
Fault, Failure & Reliability

Lee, Kyoungwoo

Dependability Concept Classification

Relationship b/w Fault/Error/Failure

Fault

- Definition
 - A defect at the HW or SW component
 - Defect for HW technology
 - Bug for SW technology
 - A hypothesized cause of failure
- Classification
 - 1. NATURE
 - 1. Type
 - 1. HW fault: defect within a HW component (eg: *NOR* gate instead of *NAND* gate)
 - 2. SW fault: bug within a SW module (eg: *if* A < B instead of *if* $A \le B$)
 - 2. Duration
 - 1. Permanent fault (static/hard faults) : remains active for a significant period of time (eg: damaged or incorrectly implemented component)
 - 2. Temporary fault (dynamic/soft faults)
 - 1. Transient fault: appears for a very short period of time and disappears (eg: soft error)
 - 2. Intermittent (periodic) fault: appears, disappears, and reappears (eg: a parasitic signal emitted by a part of an electronic system disturbs another part during the operation)

2. ORIGIN

- 1. Where
 - 1. Internal fault: origin of the fault is product itself (eg: incorrectly designed component)
 - 2. External fault: the fault results from user or environments (eg: operator mistakes or soft error)
- 2. When
 - 1. Creation: origin of the cause to faults is during specification, design, and production
 - 2. Operation: faults occur at operation

Faults (example)

	HW fault		SW fault	
Creation →Potenti ally Permanen t, internal	Incorrect specification fault (eg: incorrect architecture)	HW Redundancy	SW Redundancy (N-Version)	Specification fault (eg: incorrect algorithm)
	Poor design fault (eg: missing arc b/w states)			Design fault (eg: program bug) If A < B then S = S+1;
	Production fault (eg: stuck at '1' or '0' / short circuit)			Programming fault (eg: program bug / coding mistake)
Operation	Soft error →external, transient	HW/Dat a/Tempo ral/SW Redund ancy	HW/Dat a/Temp oral/SW Redund ancy	Operator mistakes →external, transient
	Wear-out corrosion →permanent, internal	HW Redund ancy		5

Faults at HW layer

- HW faults at each component (device or system)
- Example
 - Incorrect specification
 - Poor design
 - Implementation mistakes
 - Random device defects
 - Component wear-out

Permanent faults → fault-tolerant by HW Redundancy (RM)

Redundancy

→fault-tolerant by HW (RM), by

Data (ECC), by Temporal (CP),

or by SW (N-programming) 6

- EM (Electro Migration), TDDB (Time Dependant Dielectric Breakdown), TC (Thermal Cycling)
- Soft errors

Faults at OS layer

- Software faults
- Example
 - Incorrect design
 - OS bugs
 - Design faults/implementation mistakes

Unexpected operation
 Temporary faults
 tolerated by debugging, updating, or rebooting

Permanent faults

unless debugged OS is

Faults at Application layer

- Software faults
- Example
 - Incomplete specification
 - Incorrect algorithm
 - Design mistakes
 - Programming bugs
 - Coding mistakes
 - Wrong install
 - User mistakes

Permanent faults unless debugged Or tolerated by SW Redundancy Temporary faults →tolerated by updating, or rebooting

Dependability Evaluation Techniques

- Several approaches to quantitative evaluation
 - Failure Rate
 - Reliability and Unreliability
 - Availability/Maintainability/Performability/Safet
 y/Analysis
 - MTBF (Mean Time Between Failures)
 - MTTF (Mean Time To Failure)
 - MTTR (Mean Time To Repair)

Failure Rate

- Definition
 - The expected number of failures of a type of device or system per a given time period
 - The speed at which components are likely to fail
- Notation

Reliability

- Definition
 - R(t) : The reliability of a component or system
 - The conditional probability that the component operates correctly throughout the interval (t_0 ,t), given that it was operating correctly at the time, t_0
 - The time interval varies according to applications
 - (eg) Many space applications (repair is impossible)
 - The time intervals being considered can be extremely long, perhaps as many as ten years
 - (eg) Aircraft flight control
 - No more than several hours
 - The reliability throughout the interval may be 0.9_7 or higher
 - $R(t) = N_o(t)/N = N_o(t)/\{N_o(t)+N_f(t)\}$
 - N identical components into operation at t₀
 - N_f(t) : the number of failed components at t
 - N_o(t) : the number of working components at t
 - Assumption: once a component fails, it remains failed indefinitely

