Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks: Basics

Kalev Kask
Linear classifiers (perceptrons)

- **Linear Classifiers**
 - a linear classifier is a mapping which partitions feature space using a linear function (a straight line, or a hyperplane)
 - separates the two classes using a straight line in feature space
 - in 2 dimensions the decision boundary is a straight line

Linearly separable data
Linearly non-separable data

(c) Alexander Ihler
Perceptron Classifier (2 features)

Classifier \(f(x; \theta) \)

```
0 = \omega_1 x_1 + \omega_2 x_2 + \omega_0
```

Threshold Function

```
Yhat = \text{sign}(r) = \begin{cases} 
1 & \text{if } r > 0 \\
-1 & \text{if } r < 0 
\end{cases}
```

Decision Boundary at \(r(x) = 0 \)

Solve: \(X_2 = -\frac{w_1}{w_2} X_1 - \frac{w_0}{w_2} \) (Line)

(c) Alexander Ihler
Perceptron Classifier (2 features)

Classifier $f(x; \theta)$

"linear response"

$r = \omega_1 x_1 + \omega_2 x_2 + \omega_0$

weighted sum of the inputs

Threshold Function

$T(r)$

output = class decision

$r = X.dot(\theta.T)$; # compute linear response

$\text{Yhat} = 2*(r > 0) - 1$ # ”sign”: predict +1 / -1

1D example:

Decision boundary = “x such that $T(\omega_1 x + \omega_0)$ transitions”
Recall the role of features

- We can create extra features that allow more complex decision boundaries
- Linear classifiers
- Features \([1, x]\)
 - Decision rule: \(T(ax + b) = ax + b >/\leq 0\)
 - Boundary \(ax + b = 0\) \(=>\) point
- Features \([1, x, x^2]\)
 - Decision rule \(T(ax^2 + bx + c)\)
 - Boundary \(ax^2 + bx + c = 0\) \(=>\) point

- What features can produce this decision rule?
Features and perceptrons

- Recall the role of features
 - We can create extra features that allow more complex decision boundaries
 - For example, polynomial features
 \[\Phi(x) = [1 \ x \ x^2 \ x^3 \ldots] \]

- What other kinds of features could we choose?
 - Step functions?

Linear function of features
\[a F1 + b F2 + c F3 + d \]

Ex: \[F1 - F2 + F3 \]
Multi-layer perceptron model

- Step functions are just perceptrons!
 - “Features” are outputs of a perceptron
 - Combination of features output of another

\[
\begin{align*}
W^1 &= \begin{bmatrix} w_{10} & w_{11} \\ w_{20} & w_{21} \\ w_{30} & w_{31} \end{bmatrix} \\
W^2 &= \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}
\end{align*}
\]

Linear function of features:
\[a F_1 + b F_2 + c F_3 + d\]
Ex: \(F_1 - F_2 + F_3\)
Multi-layer perceptron model

- Step functions are just perceptrons!
 - “Features” are outputs of a perceptron
 - Combination of features output of another

Linear function of features:
\[a F_1 + b F_2 + c F_3 + d \]

Ex: \[F_1 - F_2 + F_3 \]

Regression version: Remove activation function from output

\[W^1 = \begin{bmatrix} w_{10} & w_{11} \\ w_{20} & w_{21} \\ w_{30} & w_{31} \end{bmatrix} \]
\[W^2 = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \]
Features of MLPs

- **Simple building blocks**
 - Each element is just a perceptron $f' n$

- **Can build upwards**

![Diagram of a perceptron network showing input features leading to a perceptron with a step function and linear partition.](c) Alexander Ihler
Features of MLPs

- Simple building blocks
 - Each element is just a perceptron $f' \circ n$

- Can build upwards

2-layer:
 - “Features” are now partitions
 - All linear combinations of those partitions

(c) Alexander Ihler
Features of MLPs

- Simple building blocks
 - Each element is just a perceptron $f' \, n$

- Can build upwards

3-layer:
“Features” are now complex functions
Output any linear combination of those

(c) Alexander Ihler
Features of MLPs

- Simple building blocks
 - Each element is just a perceptron $f' \cdot n$

- Can build upwards

```
Input Features  Layer 1  Layer 2  Layer 3  ...  
```

Current research:
“Deep” architectures (many layers)
Features of MLPs

- Simple building blocks
 - Each element is just a perceptron function

- Can build upwards

- Flexible function approximation
 - Approximate arbitrary functions with enough hidden nodes
Neural networks

- Another term for MLPs
- Biological motivation

- Neurons
 - “Simple” cells
 - Dendrites sense charge
 - Cell weighs inputs
 - “Fires” axon

