
Chapter 3

Function Basics

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Predefined Functions
– Those that return a value and those that don’t

• Programmer-defined Functions
– Defining, Declaring, Calling

– Recursive Functions

• Scope Rules
– Local variables

– Global constants and global variables

– Blocks, nested scopes

3-2Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Introduction to Functions

• Building Blocks of Programs

• Other terminology in other languages:

– Procedures, subprograms, methods

– In C++: functions

• I-P-O

– Input – Process – Output

– Basic subparts to any program

– Use functions for these "pieces"

3-3Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Predefined Functions

• Libraries full of functions for our use!

• Two types:
– Those that return a value

– Those that do not (void)

• Must "#include" appropriate library
– e.g.,

• <cmath>, <cstdlib> (Original "C" libraries)

• <iostream> (for cout, cin)

3-4Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Using Predefined Functions

• Math functions very plentiful
– Found in library <cmath.h>
– Most return a value (the "answer")

• Example: theRoot = sqrt(9.0);
– Components:

sqrt = name of library function
theRoot = variable used to assign "answer" to
9.0 = argument or "starting input" for function

– In I-P-O:
• I = 9.0
• P = "compute the square root"
• O = 3, which is returned & assigned to theRoot

3-5Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

The Function Call

• Back to this assignment:
theRoot = sqrt(9.0);

– The expression "sqrt(9.0)" is known as a
function call, or function invocation

– The argument in a function call (9.0) can be a
literal, a variable, or an expression

– The call itself can be part of an expression:
• bonus = sqrt(sales)/10;

• A function call is allowed wherever it’s legal to use
an expression of the function’s return type

3-6Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

A Larger Example:
Display 3.1 A Predefined Function That Returns a

Value (1 of 2)

3-7Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

A Larger Example:
Display 3.1 A Predefined Function That Returns a

Value (2 of 2)

3-8Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

More Predefined Functions

• #include <cstdlib>

– Library contains functions like:
• abs() // Returns absolute value of an int

• labs() // Returns absolute value of a long int

• *fabs() // Returns absolute value of a float

– *fabs() is actually in library <cmath>!
• Can be confusing

• Remember: libraries were added after C++ was
"born," in incremental phases

• Refer to appendices/manuals for details

3-9Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

More Math Functions

• pow(x, y)

– Returns x to the power y
double result, x = 3.0, y = 2.0;
result = pow(x, y);
cout << result;
• Here 9.0 is displayed since 3.02.0 = 9.0

• Notice this function receives two arguments

– A function can have any number of arguments, of varying
data types

3-10Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Even More Math Functions:
Display 3.2 Some Predefined

Functions (1 of 2)

3-11Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Even More Math Functions:
Display 3.2 Some Predefined

Functions (2 of 2)

3-12Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Predefined Void Functions

• No returned value

• Performs an action, but sends no "answer"

• When called, it’s a statement itself

– exit(1); // No return value, so not assigned
• This call terminates program

• void functions can still have arguments

• All aspects same as functions that "return
a value"

– They just don’t return a value!

3-13Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Random Number Generator

• Return "randomly chosen" number

• Used for simulations, games
– rand()

• Takes no arguments

• Returns value between 0 & RAND_MAX

– Scaling
• Squeezes random number into smaller range

rand() % 6

• Returns random value between 0 & 5

– Shifting
rand() % 6 + 1
• Shifts range between 1 & 6 (e.g., die roll)

3-14Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Random Number Seed

• Pseudorandom numbers
– Calls to rand() produce given "sequence"

of random numbers

• Use "seed" to alter sequence
srand(seed_value);
– void function

– Receives one argument, the "seed"

– Can use any seed value, including system time:
srand(time(0));

– time() returns system time as numeric value

– Library <time> contains time() functions

3-15Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Random Examples

• Random double between 0.0 & 1.0:
(RAND_MAX – rand())/static_cast<double>(RAND_MAX)

– Type cast used to force double-precision division

• Random int between 1 & 6:
rand() % 6 + 1

– "%" is modulus operator (remainder)

• Random int between 10 & 20:
rand() % 10 + 10

3-16Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Programmer-Defined Functions

• Write your own functions!

• Building blocks of programs
– Divide & Conquer

– Readability

– Re-use

• Your "definition" can go in either:
– Same file as main()

– Separate file so others can use it, too

3-17Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Components of Function Use

• 3 Pieces to using functions:
– Function Declaration/prototype

• Information for compiler

• To properly interpret calls

– Function Definition
• Actual implementation/code for what

function does

– Function Call
• Transfer control to function

3-18Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Function Declaration

• Also called function prototoype
• An "informational" declaration for compiler
• Tells compiler how to interpret calls

– Syntax:
<return_type> FnName(<formal-parameter-list>);

– Example:
double totalCost(int numberParameter,

double priceParameter);

• Placed before any calls
– In declaration space of main()
– Or above main() in global space

3-19Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Function Definition

• Implementation of function

• Just like implementing function main()

• Example:
double totalCost(int numberParameter,

double priceParameter)
{

const double TAXRATE = 0.05;
double subTotal;
subtotal = priceParameter * numberParameter;
return (subtotal + subtotal * TAXRATE);

}

• Notice proper indenting

3-20Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Function Definition Placement

• Placed after function main()
– NOT "inside" function main()!

