get from one state to another
 – 3. A start state S
 – 4. A set of possible goal states, or ways to test for goal states
 – 4a. Cost path

• **A solution consists of**
 – a sequence of operators which transform S into a goal state G

• **Representing real problems in a State-Space search framework**
 – may be many ways to represent states and operators
 – key idea: represent only the relevant aspects of the problem (abstraction)
Abstraction/Modeling

Process of removing irrelevant detail to create an abstract representation: "high-level", ignores irrelevant details

• Definition of Abstraction:
• Navigation Example: how do we define states and operators?
 – First step is to abstract “the big picture”
 • i.e., solve a map problem
 • nodes = cities, links = freeways/roads (a high-level description)
 • this description is an abstraction of the real problem
 – Can later worry about details like freeway onramps, refueling, etc

• Abstraction is critical for automated problem solving
 – must create an approximate, simplified, model of the world for the computer to deal with: real-world is too detailed to model exactly
 – good abstractions retain all important details
Robot block world

- Given a set of blocks in a certain configuration,
- Move the blocks into a goal configuration.
- Example:
 - (c, b, a) \rightarrow (b, c, a)
Operator Description

((A)(B)(C))

move (A, B) move (A, C) move (B, A) move (B, C) move (C, A) move (C, B)

((AB)(C)) ((B)(AC)) ((BA)(C)) ((BC)(A)) ((CA)(B)) ((A)(CB))

Effects of Moving a Block
The State-Space Graph

- **Problem formulation:**
 - Give an abstract description of states, operators, initial state and goal state.

- **Graphs:**
 - nodes, arcs, directed arcs, paths

- **Search graphs:**
 - States are nodes
 - operators are directed arcs
 - solution is a path from start to goal

- **Problem solving activity:**
 - Generate a part of the search space that contains a solution

State-space:
1. A set of states
2. A set of “operators”
3. a start state S
4. A set of possible goal states,
4a. Cost path

271-fall 2013
The Traveling Salesperson Problem

- Find the shortest tour that visits all cities without visiting any city twice and return to starting point.
- State:
 - sequence of cities visited
- \(S_0 = A \)
The Traveling Salesperson Problem

• Find the shortest tour that visits all cities without visiting any city twice and return to starting point.
• State: sequence of cities visited
• $S_0 = A$

- Solution = a complete tour

Transition model

$\{a, c, d\} \Leftrightarrow \{(a, c, d, x) | X \not\in a, c, d\}$
Example: 8-queen problem
Example: 8-Queen

- **states?** any arrangement of $n \leq 8$ queens
 - or arrangements of $n \leq 8$ queens in leftmost n columns, 1 per column, such that no queen attacks any other.
- **initial state?** no queens on the board
- **actions?** - add queen to any empty square
 - or add queen to leftmost empty square such that it is not attacked by other queens.
- **goal test?** 8 queens on the board, none attacked.
- **path cost?** 1 per move
The Sliding Tile Problem

start configuration

move\((x, loc_y, loc_z) \)

end configuration

Figure 8.1

Start and Goal Configurations for the Eight-Puzzle
The “8-Puzzle” Problem

Start State

Goal State
Example: robotic assembly

- **states**: real-valued coordinates of robot joint angles or parts of the object to be assembled
- **actions**: continuous motions of robot joints
- **goal test**: complete assembly
- **path cost**: time to execute
Formulating Problems; Another Angle

- **Problem types**
 - Satisfying: 8-queen
 - Optimizing: Traveling salesperson

- **Object sought**
 - board configuration
 - sequence of moves
 - A strategy (contingency plan)

- **Satisfying leads to optimizing since “small is quick”**

- **For traveling salesperson**
 - satisfying easy, optimizing hard

- **Semi-optimizing:**
 - Find a good solution

- **In Russel and Norvig:**
 - single-state, multiple states, contingency plans, exploration problems
Searching the State Space

• States, operators, control strategies

• The search space graph is implicit

• The control strategy generates a small search tree.