(c) Alexander Ihler

“How stuff works: the brain”
Activation functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Activation function $\sigma(z)$</th>
<th>Derivative $\frac{\partial \sigma}{\partial z}(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic</td>
<td>$\sigma(z) = \frac{1}{1 + \exp(-z)}$</td>
<td>$\sigma(z)(1 - \sigma(z))$</td>
</tr>
<tr>
<td>Hyperbolic Tangent</td>
<td>$\sigma(z) = \frac{1 - \exp(-2z)}{1 + \exp(-2z)}$</td>
<td>$1 - (\sigma(z))^2$</td>
</tr>
<tr>
<td>Gaussian</td>
<td>$\sigma(z) = \exp(-z^2/2)$</td>
<td>$-z\sigma(z)$</td>
</tr>
<tr>
<td>ReLU (rectified linear)</td>
<td>$\sigma(z) = \max(0, z)$</td>
<td>$1[z > 0]$</td>
</tr>
<tr>
<td>Linear</td>
<td>$\sigma(z) = z$</td>
<td>and many others...</td>
</tr>
</tbody>
</table>

(c) Alexander Ihler
Feed-forward networks

- Information flows left-to-right
 - Input observed features
 - Compute hidden nodes (parallel)
 - Compute next layer…

R = X.dot(W[0])+B[0]; # linear response
H1 = Sig(R); # activation f’n

S = H1.dot(W[1])+B[1]; # linear response
H2 = Sig(S); # activation f’n

% …

- Alternative: recurrent NNs…
Feed-forward networks

A note on multiple outputs:

• Regression:
 – Predict multi-dimensional y
 – “Shared” representation
 = fewer parameters

• Classification
 – Predict binary vector
 – Multi-class classification
 \(y = 2 = [0 \ 0 \ 1 \ 0 \ \ldots] \)
 – Multiple, joint binary predictions
 (image tagging, etc.)
 – Often trained as regression (MSE),
 with saturating activation
Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks: Backpropagation

Kalev Kask
Training MLPs

- Observe features “x” with target “y”
- Push “x” through NN = output is “ŷ”
- Error: \((y - ŷ)^2\)
 (Can use different loss functions if desired...)
- How should we update the weights to improve?

- Single layer
 - Logistic sigmoid function
 - Smooth, differentiable
- Optimize using:
 - Batch gradient descent
 - Stochastic gradient descent
Gradient calculations

• Think of NNs as “schematics” made of smaller functions
 – Building blocks: summations & nonlinearities
 – For derivatives, just apply the chain rule, etc!

\[
\frac{\partial J}{\partial g} = \frac{\partial J}{\partial f} \cdot \frac{\partial f}{\partial g}
\]

\[
\frac{\partial J}{\partial h} = \frac{\partial J}{\partial f} \cdot \frac{\partial f}{\partial h}
\]

Ex: \(f(g,h) = g^2 h \)

\[
\frac{\partial J}{\partial g} = \frac{\partial J}{\partial f} \cdot 2g(\cdot)h(\cdot)
\]

\[
\frac{\partial J}{\partial h} = \frac{\partial J}{\partial f} \cdot g^2(\cdot)
\]

save & reuse info \((g,h)\) from forward computation!
Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

\[
\frac{\partial J}{\partial w_{k,j}^2} = -2 \sum_{k'} (y_{k'} - \hat{y}_{k'}) (\partial \hat{y}_{k'}) \\
= -2(y_k - \hat{y}_k) \sigma'(s_k) h_j
\]

(Identical to logistic mse regression with inputs “\(h_j\)"

Forward pass

Loss function
\[
J_i(W) = \sum_k (y_k^{(i)} - \hat{y}_k^{(i)})^2
\]

Output layer
\[
\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{k,j}^2 h_j)
\]

Hidden layer
\[
h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)
\]
Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

\[
\frac{\partial J}{\partial w_{kj}^2} = -2 \sum_{k'} (y_{k'} - \hat{y}_{k'}) (\partial \hat{y}_{k'})
\]
\[
= -2(y_k - \hat{y}_k) \sigma'(s_k) h_j
\]
\[
\beta_k^2
\]

\[
\frac{\partial J}{\partial w_{ji}^1} = \sum_k -2(y_k - \hat{y}_k) (\partial \hat{y}_k)
\]
\[
= \sum_k -2(y_k - \hat{y}_k) \sigma'(s_k) w_{kj}^2 \partial h_j
\]
\[
= \sum_k -2(y_k - \hat{y}_k) \sigma'(s_k) w_{kj}^2 \sigma'(t_j) x_i
\]
\[
\beta_k^2
\]

Forward pass

Loss function
\[
J_i(W) = \sum_k (y_k^{(i)} - \hat{y}_k^{(i)})^2
\]

Output layer
\[
\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{kj}^2 h_j)
\]

Hidden layer
\[
h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)
\]

(Identical to logistic mse regression with inputs “h_j”)
Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

\[
\frac{\partial J}{\partial w_{k,j}^2} = -2(y_k - \hat{y}_k) \sigma'(s_k) h_j
\]

\[
\frac{\partial J}{\partial w_{j,i}^1} = \sum_k -2(y_k - \hat{y}_k) \sigma'(s_k) w_{k,j}^2 \sigma'(t_j) x_i
\]

