
Chapter 4

Parameters
and Overloading

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Parameters
– Call-by-value

– Call-by-reference

– Mixed parameter-lists

• Overloading and Default Arguments
– Examples, Rules

• Testing and Debugging Functions
– assert Macro

– Stubs, Drivers

4-2Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Parameters

• Two methods of passing arguments
as parameters

• Call-by-value

– "copy" of value is passed

• Call-by-reference

– "address of" actual argument is passed

4-3Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-by-Value Parameters

• Copy of actual argument passed

• Considered "local variable" inside function

• If modified, only "local copy" changes

– Function has no access to "actual argument"
from caller

• This is the default method

– Used in all examples thus far

4-4Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-by-Value Example:
Display 4.1 Formal Parameter Used

as a Local Variable (1 of 3)

4-5Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-by-Value Example:
Display 4.1 Formal Parameter Used

as a Local Variable (2 of 3)

4-6Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-by-Value Example:
Display 4.1 Formal Parameter Used

as a Local Variable (3 of 3)

4-7Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-by-Value Pitfall

• Common Mistake:
– Declaring parameter "again" inside function:

double fee(int hoursWorked, int minutesWorked)
{

int quarterHours; // local variable
int minutesWorked // NO!

}

– Compiler error results
• "Redefinition error…"

• Value arguments ARE like "local variables"
– But function gets them "automatically"

4-8Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-By-Reference Parameters

• Used to provide access to caller’s
actual argument

• Caller’s data can be modified by called function!

• Typically used for input function

– To retrieve data for caller

– Data is then "given" to caller

• Specified by ampersand, &, after type
in formal parameter list

4-9Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-By-Reference Example:
Display 4.1 Call-by-Reference Parameters (1 of 3)

4-10Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-By-Reference Example:
Display 4.1 Call-by-Reference Parameters (2 of 3)

4-11Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-By-Reference Example:
Display 4.1 Call-by-Reference Parameters (3 of 3)

4-12Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Call-By-Reference Details

• What’s really passed in?

• A "reference" back to caller’s
actual argument!

– Refers to memory location of
actual argument

– Called "address", which is a unique number
referring to distinct place in memory

4-13Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Constant Reference Parameters

• Reference arguments inherently
"dangerous"
– Caller’s data can be changed

– Often this is desired, sometimes not

• To "protect" data, & still pass by reference:
– Use const keyword

• void sendConstRef(const int &par1,
const int &par2);

• Makes arguments "read-only" by function

• No changes allowed inside function body

4-14Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Parameters and Arguments

• Confusing terms, often used interchangeably

• True meanings:

– Formal parameters
• In function declaration and function definition

– Arguments
• Used to "fill-in" a formal parameter

• In function call (argument list)

– Call-by-value & Call-by-reference
• Simply the "mechanism" used in plug-in process

4-15Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Mixed Parameter Lists

• Can combine passing mechanisms

• Parameter lists can include pass-by-value
and pass-by-reference parameters

• Order of arguments in list is critical:
void mixedCall(int & par1, int par2, double & par3);
– Function call:

mixedCall(arg1, arg2, arg3);
• arg1 must be integer type, is passed by reference

• arg2 must be integer type, is passed by value

• arg3 must be double type, is passed by reference

4-16Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Choosing Formal Parameter Names

• Same rule as naming any identifier:
– Meaningful names!

• Functions as "self-contained modules"
– Designed separately from rest of program

– Assigned to teams of programmers

– All must "understand" proper function use

– OK if formal parameter names are same
as argument names

• Choose function names with same rules

4-17Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloading

• Same function name

• Different parameter lists

• Two separate function definitions

• Function "signature"

– Function name & parameter list

– Must be "unique" for each function definition

• Allows same task performed on different data

4-18Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloading Example: Average

• Function computes average of 2 numbers:
double average(double n1, double n2)
{

return ((n1 + n2) / 2.0);
}

• Now compute average of 3 numbers:
double average(double n1, double n2, double n3)
{

return ((n1 + n2) / 2.0);
}

• Same name, two functions

4-19Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloaded Average() Cont’d

• Which function gets called?

