
A Proposed Recommender System
for Eliciting

Software Sustainability Requirements

Kristin Roher, Debra Richardson
Bren School of Information and Computer Science

University of California, Irvine
Irvine, CA 92617, USA

{kroher, djr}@ics.uci.edu

Abstract – Sustainability is not considered sufficiently in
developing modern software systems. In spite of the looming
threats of global climate change and environmental degradation
[1], software companies are more concerned with product
“time-to-market” than long-term product impacts. The research
goal of this project is to overcome the barriers of incorporating
sustainability into the software engineering process through the
use of a recommender system to be used during requirements
engineering. This system will recommend the kinds of
sustainability requirements that should be considered in a given
system, based on application domain, deployment locale, etc,
and in so doing will lessen the workload of eliciting appropriate
sustainability requirements. This research builds on an ongoing
research project on Software Engineering for Sustainability.

I. MOTIVATION
Software-intensive systems have led to profound advances

in human civilization, but at the same time they have
contributed significantly to the exploitation of the Earth’s
resources. Moreover, software-intensive systems are deeply
engaged with many different aspects of life and day-to-day
activities in the industrialized world. As such, they provide a
powerful leverage point for enabling sustainability concerns
to be brought to bear across a wide range of domains.
Developers of these systems, however, may lack a
comprehensive understanding of how to integrate
environmental sustainability into their software development
processes [2].

The software engineering research community has
realized the need to transition toward sustainability, as
evidenced by efforts of the International Conference on
Software Engineering (ICSE) in the past four years. The
theme of ICSE 2012 was “Sustainable Software for a
Sustainable World” and a related workshop was held on
“Green and Sustainable Software.” On the political side, the
UN Millennium Development Goals and the related action
plan, Agenda 21, include objectives to reverse the loss of
environmental resources and employ sustainable development
towards conservation and management of resources [1, 3].

It is clearly time to address the effects that software
systems have on our environment and its sustainability. There
are two primary reasons why such a change has not generally
occurred in software development processes. For one, there is
often an intellectual barrier that must be crossed; the
interdisciplinary nature of sustainability has made it
challenging for software developers to handle its complexity.
Secondly, the extra effort and required techniques needed to
consider sustainability could be more expensive up front.
Even though the long-term benefits (such as aiding in the
effort to decrease global climate disruption) are abundant,
software companies often place more emphasis on time-to-
market than on long-term product value. This paper proposes
a recommender system that will assist in requirements
elicitation by recommending the kinds of sustainability
requirements that should be considered for a system, based on
application domain, location, an organization’s goals, etc. The
proposed recommender system will serve as a requirements
elicitation technique that aims to overcome these issues by
supporting software engineers in integrating sustainability.

This paper begins by providing background on
recommender systems as well as some ongoing preliminary
work at the University of California, Irvine (UCIrvine) in
section II. Section III describes the proposed recommender
system, while Section IV provides an initial plan for
evaluation. Some limitations of the approach are mentioned in
section V, with concluding comments in section VI.

II. BACKGROUND

A. Recommender Systems
Recommendations are often relied upon in every day life.

For example, individuals rely on a recommendation from their
friends on a book to read or movie to watch, and in the
business realm, job recruiters rely on recommendation letters
in the hiring process. Recommender systems assist and
augment this natural social process to ask for advice on a
given topic [4]. Recommendations made by such systems can
help users navigate through large information spaces and/or
provide suggestions for items to be of use to a user (such as

978-1-4673-6433-1/13 c© 2013 IEEE USER 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

16

Amazon, Netflix, Pandora, etc.). They often guide users who
do not have sufficient background to evaluate the vast number
of alternatives.

The software engineering community has expressed a
growing interest in the use of recommender systems. This is
evidenced by the efforts of the International Workshop on
Recommender Systems for Software Engineering. In addition,
academic institutions (including UCIrvine) have begun
offering courses on recommender systems.

Current approaches used in recommender systems include:
• Collaborative-filtering systems make

recommendations based on the ratings or implicit
behavior, such as purchase history or search patterns,
of other users with similar tastes [5].

• Content-filtering systems make recommendations
based on algorithms derived from machine learning
and information retrieval to determine similar items to
those that a user has expressed interest in or is
currently viewing [6].