Forward pass

Loss function
\[
J_i(W) = \sum_k (y_k^{(i)} - \hat{y}_k^{(i)})^2
\]
Output layer
\[
\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{k,j}^2 h_j)
\]
Hidden layer
\[
h_j = \sigma(t_j) = \sigma(\sum_i w_{j,i}^1 x_i)
\]

\[
B2 = (Y - Yhat) * dSig(S) \quad #(1xN3)
\]

\[
G2 = B2.T.dot(H) \quad #(N3x1)*(1xN2)=(N3xN2)
\]

\[
B1 = B2.dot(W[1])*dSig(T)#(1xN3).*(N3*N2)*(1xN2)
\]

\[
G1 = B1.T.dot(X) \quad #(N2 \times N1+1)
\]

(c) Alexander Ihler
Example: Regression, MCycle data

• Train NN model, 2 layer
 – 1 input features => 1 input units
 – 10 hidden units
 – 1 target => 1 output units
 – Logistic sigmoid activation for hidden layer, linear for output layer

Data:
 + learned prediction f’n:
 Responses of hidden nodes (= features of linear regression):
 select out useful regions of “x”
Example: Classification, Iris data

- Train NN model, 2 layer
 - 2 input features => 2 input units
 - 10 hidden units
 - 3 classes => 3 output units \((y = [0 \ 0 \ 1], \text{ etc.})\)
 - Logistic sigmoid activation functions
 - Optimize MSE of predictions using stochastic gradient
Dropout

• Another recent technique
 – Randomly “block” some neurons at each step
 – Trains model to have redundancy (predictions must be robust to blocking)

```matlab
% ... during training ...
R = X.dot(W[0]) + B[0];  # linear response
H1 = Sig(R);              # activation f’n
H1 *= np.random.rand(*H1.shape) < p;  # drop out!
% ...
```

(c) Alexander Ihler
Machine Learning and Data Mining

Neural Networks in Practice

Kalev Kask
CNNs vs RNNs

• CNN
 – Fixed length input/output
 – Feed forward
 – E.g. image recognition

• RNN
 – Variable length input
 – Feed back
 – Dynamic temporal behavior
 – E.g. speech/text processing

• http://playground.tensorflow.org
MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - Online demo
 - 784 pixels ⇔ 500 mid ⇔ 500 high ⇔ 2000 top ⇔ 10 labels

\[x \rightarrow h^1 \rightarrow h^2 \rightarrow h^3 \rightarrow \hat{y} \]

[Hinton et al. 2007]
MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - Online demo
 - 784 pixels ⇔ 500 mid ⇔ 500 high ⇔ 2000 top ⇔ 10 labels

[Hinton et al. 2007]
Convolutional networks

- Organize & share the NN’s weights (vs “dense”)
- Group weights into “filters”

Input: 28x28 image Weights: 5x5
Convolutional networks

- Organize & share the NN’s weights (vs “dense”)
- Group weights into “filters” & convolve across input image

Input: 28x28 image Weights: 5x5 24x24 image

\[h_1 = \sigma(\sum_{ij} w_{ij} x_{ij}) \]

filter response at each patch

Run over all patches of input) activation map

(c) Alexander Ihler
Convolutional networks

- Organize & share the NN’s weights (vs “dense”)
- Group weights into “filters” & convolve across input image

Input: 28x28 image Weights: 5x5

Another filter

Run over all patches of input
) activation map

(c) Alexander Ihler
Convolutional networks

- Organize & share the NN’s weights (vs “dense”)
- Group weights into “filters” & convolve across input image
- Many hidden nodes, but few parameters!

Input: 28x28 image Weights: 5x5 Hidden layer 1
Convolutional networks

- Again, can view components as building blocks
- Design overall, deep structure from parts
 - Convolutional layers
 - “Max-pooling” (sub-sampling) layers
 - Densely connected layers

LeNet-5 [LeCun 1980]
Ex: AlexNet

- Deep NN model for ImageNet classification
 - 650k units; 60m parameters
 - 1m data; 1 week training (GPUs)

[Krizhevsky et al. 2012]
Hidden layers as “features”

- Visualizing a convolutional network’s filters
 [Zeiler & Fergus 2013]

Slide image from Yann LeCun:
https://drive.google.com/open?id=0BxKBnD5y2M8NclFWSXNxa0JlZTg

(c) Alexander Ihler
Neural networks & DBNs

• Want to try them out?

• Matlab “Deep Learning Toolbox”
 https://github.com/rasmusbergpalm/DeepLearnToolbox

 rasmusbergpalm / DeepLearnToolbox

 Matlab/Octave toolbox for deep learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, Convolutional Autoencoders and vanilla Neural Nets. Each method has examples to get you started.

• PyLearn2
 https://github.com/lisa-lab/pylearn2

• TensorFlow
Summary

• Neural networks, multi-layer perceptrons

• Cascade of simple perceptrons
 – Each just a linear classifier
 – Hidden units used to create new features

• Together, general function approximators
 – Enough hidden units (features) = any function
 – Can create nonlinear classifiers
 – Also used for function approximation, regression, …

• Training via backprop
 – Gradient descent; logistic; apply chain rule. Building block view.

• Advanced: deep nets, conv nets, dropout, …

(c) Alexander Ihler