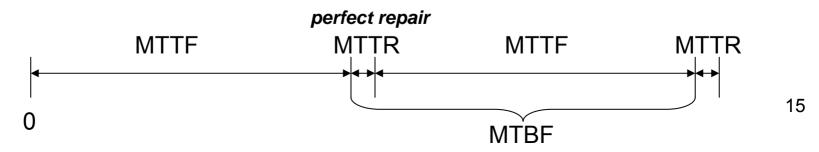
Unreliability

- Definition
 - The probability that a component has not survived the time interval [t₀,t]

$$-Q(t) = N_f(t)/N = N_f(t)/\{N_o(t)+N_f(t)\}$$

R(t) = 1 – Q(t) at any time t

Failure Rate Function


- z(t) : hazard function, hazard rate, or failure rate function
 - $z(t) = 1/N_o(t)^* dN_f(t)/dt$
 - dN_f(t)/dt is the instantaneous rate at which components are failing
 - The units are failures per unit of time
- Reliability
 - dR(t)/dt = -z(t)*R(t) from $z(t) = 1/N_o(t)*dN_f(t)/dt$
 - $z(t) = 1/N_o(t)*dN_f(t)/dt = 1/N_o(t)*(-N)*dR(t)/dt = {dR(t)/dt}/(-N_o(t)/N) = {dR(t)/dt}/(-R(t))$
 - $-R(t) = 1.0 N_f(t)/N$
 - $dR(t)/dt = -(1/N)^* dN_f(t)/dt \Leftrightarrow dN_f(t)/dt = (-N)^* dR(t)/dt$
 - $z(t) = \{-1/R(t)\}^* dR(t)/dt$
 - $R(t) = e^{-\int z(t)dt}$
 - $-R(t) = e^{-\lambda t}$
 - (Assumption) the failure rate function has a constant value of $\boldsymbol{\lambda}$
 - Exponential Failure Law
 - The exponential relationship b/w the reliability and time
 - The reliability varies exponentially as a function of time for a constant failure rate function

MTTF

- MTTF (Mean Time To Failure)
 - The expected time that a system will operate before the first failure occurs
 - $MTTF = \Sigma^{N}_{i=1}t_{i}/N$
 - N identical systems
 - t_i : each system, i, operates for a time, t_i , before encountering the first failure
 - MTTF = $\int_{-\infty}^{\infty} tf(t) dt$
 - The expected value of the time of failure
 - f(t) is the failure density function
 - f(t) = dQ(t)/dt
 - The integral runs from 0 to ∞
 - MTTF = $\int_0^\infty R(t) dt$
 - $\text{MTTF} = \int_0^\infty \text{tf}(t) dt = \int_0^\infty \text{tdQ}(t)/\text{dt} dt = -\int_0^\infty \text{tdR}(t)/\text{dt} dt \qquad 14$ $= \left[-tR(t) + \int R(t) dt\right]_0^\infty = \left[-\infty * R(\infty) + 0 * R(0)\right] + \int_0^\infty R(t) dt$

MTBF/MTTR

- MTBF (Mean Time Between Failure)
 - The average time between failures of a system
 - MTBF = T/n_{avg}
 - $n_{avg} = \Sigma_{i=1}^{N} n_i / N$
 - Each of the N systems is operated for some time T
 - n_i is the number of failures for T
 - n_{avg} is the average number of failures
 - The total operation time, T, divided by the average number of failures experienced during the time T
- MTTR (Mean Time To Repair)
 - The average time to repair the system and place it back into operation
 - MTTR = $\Sigma^{N}_{i=1}t_i/N$
 - The i^{th} of N faults requires a time, t_i , to repair
- MTBF = MTTF + MTTR
 - (Assumption) All repairs to a system make the system perfect once again, just as it was when it was new

References

- Dhiraj K. Pradhan, "Fault-Tolerant Computer System Design", Prentice Hall, 1996, ISBN 0-13-057887-8
- Jean-Claude Geffroy and Gilles Motet, "Design of Dependable Computing Systems", Kluwer Academic Publishers, 2002, ISBN 1-4020-0437-0
- FOLDOC, "http://foldoc.doc.ic.ac.uk/foldoc/"
- WIKIPEDIA, "http://en.wikipedia.org/wiki/Main_Page"