• Context-aware systems use either of the above
approaches but also take into account environmental
factors, such as time, location, or proximity of others
[7].

• Community-based systems base recommendations on
the preferences of the user’s friends or colleagues [8].

• Hybrid systems combine the above methods with
each other or potentially combined with a domain
specific method [9].

In this paper, we propose a recommender system that aids
developers in the elicitation of sustainability requirements for
software systems. The proposed system will take a hybrid
approach using mainly a context-aware approach along with
content-filtering algorithms. The system will need to be aware
of contextual items, such as environmental factors and project
domain, as well as make recommendations based on what the
user is currently viewing or preferences specified in search
criteria.

B. Preliminary Work
UCIrvine’s Software Engineering for Sustainability

(SE4S) research group provides the groundwork for the
proposed research. The group is working towards a
methodology for developing software-intensive systems that
meet the functional needs of users while reducing the
environmental impacts brought about by those systems [10].
This research is focused on how software engineering can
support environmental sustainability in the wide variety of
domains in which software is deployed, whereas the aim of
many sustainable software efforts has been just to discover
how software engineering can contribute to improving the
sustainability of the software itself and not its broader,
potentially indirect impacts.

SE4S aims to overcome challenges similar to those that
were realized in software engineering for safety and security
[11, 12]. Software development practices were not equipped
to deal with emerging critical concerns for safety and security

and were updated accordingly. SE4S aims to make
development practices for sustainability just as prevalent as
those for safety and security are today, in particular by
considering sustainability as a first class quality attribute.

One of the primary topics of the SE4S project is
examining how to support sustainability in requirements
engineering. This involves developing an adequate set of
models, methods, and tools to elicit, document and analyze
sustainability requirements for software systems.

III. PROPOSED PROJECT
The research proposed here aims to tackle one of the

challenges faced in the SE4S project, which is to promote the
adoption of the SE4S approach by increasing stakeholder
commitment to sustainability and also by reducing the costs
and effort associated with that adoption. To accomplish this,
the proposed recommender system lessens the workload of
eliciting appropriate sustainability requirements by reducing
the knowledge barriers associated with said elicitation. The
system addresses issues of sustainability early in software
development, during the requirements engineering phase. One
reason for this is that problems arise when incorporating
sustainability into existing systems due to the complexity
involved with modifying systems to meet new requirements.
Another reason is that the requirements engineering phase is
the point at which developers have the most control over
eventual system behavior – that is to say, requirements
engineering lays the foundation for system development – and
therefore is the most appropriate phase of the software life
cycle to consider environmental sustainability.

We introduce the term archetype to refer to the format in
which sustainability recommendations will be provided. This
term originates from Philosophy [13] and is currently used in
the field of Biomedical Informatics to provide a formalized
Electronic Health Record (EHR) structure [14]. Because most
software engineering projects will require a slightly different
instantiation of the requirements, it would not be helpful to
recommend specific detailed requirements. Instead the system
will recommend sustainability requirement archetypes, which
provide a template from which requirements of the same kind
are copied or on which they are based. Using archetypes will
enable a wider range of projects and project domains to be
considered for each recommended sustainability aspect.

Users of the system will consist of stakeholders of a
software-intensive system development project. This will
include system and software engineers working on eliciting,
analyzing and documenting system requirements, most of
whom will have some background in requirements
engineering but may have very little detailed knowledge of
sustainability. Other stakeholders – such as system clients,
end-users, and domain experts – are likely to be inexperienced
in requirements engineering. Thus, it is important that the
sustainability requirement archetypes that are recommended
for consideration in the system under development be easy to
understand and tailored to the domain at hand.

17

Users will be able to use the recommender system in two
modes. The most basic use involves performing a generic
request for recommendations, which will be the typical
interaction by a user with no previous experience (although
this mode is open to anyone). When entering a generic search,
the user will be asked to specify a project domain and
expected deployment locale. If the recommender system does
not recognize the domain, it will ask the user to rate known
project domains, based on how closely related they are to their
project. The user will then be presented with several
sustainability requirement archetypes to consider. A second
mode of use is typical for more frequent or experienced users,
who will create a profile that allows them to save
recommended archetypes relevant to the types of projects they
work on. Users with a profile can save projects, which can be
private (for individual use), group (for use by a team), or
public (for other users to learn from). Thus, profiled users will
not only be able to use the system to build new requirements
but also to input their own archetypes for public or personal
use. In addition, profiled users will be able to input specific
organizational goals that may influence recommendations.

