Set 5: Constraint Satisfaction Problems
Chapter 6 R&N

ICS 271 Fall 2017
Kalev Kask
Outline

• The constraint network model
 – Variables, domains, constraints, constraint graph, solutions

• Examples:
 – graph-coloring, 8-queen, cryptarithmetic, crossword puzzles, vision problems, scheduling, design

• The search space and naive backtracking,

• The constraint graph

• Consistency enforcing algorithms
 – arc-consistency, AC-1, AC-3

• Backtracking strategies
 – Forward-checking, dynamic variable orderings

• Special case: solving tree problems

• Local search for CSPs
Constraint satisfaction problems (CSPs)

Standard search problem:
- **state** is a “black box”—any old data structure
 that supports goal test, eval, successor

CSP:
- **state** is defined by variables \(X_i \) with **values** from domain \(D_i \)

 goal test is a set of **constraints** specifying
 allowable combinations of values for subsets of variables

Simple example of a **formal representation language**

Allows useful **general-purpose** algorithms with more power
than standard search algorithms
Constraint Satisfaction

Example: map coloring

Variables - countries (A,B,C,etc.)
Values - colors (e.g., red, green, yellow)
Constraints: $A \neq B$, $A \neq D$, $D \neq E$, etc.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>green</td>
</tr>
<tr>
<td>red</td>
<td>yellow</td>
</tr>
<tr>
<td>green</td>
<td>red</td>
</tr>
<tr>
<td>green</td>
<td>yellow</td>
</tr>
<tr>
<td>yellow</td>
<td>green</td>
</tr>
<tr>
<td>yellow</td>
<td>red</td>
</tr>
</tbody>
</table>
Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T
Domains $D_i = \{\text{red, green, blue}\}$
Constraints: adjacent regions must have different colors
 e.g., $WA \neq NT$ (if the language allows this), or
 $(WA, NT) \in \{(red, green), (red, blue), (green, red), (green, blue), \ldots\}$

Sections 3.7 and 4.4, Chapter 5 of AIMA2e
Example: Map-Coloring contd.

Solutions are assignments satisfying all constraints, e.g.,
\[\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}\]
Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Varieties of CSPs

Discrete variables

- finite domains; size $d \Rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
- infinite domains (integers, strings, etc.)
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $StartJob_1 + 5 \leq StartJob_3$
 - linear constraints solvable, nonlinear undecidable

Continuous variables

- e.g., start/end times for Hubble Telescope observations
- linear constraints solvable in poly time by LP methods
Varieties of constraints

- **Unary** constraints involve a single variable,
 - e.g., SA ≠ green

- **Binary** constraints involve pairs of variables,
 - e.g., SA ≠ WA

- **Higher-order** constraints involve 3 or more variables,
 - Clauses in boolean (propositional) logic
 - e.g., cryptoarithmetic column constraints
Hard vs Soft Constraints

• Hard constraints : must be satisfied
 – Satisfaction problem
• Soft constraints : capture preferences
 – Optimization problem
Sudoku

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints
Each row, column and major block must be all different

“Well posed” if it has unique solution: **27 constraints**

- **Variables:** 81 slots
- **Domains** = \{1,2,3,4,5,6,7,8,9\}
- **Constraints:**
 - 27 not-equal
Example: Cryptarithmetic

\[
\begin{array}{c}
\text{TWO} \\
+ \text{TWO} \\
\hline
\text{FOUR}
\end{array}
\]

Variables: \(F, T, U, W, R, O, X_1, X_2, X_3\)

Domains: \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\)

Constraints

\(\text{alldiff}(F, T, U, W, R, O)\)
\(O + O = R + 10 \cdot X_1, \text{ etc.}\)
Real-world CSPs

Assignment problems
 e.g., who teaches what class

Timetabling problems
 e.g., which class is offered when and where?

Hardware configuration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables
A network of constraints

- **Variables**
 - \(X_1, \ldots, X_n\)

- **Domains**
 - \(D_1, \ldots, D_n\) of discrete values

- **Binary constraints:**
 - \(R_{ij}\) which represent the list of allowed pairs of values, \(R_{ij}\) is a subset of the Cartesian product: \(D_i \times D_j\).