• Functions are "equals"; no function is ever
"part" of another

• Formal parameters in definition
– "Placeholders" for data sent in

• "Variable name" used to refer to data in definition

• return statement
– Sends data back to caller

3-21Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Function Call

• Just like calling predefined function
bill = totalCost(number, price);

• Recall: totalCost returns double value
– Assigned to variable named "bill"

• Arguments here: number, price
– Recall arguments can be literals, variables,

expressions, or combination

– In function call, arguments often called
"actual arguments"
• Because they contain the "actual data" being sent

3-22Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Function Example:
Display 3.5 A Function to Calculate Total Cost (1 of 2)

3-23Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Function Example:
Display 3.5 A Function to Calculate Total Cost (1 of 2)

3-24Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Alternative Function Declaration

• Recall: Function declaration is "information"
for compiler

• Compiler only needs to know:
• Return type

• Function name

• Parameter list

• Formal parameter names not needed:
double totalCost(int, double);
– Still "should" put in formal parameter names

• Improves readability

3-25Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Parameter vs. Argument

• Terms often used interchangeably

• Formal parameters/arguments
– In function declaration

– In function definition’s header

• Actual parameters/arguments
– In function call

• Technically parameter is "formal" piece
while argument is "actual" piece*
– *Terms not always used this way

3-26Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Functions Calling Functions

• We’re already doing this!
– main() IS a function!

• Only requirement:
– Function’s declaration must appear first

• Function’s definition typically elsewhere
– After main()"s definition

– Or in separate file

• Common for functions to call many other
functions

• Function can even call itself  "Recursion"

3-27Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Boolean Return-Type Functions

• Return-type can be any valid type

– Given function declaration/prototype:
bool appropriate(int rate);

– And function’s definition:
bool appropriate (int rate)
{

return (((rate>=10)&&(rate<20))||(rate==0);
}

– Returns "true" or "false"

– Function call, from some other function:
if (appropriate(entered_rate))

cout << "Rate is valid\n";

3-28Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Declaring Void Functions

• Similar to functions returning a value

• Return type specified as "void"

• Example:

– Function declaration/prototype:
void showResults(double fDegrees,

double cDegrees);

• Return-type is "void"

• Nothing is returned

3-29Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Declaring Void Functions

• Function definition:
void showResults(double fDegrees, double cDegrees)
{

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(1);
cout << fDegrees

<< " degrees fahrenheit equals \n"
<< cDegrees << " degrees celsius.\n";

}

• Notice: no return statement
– Optional for void functions

3-30Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Calling Void Functions

• Same as calling predefined void functions

• From some other function, like main():
– showResults(degreesF, degreesC);

– showResults(32.5, 0.3);

• Notice no assignment, since no
value returned

• Actual arguments (degreesF, degreesC)
– Passed to function

– Function is called to "do it’s job" with the
data passed in

3-31Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

More on Return Statements

• Transfers control back to "calling" function

– For return type other than void, MUST have
return statement

– Typically the LAST statement in
function definition

• return statement optional for void functions

– Closing } would implicitly return control from
void function

3-32Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Preconditions and Postconditions

• Similar to "I-P-O" discussion

• Comment function declaration:
void showInterest(double balance, double rate);
//Precondition: balance is nonnegative account balance
// rate is interest rate as percentage
//Postcondition: amount of interest on given balance,
// at given rate …

• Often called Inputs & Outputs

3-33Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

main(): "Special"

• Recall: main() IS a function

• "Special" in that:
– One and only one function called main()

will exist in a program

• Who calls main()?
– Operating system

– Tradition holds it should have return statement
• Value returned to "caller"  Here: operating system

– Should return "int" or "void"

3-34Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Scope Rules

• Local variables
– Declared inside body of given function

– Available only within that function

• Can have variables with same names declared in different
functions
– Scope is local: "that function is it’s scope"

• Local variables preferred
– Maintain individual control over data

– Need to know basis

– Functions should declare whatever local data needed to "do their job"

3-35Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Procedural Abstraction

• Need to know "what" function does, not
"how" it does it!

• Think "black box"
– Device you know how to use, but not it’s

method of operation

• Implement functions like black box
– User of function only needs: declaration

– Does NOT need function definition
• Called Information Hiding

• Hide details of "how" function does it’s job

3-36Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Global Constants
and Global Variables

• Declared "outside" function body
– Global to all functions in that file

• Declared "inside" function body
– Local to that function

• Global declarations typical for constants:
– const double TAXRATE = 0.05;

– Declare globally so all functions have scope

• Global variables?
– Possible, but SELDOM-USED

– Dangerous: no control over usage!

3-37Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Blocks

• Declare data inside compound statement
– Called a "block"

– Has "block-scope"

• Note: all function definitions are blocks!
– This provides local "function-scope"

• Loop blocks:
for (int ctr=0;ctr<10;ctr++)
{

sum+=ctr;
}
– Variable ctr has scope in loop body block only

3-38Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Nested Scope

• Same name variables declared in
multiple blocks

• Very legal; scope is "block-scope"

– No ambiguity

– Each name is distinct within its scope

3-39Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Summary 1

• Two kinds of functions:

– "Return-a-value" and void functions

• Functions should be "black boxes"

– Hide "how" details

– Declare own local data

• Function declarations should self-document

– Provide pre- & post-conditions in comments

– Provide all "caller" needs for use

3-40Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

Summary 2

• Local data
– Declared in function definition

• Global data
– Declared above function definitions

– OK for constants, not for variables

• Parameters/Arguments
– Formal: In function declaration and definition

• Placeholder for incoming data

– Actual: In function call
• Actual data passed to function

3-41Copyright © 2016 Pearson Addison-Wesley. All rights reserved.