• Systematic search
 – Do not leave any stone unturned

• Efficiency
 – Do not turn any stone more than once
Tree search example
Tree search example
Tree search example

function TREE-SEARCH(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
State-Space Graph of the 8 Puzzle Problem

Figure 3.6 State space of the 8-puzzle generated by "move blank" operations.
Why Search Can be Difficult

• At the start of the search, the search algorithm does not know
 – the size of the tree
 – the shape of the tree
 – the depth of the goal states

• How big can a search tree be?
 – say there is a constant branching factor b
 – and one goal exists at depth d
 – search tree which includes a goal can have
 b^d different branches in the tree (worst case)

• Examples:
 – $b = 2$, $d = 10$: $b^d = 2^{10} = 1024$
 – $b = 10$, $d = 10$: $b^d = 10^{10} = 10,000,000,000$
Searching the Search Space

• Uninformed Blind search
 – Breadth-first
 – uniform first
 – depth-first
 – Iterative deepening depth-first
 – Bidirectional
 – Depth-First Branch and Bound

• Informed Heuristic search
 – Greedy search, hill climbing, Heuristics

• Important concepts:
 – Completeness
 – Time complexity
 – Space complexity
 – Quality of solution
Breadth-First Search

- Expand shallowest unexpanded node
- Frontier: nodes waiting in a queue to be explored, also called OPEN

Implementation:

- *frontier* is a first-in-first-out (FIFO) queue, i.e., new successors go at end of the queue.

Is A a goal state?
Breadth-First Search

• Expand shallowest unexpanded node

• **Implementation:**
 – *frontier* is a FIFO queue, i.e., new successors go at end

Expand:
frontier = [B,C]

Is B a goal state?
Breadth-First Search

• Expand shallowest unexpanded node

• Implementation:
 – *frontier* is a FIFO queue, i.e., new successors go at end

Expand: frontier=[C,D,E]

Is C a goal state?
Breadth-First Search

• Expand shallowest unexpanded node

• Implementation:
 – *frontier* is a FIFO queue, i.e., new successors go at end

Expand:
frontier=[D,E,F,G]

Is D a goal state?
Tree-Search vs Graph-Search

- **Search-tree**(problem), returns a solution or failure
- Frontier \leftarrow initial state
- Loop do
 - If frontier is empty return failure
 - Choose a leaf node and remove from frontier
 - If the node is a goal, return the corresponding solution
 - Expand the chosen node, adding its children to the frontier

- **Graph-search**(problem), returns a solution or failure
- Frontier \leftarrow initial state, explored \leftarrow empty
- Loop do
 - If frontier is empty return failure
 - Choose a leaf node and remove from frontier
 - If the node is a goal, return the corresponding solution.
 - Add the node to the explored.
 - Expand the chosen node, adding its children to the frontier, only if not in frontier of explored set
Tree-Search vs. Graph-Search

• Example: Assemble 5 objects \{a, b, c, d, e\}
• A state is a bit-vector (length 5), 1=object in assembly
• \(11010 = a, b, d\) in assembly, \(c, e\) not
• State space
 – number of states \(2^5 = 32\)
 – number of edges \((2^5) \cdot 5 \cdot \frac{1}{2} = 80\)
• Tree-search space
 – number of nodes \(5! = 120\)
• State can be reached in multiple ways
 – \(11010\) can be reached \(a+b+d\) or \(a+d+b\) etc.
• Graph-search:
 – three kinds of nodes: unexplored, frontier, explored
 – before adding a node, check if a state is in frontier or explored set
Graph-Search
Actually, in BFS we can check if a node is a goal node when it is generated (rather than expanded)
Implementation: States vs. Nodes

- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree contains info such as: state, parent node, action, path cost $g(x)$, depth

- The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.
Breadth-First-Search (*)

OPEN = frontier, CLOSED = explored

1. Put the start node s on OPEN
2. If OPEN is empty exit with failure.
3. Remove the first node n from OPEN and place it on CLOSED.
4. Expand n, generating all its successors.
 - If child is not in CLOSED or OPEN, then
 - If child is not a goal, then put them at the end of OPEN in some order.
5. If n is a goal node, exit successfully with the solution obtained by tracing back pointers from n to s.
6. Go to step 2.