- **Constraint graph:**
 - A node for each variable and an edge for each constraint

- **Solution:**
 - An assignment of a value from its domain to each variable such that no constraint is violated.

- **A network of constraints represents the relation of all solutions.**

\[
sol = \{(x_1, \ldots, x_n) \mid (x_i, x_j) \in R_{ij}, x_i \in D_i, x_j \in D_j\}
\]
Example: The 4-queen problem

Place 4 Queens on a chess board of 4x4 such that no two queens reside in the same row, column or diagonal.

Standard CSP formulation of the problem:

- **Variables**: each row is a variable.

- **Domains**: $D_i = \{1,2,3,4\}$.

- **Constraints**: There are $\binom{4}{2} = 6$ constraints involved:

 $R_{12} = \{(1,3)(1,4)(2,4)(3,1)(4,1)(4,2)\}$
 $R_{13} = \{(1,2)(1,4)(2,1)(2,3)(3,2)(3,4)(4,1)(4,3)\}$
 $R_{14} = \{(1,2)(1,3)(2,1)(2,3)(2,4)(3,1)(3,2)(3,4)(4,2)(4,3)\}$
 $R_{23} = \{(1,3)(1,4)(2,4)(3,1)(4,1)(4,2)\}$
 $R_{24} = \{(1,2)(1,4)(2,1)(2,3)(3,2)(3,4)(4,1)(4,3)\}$
 $R_{34} = \{(1,3)(1,4)(2,4)(3,1)(4,1)(4,2)\}$
Class scheduling/Timetabling

- Teachers, Subjects, Classrooms, Time-slots.
- Constraints: - A teacher teaches a subset of subjects,
 - Subjects are taught at certain classrooms,
 - A teacher prefers teaching in the morning.
- Task: Assign a teacher and a subject to each class at each time slot, s.t. teachers’ happiness is maximized.

\[T_{ij} \text{ - teacher at class } C_i \text{ at time } t_j \]
\[D(T_{ij}) = \text{teacher} \]

\[S_{ij} \text{ - subject taught at class } C_i \text{ at time } t_j \]
\[\text{Domain: Subject} \]
Search vs. Inference

- **Search**:
 - In the space of partial variable-value assignments
 - Key idea: conditioning

- **Inference**:
 - Derive new information implied by values/constraints
 - Key idea: local consistency
Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it.

States are defined by the values assigned so far.

◊ **Initial state**: the empty assignment, {}.

◊ **Successor function**: assign a value to an unassigned variable that does not conflict with current assignment.
 ⇒ fail if no legal assignments (not fixable!)

◊ **Goal test**: the current assignment is complete.

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables
 ⇒ use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) $b = (n - \ell)d$ at depth ℓ, hence $n!d^n$ leaves!!!!
 But only d^n unique assignments.
Backtracking search

Variable assignments are **commutative**, i.e.,
\[WA = \text{red then } NT = \text{green} \] same as \[NT = \text{green then } WA = \text{red} \]

Only need to consider assignments to a single variable at each node
\[\Rightarrow b = d \] and there are \(d^m \) leaves

Depth-first search for CSPs with single-variable assignments is called **backtracking** search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve \(n \)-queens for \(n \approx 25 \)
The search space

- **Definition:** given an ordering of the variables X_1, \ldots, X_n
 - a state:
 - is an assignment to a subset of variables that is consistent.
 - **Operators:**
 - add an assignment to the next variable that does not violate any constraint. \textit{How to choose next variable?}
 - **Goal state:**
 - a consistent assignment to \textbf{all} the variables.
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Backtracking

procedure BACKTRACKING
Input: A constraint network $P = (X, D, C)$.
Output: Either a solution, or notification that the network is inconsistent.