A typical usage scenario can, for example, take place after
the elicitation of an initial set of requirements:

1. User logs into their profile.
2. User selects to search based on application domain.
3. User selects a project domain (for example, e-

commerce).
4. If that domain can be further narrowed, the user is

asked to narrow the scope by selecting from a list. At
this stage, the user is able to select as many of the
options they see fit (for example, an e-commerce
system used for shopping will usually contain both a
database of reviews and other product information, as
well as a shopping cart and online buying system).

5. The user will then be presented with a list of
requirement archetypes to consider. (Continuing the
above example, archetypes may include the
following: “Product reviews should contain
sustainability ratings, such as amount of packaging
used and whether or not the packaging was reusable
or recyclable,” and “The shopper should be able to
select packaging options when using the online
checkout system”).

6. The user can add all or some of the archetypes to a
specific project and tailor them further during
requirements elicitation.

The proposed system will also be used in re-evaluating
existing software systems. It will provide options for the user
to specify whether they would like to implement a new
system, completely re-develop an existing system, or
incorporate sustainability into an existing system without
restructuring the entire project. The first two will most likely
provide the same results, but the third will be a much more
complex problem space. This will be further explored through
a user study mentioned below.

IV. PROPOSED EVALUATION

A. Case Studies
This section describes several exemplars that we are using

as case studies in the general context of the SE4S project, and
which we will also use to evaluate the proposed recommender
system. The first case study will analyze ways in which
sustainability can be incorporated into pre-designed and
existing systems. The AquaLush irrigation system, for which
the requirements documents are publicly available [15], will
be used as a baseline for comparison and evaluation. Rather
than modify the system implementation, we will explore ways
to integrate sustainability requirements into the existing
architecture.

Industrial partners will then be asked to participate in a
case study that will aid them in integrating sustainability into
an existing software system. The recommender system will
not be used in this process, as the objective of this phase of
research is to discover ways to integrate sustainability and not
to evaluate the system. However, the sustainability
requirement archetypes written for this case study will be
entered into the recommender system so future users
performing requirements elicitation can use them.

B. User Studies
Before subjecting users to the recommender system, its

performance and success in giving useful recommendations
will be evaluated. Sustainability requirement archetypes that
the recommender should give for several different application
domains (e.g. consumer electronics, e-commerce systems,
video games, business applications, personal or handheld
systems, etc.) will be determined. A test will then be
performed on the search feature to ensure that for each
domain the system produces the correct recommendations.

The first user study will consist of students using the tool,
as part of developing a requirements document for the
Requirements Engineering course offered at UCIrvine by
Professor Debra Richardson. Based on questionnaires filled
out by these student users, the usability of the interface and
their overall satisfaction with the system will be evaluated.

Stakeholder willingness to follow the sustainability
recommendations will be evaluated using questionnaires and
interviews given to professional software engineers. They will
be asked to use the recommender system in a software project
setting. Data regarding the recommended sustainability
archetypes that are implemented in their final project will be
recorded.

The usability of the system will be measured by
investigating how long it takes a user to discover a specific
requirement archetype. Twenty users will be instructed on
how to use the recommender system and asked to search for
requirement archetypes that Amazon.com could use to make
their e-commerce system more sustainable. Users will be
observed in an interview lasting 10 minutes. The time it takes
each user to discover five relevant recommendations will be
recorded.

18

A study to assess the usability of the system for
inexperienced users will also be performed. Twenty users will
be asked to perform the same search and given the same
criteria as the above-mentioned study on Amazon.com,
however, the users here will not be instructed on how to use
the system. This will allow for comparison to be done
between the two studies.

Some domain specific questions that will be answered
during our case studies to aid in articulating new archetypes
for the recommender system database are listed below:

1. Was disposal of materials considered?
2. Was the time a system is left idly running considered?
3. Was system energy usage while idle considered?
4. Were sustainable material resources considered?
5. Was ability to lessen energy intensive calculations

considered?
6. Does system consider sharing energy usage?
7. Were ways in which CO2 emissions could be reduced

considered?
8. Was the system required to shut down at all possible

times to conserve energy?
9. Was possible reuse of materials considered?