* This is graph-search
Example: Map Navigation

S = start, G = goal, other nodes = intermediate states, links = legal transitions
Initial BFS Search Tree

Note: this is the search tree at some particular point in the search.
Complexity of Breadth-First Search

• **Time Complexity**
 – assume (worst case) that there is 1 goal leaf at the RHS
 – so BFS will expand all nodes

 \[1 + b + b^2 + \ldots + b^d = O(b^d)\]

• **Space Complexity**
 – how many nodes can be in the queue (worst-case)?
 – at depth \(d\) there are \(b^d\) unexpanded nodes in the \(Q = O(b^d)\)
Examples of Time and Memory Requirements for Breadth-First Search

<table>
<thead>
<tr>
<th>Depth of Solution</th>
<th>Nodes Expanded</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1 millisecond</td>
<td>100 bytes</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>0.1 seconds</td>
<td>11 kbytes</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>11 seconds</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>31 hours</td>
<td>11 giabytes</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>35 years</td>
<td>111 terabytes</td>
</tr>
</tbody>
</table>

Assuming $b=10$, 1000 nodes/sec, 100 bytes/node
Breadth-First Search (BFS) Properties

- Solution Length: optimal
- Expand each node once (can check for duplicates, performs graph-search)
- Search Time: $O(b^d)$
- Memory Required: $O(b^d)$
- Drawback: requires exponential space
Uniform Cost Search

- Expand lowest-cost OPEN node ($g(n)$)
- In BFS $g(n) = \text{depth}(n)$

Requirement

- $g(\text{successor})(n) \geq g(n)$
Uniform cost search

1. Put the start node \(s \) on OPEN
2. If OPEN is empty exit with failure.
3. Remove the first node \(n \) from OPEN and place it on CLOSED.
4. If \(n \) is a goal node, exit successfully with the solution obtained by tracing back pointers from \(n \) to \(s \).
5. Otherwise, expand \(n \), generating all its successors attach to them pointers back to \(n \), and put them in OPEN in order of shortest cost
6. Go to step 2.
Depth-First Search

- Expand *deepest* unexpanded node
- Implementation:
 - *frontier* = Last In First Out (LIPO) queue, i.e., put successors at front

Is A a goal state?
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – *frontier* = LIFO queue, i.e., put successors at front

queue=[B,C]

Is B a goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - \textit{frontier} = LIFO queue, i.e., put successors at front

queue=[D,E,C]

Is D = goal state?
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – *frontier* = LIFO queue, i.e., put successors at front

queue=[H,I,E,C]

Is H = goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - `frontier` = LIFO queue, i.e., put successors at front

queue=[I,E,C]

Is I = goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - \textit{frontier} = LIFO queue, i.e., put successors at front

\text{queue} = [E, C]

Is E = goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - \textit{frontier} = LIFO queue, i.e., put successors at front

queue=[J,K,C]

Is J = goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO queue, i.e., put successors at front

queue=[K,C]

Is K = goal state?
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – *frontier* = LIFO queue, i.e., put successors at front

queue=[C]

Is C = goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - $\textit{frontier} =$ LIFO queue, i.e., put successors at front

queue=[F, G]

Is F = goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - \textit{frontier} = LIFO queue, i.e., put successors at front

\text{queue}=[L, M, G]

Is \text{L} = \text{goal state}?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *frontier = LIFO queue, i.e., put successors at front*

```
queue=[M,G]
```

Is M = goal state?
Depth-First Search (DFS)

Here, (if tree-search) then to avoid repeated states assume we don’t expand any child node which appears already in the path from the root S to the parent. (Again, one could use other strategies)
Depth-First Search

(a) Generation of the First Few Nodes in a Depth-First Search

(b) Discarded before generating node 7

(c)
The Graph When the Goal Is Reached in Depth-First Search
Depth-First-Search (*)

1. Put the start node s on OPEN

2. If OPEN is empty exit with failure.

3. Remove the first node n from OPEN.

4. If n is a goal node, exit successfully with the solution obtained by tracing back pointers from n to s.

5. Otherwise, expand n, generating all its successors (check for self-loops) attach to them pointers back to n, and put them at the top of OPEN in some order.