$i \leftarrow 1$ \hspace{1cm} (initialize variable counter)
$D'_i \leftarrow D_i$ \hspace{1cm} (copy domain)

while $1 \leq i \leq n$

\hspace{1cm} instantiate $x_i \leftarrow $ SELECTVALUE

\hspace{1cm} if x_i is null \hspace{1cm} (no value was returned)
\hspace{1cm} \hspace{1cm} $i \leftarrow i - 1$ \hspace{1cm} (backtrack)
\hspace{1cm} else
\hspace{1cm} \hspace{1cm} $i \leftarrow i + 1$ \hspace{1cm} (step forward)
\hspace{1cm} \hspace{1cm} $D'_i \leftarrow D_i$

end while

if $i = 0$
\hspace{1cm} return “inconsistent”
else
\hspace{1cm} return instantiated values of $\{x_1, \ldots, x_n\}$
end procedure

subprocedure SELECTVALUE \hspace{1cm} (return a value in D'_i consistent with \vec{a}_{i-1})

\hspace{1cm} while D'_i is not empty
\hspace{1cm} select an arbitrary element $a \in D'_i$, and remove a from D'_i
\hspace{1cm} if CONSISTENT($\vec{a}_{i-1}, x_i = a$)
\hspace{1cm} \hspace{1cm} return a
\hspace{1cm} end while
\hspace{1cm} return null \hspace{1cm} (no consistent value)
end procedure

Figure 5.4: The backtracking algorithm.

• Complexity of extending a partial solution:
 – Complexity of consistent: $O(e \log t)$, t bounds #tuples, e bounds #constraints
 – Complexity of selectvalue: $O(e k \log t)$, k bounds domain size
The effect of variable ordering

z divides x, y and t
A coloring problem

Figure 5.3: A coloring problem with variables \((x_1, x_2, \ldots, x_7)\). The domain of each variable is written inside the corresponding node. Each arc represents the constraint that the two variables it connects must be assigned different colors.
Backtracking Search for a Solution

(a)

(b)
Backtracking Search for a Solution
Backtracking Search for All Solutions
The Minimal network: Example: the 4-queen problem

\[
\begin{array}{|c|c|c|c|}
\hline
\text{1} & \text{2} & \text{3} & \text{4} \\
\hline
\text{X}_1 & Q & & \\
\hline
\text{X}_2 & & Q & \\
\hline
\text{X}_3 & Q & & \\
\hline
\text{X}_4 & & Q & \\
\hline
\end{array}
\]

\[R_{12} = \{ (1,3) (1,4) (2,4) (3,1) (4,1) (4,2) \} \]
\[R_{13} = \{ (1,2) (1,4) (2,1) (2,3) (3,2) (3,4) (4,1) (4,3) \} \]
\[R_{14} = \{ (1,2) (1,3) (2,1) (2,3) (2,4) (3,1) (3,2) (3,4) (4,2) (4,3) \} \]
\[R_{23} = \{ (1,3) (1,4) (2,4) (3,1) (4,1) (4,2) \} \]
\[R_{24} = \{ (1,2) (1,4) (2,1) (2,3) (3,2) (3,4) (4,1) (4,3) \} \]
\[R_{34} = \{ (1,3) (1,4) (2,4) (3,1) (4,1) (4,2) \} \]

the solution \(\rho \) = \[
\begin{pmatrix}
X_1 & X_2 & X_3 & X_4 \\
2 & 4 & 1 & 3 \\
3 & 1 & 4 & 2
\end{pmatrix}
\]

\[M_\rho = \text{proj}(\rho) = \left\{ \begin{array}{l}
M_{12} = \{ (2,4) (3,1) \} \\
M_{13} = \{ (2,1) (3,4) \} \\
M_{14} = \{ (2,3) (3,2) \} \\
M_{23} = \{ (1,4) (4,1) \} \\
M_{24} = \{ (1,2) (4,1) \} \\
M_{34} = \{ (1,3) (4,2) \} \\
\end{array} \right. \]
Inference (Approximation) algorithms

- Arc-consistency (Waltz, 1972)
- Path-consistency (Montanari 1974, Mackworth 1977)
- k-consistency (Freuder 1982)

Key Idea:
- Transform the network into smaller and smaller (but equivalent) networks by tightening the domains/constraints.
Arc-consistency

$1 \leq X, Y, Z, T \leq 3$

$X < Y$

$Y = Z$

$T < Z$

$X < T$
Arc-consistency

1 ≤ X, Y, Z, T ≤ 3
X < Y
Y = Z
T < Z
X < T

- Incorporated into backtracking search
- **Constraint programming languages** powerful approach for modeling and solving combinatorial optimization problems.
Arc-consistency algorithm

Arc \((X_i, X_j)\) is arc-consistent if for any value of \(X_i\) there exist a matching value of \(X_j\).