V. LIMITATIONS
One foreseeable limitation of this system is dealing with

trust. Trust is a major issue when it comes to developing any
recommender system. Literature suggests that users are “more
likely to accept recommendations from credible sources and
therefore, the credibility of the recommender system is vital to
increasing the likelihood of recommendation acceptance” [9].
This system will have to rely on word of mouth, the
reputations of supporting researchers, and publications that
show the success of use case and user studies. In addition, the
database will need to be seeded with a strong initial set of
requirement archetypes before releasing the recommender
system to encourage stakeholder use.

Although an evaluation plan for the system has been
discussed, recommender system evaluation is not yet a
structured analysis, nor has a generic metric been developed.

VI. CONCLUSION
This research project will advance stakeholders’ ability to

produce software systems that have less negative impact on
our environment. In addition, it will increase their general
knowledge of sustainability and related types of requirements
to consider. Once implemented, the proposed recommender
system will be broadly distributed as a free software program.
By providing a tool to support this level of analysis, the
authors will contribute to the broader goal of supporting the
transition to sustainability across many different sectors
within the industrialized world.

The overarching SE4S project, focused on incorporating
sustainability into software development, will provide an
avenue for creating awareness of the myriad of sustainability

issues present in software systems. Software engineers will be
provided the opportunity to support the UN’s development
goals for sustainable development – that is, by meeting “the
needs of the present without compromising the ability of
future generations to meet their own needs” [1]. They will
also be able to play a key role in reducing the environmental
concerns that threaten today’s society.

REFERENCES
[1] United Nations World Commission on Environment and

Development, “Report of the World Commission on
Environment and Development: Our Common Future.” United
Nations, 1987.

[2] B. Penzenstadler, “Towards a Definition of Sustainability in
and for Software Engineering,” in Proceedings of the 28th
Annual ACM Symposium on Applied Computing, 2013.

[3] United Nations, “Agenda 21.” United Nations Conference on
Environment and Development (UNCED), Jan-1992.

[4] P. Resnick and H. Varian, “Recommender Systems,”
Communications of the ACM, Vol. 40, No. 3, 1997, pp. 56-58.

[5] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen,
“Collaborative Filtering Recommender Systems,” In The
Adaptive Web, Springer, 2007, pp. 291-324. Print.

[6] P. Lops, M. Gemmis, and G. Semeraro, “Content-based
Recommender Systems,” In: F. Ricci et al, Recommender
Systems Handbook, Springer, 2011, pp. 73-105. Print.

[7] G. Adomavicius and A. Tuzhilin, “Context-aware
Recommender Systems,” in Proceedings of the 2008 ACM
Conference on Recommender Systems, New York, NY, USA,
2008, pp. 335-336.

[8] F. Ricci, L. Rokach, and B. Shapira, “Introduction to
Recommender Systems Handbook,” in Recommender Systems
Handbook, Springer, 2011, pp. 73-105. Print.

[9] R. Burke. “Hybrid Recommender Systems: Survey and
Experiments,” User Modeling and User‐Adapted Interaction,
vol. 12, no. 4, 2002, pp. 331‐370.

[10] B. Penzenstadler, B. Tomlinson, D. Richardson, “Support
Environmental Sustainability by Requirements Engineering,”
in Proceedings of the International Workshop on Requirements
Engineering for Sustainable Systems, 2012.

[11] P. T. Devanbu and S. Stubblebine, “Software Engineering for
Security: A Roadmap,” in Proceedings of the Conference on
The Future of Software Engineering, New York, NY, USA,
2000, pp. 227–239.

[12] R. Lutz, “Software Engineering for Safety: A Roadmap,” in
Proceedings of the Conference on The Future of Software
Engineering, New York, NY, USA, 2000, pp. 213-226.

[13] A. Stevens, Archetype: A Natural History of the Self.
Routledge & Kegan Paul, 1982.

[14] R. Chen, G.Klein, E. Sundvall, D. Karlsson and H. Åhlfeldt,
“Archetype-based conversion of EHR content models:
pilot experience with a regional EHR system”, in BMC
Medical Informatics and Decision Making, 2009.

[15] C. Fox, Introduction to Software Engineering Design:
Processes, Principles and Patterns with UML2. Addison
Wesley, 2006.

19