6. Go to step 2.

*search the tree search-space (but avoid self-loops)

** the default assumption is that DFS searches the underlying search-tree
Complexity of Depth-First Search?

• **Time Complexity**
 – assume d is deepest path in the search space
 – assume (worst case) that there is 1 goal leaf at the RHS
 – so DFS will expand all nodes

$$= 1 + b + b^2 + \ldots + b^d$$

$$= O(b^d)$$

• **Space Complexity (for tree-search)**
 – how many nodes can be in the queue (worst-case)?
 – $O(bd)$ if deepest node at depth d
Example, Diamond Networks

graph-search vs tree-search (BFS vs DFS)
Depth-First tree-search Properties

• Non-optimal solution path
• Incomplete unless there is a depth bound
• (we will assume depth-limited DF-search)
• Re-expansion of nodes (when the search space is a graph)
• Exponential time
• Linear space (for tree-search)
Comparing DFS and BFS

• BFS optimal, DFS is not
• Time Complexity worse-case is the same, but
 – In the worst-case BFS is always better than DFS
 – Sometime, on the average DFS is better if:
 • many goals, no loops and no infinite paths
• BFS is much worse memory-wise
 • DFS can be linear space
 • BFS may store the whole search space.
• In general
 • BFS is better if goal is not deep, if long paths, if many loops, if small search space
 • DFS is better if many goals, not many loops,
 • DFS is much better in terms of memory
Iterative-Deepening Search (DFS)

• Every iteration is a DFS with a depth cutoff.

Iterative deepening (ID)
1. \(i = 1 \)
2. While no solution, do
3. DFS from initial state \(S_0 \) with cutoff \(i \)
4. If found goal, stop and return solution, else, increment cutoff

Comments:
• IDS implements BFS with DFS
• Only one path in memory
• BFS at step \(i \) may need to keep \(2^i \) nodes in OPEN
Iterative deepening search $L=0$
Iterative deepening search $L=1$
Iterative deepening search $L=2$
Iterative Deepening Search $L=3$
Iterative deepening search

Depth bound = 1
Depth bound = 2
Depth bound = 3
Depth bound = 4

Stages in Iterative-Deepening Search
Iterative Deepening (DFS)

• Time:

\[T(n) = \sum_{j=1}^{n} \frac{b^{j+1} - 1}{b-1} = \frac{b^{n+2}}{(b-1)^2} = O(b^n) \]

- BFS time is \(O(b^n) \), \(b \) is the branching degree
- IDS is asymptotically like BFS,
- For \(b=10 \quad d=5 \quad d=\text{cut-off} \)
- DFS = 1+10+100,...,=111,111
- IDS = 123,456
- Ratio is \(\frac{b}{b-1} \)
Summary on IDS

• A useful practical method
 – combines
 • guarantee of finding an optimal solution if one exists (as in BFS)
 • space efficiency, $O(bd)$ of DFS
 • But still has problems with loops like DFS
Bidirectional Search

• Idea
 – simultaneously search forward from S and backwards from G
 – stop when both “meet in the middle”
 – need to keep track of the intersection of 2 open sets of nodes

• What does searching backwards from G mean
 – need a way to specify the predecessors of G
 • this can be difficult,
 • e.g., predecessors of checkmate in chess?
 – what if there are multiple goal states?
 – what if there is only a goal test, no explicit list?

• Complexity
 – time complexity is best: $O(2 \ b^{(d/2)}) = O(b^{(d/2)})$
 – memory complexity is the same
Fig. 2.10 Bidirectional and unidirectional breadth-first searches.
Uniform cost search

1. Put the start node s on OPEN
2. If OPEN is empty exit with failure.
3. Remove the first node n from OPEN and place it on CLOSED.
4. If n is a goal node, exit successfully with the solution obtained by tracing back pointers from n to s.
5. Otherwise, expand n, generating all its successors attach to them pointers back to n, and put them in OPEN in order of shortest cost
6. Go to step 2.

DFS Branch and Bound

At step 4: compute the cost of the solution found and update the upper bound U.

At step 5: expand n, generating all its successors attach to them pointers back to n, and put on top of OPEN.

Compute cost of partial path to node and prune if larger than U.

271-fall 2013
Comparison of Algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>b^d</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Space</td>
<td>b^d</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 3.18 Evaluation of search strategies. b is the branching factor; d is the depth of solution; m is the maximum depth of the search tree; l is the depth limit.
Summary

• A review of search
 – a search space consists of states and operators: it is a graph
 – a search tree represents a particular exploration of search space

• There are various strategies for “uninformed search”
 – breadth-first
 – depth-first
 – iterative deepening
 – bidirectional search
 – Uniform cost search
 – Depth-first branch and bound

• Repeated states can lead to infinitely large search trees
 – we looked at methods for detecting repeated states

• All of the search techniques so far are “blind” in that they do not look at how far away the goal may be: next we will look at informed or heuristic search, which directly tries to minimize the distance to the goal. Example we saw: greedy search