Algorithm Revise \((X_i, X_j)\) makes an arc consistent

Begin

1. For each \(a\) in \(D_i\) if there is no value \(b\) in \(D_j\) that is consistent with \(a\) then delete \(a\) from the \(D_i\).

End.

Revise is \(O(k^2)\), \(k\) is the number of values in each domain.
Algorithm AC-3

• **Begin**
 – 1. Q <-- put all arcs in the queue in both directions
 – 2. While Q is not empty do,
 – 3. Select and delete an arc \((X_i, X_j)\) from the queue Q
 • 4. Revise \((X_i, X_j)\)
 • 5. If Revise changes (reduces) the domain of \(X_i\) then add to the queue all arcs that go to \(X_i\) ((\(X_l, X_i\) for all \(l\) except \(i\)).
 – 6. end-while

• **End**

• **Complexity:**
 – Processing an arc requires \(O(k^2)\) steps
 – There is \(e\) edges
 – The number of times each arc can be processed is \(2 \cdot k\)
 – Total complexity is \(O(ek^3)\)
Sudoku

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints
Sudoku

Each row, column and major block must be all different

“Well posed” if it has unique solution

Path-consistency or 3-consistency

4-consistency and i-consistency in general
The Effect of Consistency Level

- After arc(2)-consistency $z=5$ and $l=5$ are removed

- After path(3)-consistency
 - R'_zx
 - R'_zy
 - R'_zl
 - R'_xy
 - R'_xl
 - R'_yl

Tighter networks yield smaller search spaces
Improving Backtracking $O(\exp(n))$

- **Before search:** (reducing the search space)
 - Arc-consistency, path-consistency, k-consistency
 - Variable ordering (fixed)

- **During search:**
 - **Look-ahead schemes:**
 - Variable ordering (*Choose the most constraining variable*)
 - Value ordering (*Choose the least restricting value*)
 - **Look-back schemes:**
 - Backjumping
 - Constraint recording
 - Dependency-directed backtracking
Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?
4. Can we take advantage of problem structure?
Look-ahead: Variable and value orderings

- **Intuition:**
 - Choose a *variable* that will detect failures early
 - Choose a *value* least likely to yield a dead-end
 - Approach: apply propagation at each node in the search tree

- **Forward-checking**
 - Check each unassigned variable separately

- **Maintaining arc-consistency (MAC)**
 - Apply full arc-consistency
Most constrained variable:

choose the variable with the fewest legal values
Most constraining variable

Tie-breaker among most constrained variables

Most constraining variable:
choose the variable with the most constraints on remaining variables
Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible
Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values
Forward checking

Idea: Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Sections 3.7 and 4.4, Chapter 5 of AIMA2e
Forward checking

Idea: Keep track of remaining legal values for unassigned variables. Terminate search when any variable has no legal values.
Forward checking

Idea: Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures:

\[\text{WA} \quad \text{NT} \quad \text{Q} \quad \text{NSW} \quad \text{V} \quad \text{SA} \quad \text{T} \]

\[\text{red} \quad \text{green} \quad \text{blue} \quad \text{red} \quad \text{green} \quad \text{blue} \quad \text{red} \]

\[\text{red} \quad \text{green} \quad \text{blue} \quad \text{red} \quad \text{green} \quad \text{blue} \quad \text{red} \]

\[\text{red} \quad \text{green} \quad \text{blue} \quad \text{red} \quad \text{green} \quad \text{blue} \quad \text{red} \]

\[NT \text{ and } SA \text{ cannot both be blue!} \]

Constraint propagation repeatedly enforces constraints locally
Arc consistency

Simplest form of propagation makes each arc consistent

\[X \rightarrow Y \] is consistent iff

for every value \(x \) of \(X \) there is some allowed \(y \)

If \(X \) loses a value, neighbors of \(X \) need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment
Forward-checking on Graph-coloring

FW overhead: $O(ek^2)$

MAC overhead: $O(ek^3)$
procedure DVFC
 Input: A constraint network $\mathcal{R} = (X, D, C)$
 Output: Either a solution, or notification that the network is inconsistent.

$$D'_i \leftarrow D_i \text{ for } 1 \leq i \leq n$$ (copy all domains)
$$i \leftarrow 1$$ (initialize variable counter)
$$s = \min_{i < j \leq n} |D'_j|$$ (find future var with smallest domain)
$$x_{i+1} \leftarrow x_s$$ (rearrange variables so that x_s follows x_i)

while $1 \leq i \leq n$

instantiate $x_i \leftarrow \text{SELECT\VALUE-\FORWARD-\CHECKING}$

if x_i is null (no value was returned)

reset each D' set to its value before x_i was last instantiated
$$i \leftarrow i - 1$$ (backtrack)

else

if $i < n$

$$i \leftarrow i + 1$$ (step forward to x_s)
$$s = \min_{i < j \leq n} |D'_j|$$ (find future var with smallest domain)
$$x_{i+1} \leftarrow x_s$$ (rearrange variables so that x_s follows x_i)
$$i \leftarrow i + 1$$ (step forward to x_s)

end while

if $i = 0$

return "inconsistent"

else

return instantiated values of $\{x_1, \ldots, x_n\}$

end procedure

Figure 5.12: The DVFC algorithm. It uses the SE\textsc{SELECT\VALUE-\FORWARD-\CHECKING} subprocedure given in Fig. 5.8.
Propositional Satisfiability

Example: party problem

- If Alex goes, then Becky goes: \(A \rightarrow B \) (or, \(\neg A \lor B \))
- If Chris goes, then Alex goes: \(C \rightarrow A \) (or, \(\neg C \lor A \))
- Query:

 Is it possible that Chris goes to the party but Becky does not?

\[\uparrow \]

Is propositional theory
\[\varphi = \{ \neg A \lor B, \neg C \lor A, \neg B, C \} \] satisfiable?
Unit Propagation

- Arc-consistency for CNFs.
- Involve a single clause and a single literal
- Example: \((\neg C \lor A), C \rightarrow A\)
- Formula: \(\varphi = \{\neg A \lor B, \neg C \lor A, \neg B, C\}\)
 - C must be true
 - A must be true
 - B must be false and true
 - formula is not satisfiable
Look-ahead for SAT
(Davis-Putnam, Logeman and Laveland, 1962)

DPLL(φ)
Input: A cnf theory φ
Output: A decision of whether φ is satisfiable.
1. Unit_propagate(φ);
2. If the empty clause is generated, return($false$);
3. Else, if all variables are assigned, return($true$);
4. Else
5. $Q =$ some unassigned variable;
6. return(DPLL($\varphi \land Q$) \lor
 DPLL($\varphi \land \neg Q$))

Figure 5.13: The DPLL Procedure
Look-ahead for SAT: DPLL

(Davis-Putnam, Logeman and Laveland, 1962)

example: \((\neg A \lor B) \land (\neg C \lor A) \land (A \lor B \lor D) \land (C)\)

Backtracking look-ahead with
Unit propagation=
Generalized arc-consistency

Only enclosed area will be explored with unit-propagation
Look-back:
Backjumping / Learning

• **Backjumping:**
 – In deadends, go back to the most recent culprit.

• **Learning:**
 – constraint-recording, no-good recording.
 – good-recording
Backjumping

- \((X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7=\{r,b\})\)
- \((r,b,b,b,g,r)\) conflict set of \(x7\)
 - Conflict set: a partial assignment that cannot be extended to the next variable
- \((r,-,b,b,g,-)\) c.s. of \(x7\)
- \((r,-,b,-,-,-)\) minimal conflict-set
- Leaf deadend: \((r,b,b,b,g,r)\)
 - No-good: a partial assignment that cannot be extended to a solution
 - No-good = internal deadend
- Every conflict-set is a no-good
 - But not other way around (\(x1=r\) is a no-good)
Problem structure

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph
Problem structure contd.

Suppose each subproblem has c variables out of n total

Worst-case solution cost is $\frac{n}{c} \cdot d^c$, *linear* in n

E.g., $n = 80$, $d = 2$, $c = 20$

$2^{80} = 4$ billion years at 10 million nodes/sec

$4 \cdot 2^{20} = 0.4$ seconds at 10 million nodes/sec
Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time

Compare to general CSPs, where worst-case time is $O(d^n)$

This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.
Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering

2. For j from n down to 2, apply $\text{REMOVEINCONSISTENT}(\text{Parent}(X_j), X_j)$

3. For j from 1 to n, assign X_j consistently with $\text{Parent}(X_j)$

4. Arc-consistency in tree-structured CSPs makes search backtrack-free
Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size $c \Rightarrow$ runtime $O(d^c \cdot (n - c)d^2)$, very fast for small c
The cycle-cutset method

• An instantiation can be viewed as blocking cycles in the graph
• Given an instantiation to a set of variables that cut all cycles (a cycle-cutset) the rest of the problem can be solved in linear time by a tree algorithm.

• Complexity (n number of variables, k the domain size and C the cycle-cutset size):

\[O(nk^Ck^2) \]
Tree Decomposition

Complexity is $O(n \exp(w))$ where w bounds the number of variables in a cluster. Known as the treewidth.
Local Search for CSPs

• Local Search
 • Works with complete variable assignments (called a state)
 • Has a cost function associated with each state
 • E.g. min-conflicts – number of constraints violated
 • Considers only immediate neighborhood for next state
 • E.g. change the value of one variable

• Operators
 • Greedy heuristic: pick a value for a variable that leads to
greatest reduction in total cost – can get stuck in local optima
 • Random moves: occasionally make a random move
 • Sideways moves, re-starts, constraint re-weighting, …

• Incomplete
• Often fast
 • orders of magnitude faster than systematic e.g. DFS
Example: 4-Queens

States: 4 queens in 4 columns \((4^4 = 256 \text{ states})\)

Operators: move queen in column

Goal test: no attacks

Evaluation: \(h(n) = \text{number of attacks}\)

\[h = 5 \quad \rightarrow \quad h = 2 \quad \rightarrow \quad h = 0\]
GSAT – local search for SAT
(Selman, Levesque and Mitchell, 1992)

1. For $i=1$ to MaxTries
2. Select a random assignment A
3. For $j=1$ to MaxFlips
4. if A satisfies all constraints, return A
5. else flip a variable to maximize the score
6. (number of satisfied constraints; if no variable
7. assignment increases the score, flip at random)
8. end
9. end

Greatly improves hill-climbing by adding
restarts and sideway moves
WalkSAT
(Selman, Kautz and Cohen, 1994)

Adds random walk to GSAT:

With probability p
 random walk – flip a variable in some unsatisfied constraint
With probability $1-p$
 perform a hill-climbing step

Randomized hill-climbing often solves large and hard satisfiable problems
More Stochastic Search: Simulated Annealing, Constraint Reweighting

- **Simulated annealing:**
 - A method for overcoming local minima.
 - Allows bad moves with some probability:
 - With some probability related to a temperature parameter T the next move is picked randomly.
 - Theoretically, with a slow enough cooling schedule, this algorithm will find the optimal solution. But so will searching randomly.

- **Breakout method (Morris, 1990):** adjust the weights of the violated constraints.
Problem Hardness

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Sections 3.7 and 4.4, Chapter 5 of AIMA2e
Summary

CSPs are a special kind of problem:
- states defined by values of a fixed set of variables
- goal test defined by *constraints* on variable values

Backtracking = depth-first search with one variable assigned per node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice
Game of Mastermind

Sample Mastermind game: Game 1

<table>
<thead>
<tr>
<th>Red</th>
<th>Green</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hidden Combination</td>
</tr>
</tbody>
</table>

Guess 1

<table>
<thead>
<tr>
<th>Red</th>
<th>Red</th>
<th>Red</th>
</tr>
</thead>
</table>

Guess 2

<table>
<thead>
<tr>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
</table>

Correct Position: 1
Correct Colour: 0

Correct Position: 1
Correct Colour: 1

Variables: P1,...,Pn one variable for each peg
Domains: R,G,B,Y

Constraints: \{P1,P2,P3: (Red, Green, Yellow), (Red, Yellow, Blue), (Green, Red, Green), (Blue, Red, Green), (Yellow, Red, Green), (Blue, Blue, Red), (Yellow, Blue, Red)\}