• Depends on function call itself:
– avg = average(5.2, 6.7);

• Calls "two-parameter average()"

– avg = average(6.5, 8.5, 4.2);
• Calls "three-parameter average()"

• Compiler resolves invocation based on
signature of function call
– "Matches" call with appropriate function

– Each considered separate function

4-20Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloading Pitfall

• Only overload "same-task" functions

– A mpg() function should always perform
same task, in all overloads

– Otherwise, unpredictable results

• C++ function call resolution:

– 1st: looks for exact signature

– 2nd: looks for "compatible" signature

4-21Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloading Resolution

• 1st: Exact Match

– Looks for exact signature
• Where no argument conversion required

• 2nd: Compatible Match

– Looks for "compatible" signature where
automatic type conversion is possible:
• 1st with promotion (e.g., intdouble)

– No loss of data

• 2nd with demotion (e.g., doubleint)

– Possible loss of data

4-22Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloading Resolution Example

• Given following functions:
– 1. void f(int n, double m);

2. void f(double n, int m);
3. void f(int n, int m);

– These calls:
f(98, 99);  Calls #3
f(5.3, 4);  Calls #2
f(4.3, 5.2);  Calls ???

• Avoid such confusing overloading

4-23Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Automatic Type Conversion
and Overloading

• Numeric formal parameters typically
made "double" type

• Allows for "any" numeric type

– Any "subordinate" data automatically promoted
• int  double

• float  double

• char  double *More on this later!

• Avoids overloading for different numeric types

4-24Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Automatic Type Conversion
and Overloading Example

• double mpg(double miles, double gallons)
{

return (miles/gallons);
}

• Example function calls:
– mpgComputed = mpg(5, 20);

• Converts 5 & 20 to doubles, then passes

– mpgComputed = mpg(5.8, 20.2);
• No conversion necessary

– mpgComputed = mpg(5, 2.4);
• Converts 5 to 5.0, then passes values to function

4-25Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Default Arguments

• Allows omitting some arguments

• Specified in function declaration/prototype

– void showVolume(int length,
int width = 1,
int height = 1);

• Last 2 arguments are defaulted

– Possible calls:
• showVolume(2, 4, 6); //All arguments supplied

• showVolume(3, 5); //height defaulted to 1

• showVolume(7); //width & height defaulted to 1

4-26Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Default Arguments Example:
Display 4.1 Default Arguments (1 of 2)

4-27Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Default Arguments Example:
Display 4.1 Default Arguments (2 of 2)

4-28Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Testing and Debugging Functions

• Many methods:

– Lots of cout statements
• In calls and definitions

• Used to "trace" execution

– Compiler Debugger
• Environment-dependent

– assert Macro
• Early termination as needed

– Stubs and drivers
• Incremental development

4-29Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

The assert Macro

• Assertion: a true or false statement

• Used to document and check correctness
– Preconditions & Postconditions

• Typical assert use: confirm their validity

– Syntax:
assert(<assert_condition>);
• No return value

• Evaluates assert_condition

• Terminates if false, continues if true

• Predefined in library <cassert>
– Macros used similarly as functions

4-30Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

An assert Macro Example

• Given Function Declaration:
void computeCoin(int coinValue,

int& number,
int& amountLeft);

//Precondition: 0 < coinValue < 100
0 <= amountLeft <100

//Postcondition: number set to max. number
of coins

• Check precondition:
– assert ((0 < currentCoin) && (currentCoin < 100)

&& (0 <= currentAmountLeft) && (currentAmountLeft < 100));

– If precondition not satisfied  condition is false  program
execution terminates!

4-31Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

An assert Macro Example Cont’d

• Useful in debugging

• Stops execution so problem can
be investigated

4-32Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

assert On/Off

• Preprocessor provides means

• #define NDEBUG
#include <cassert>

• Add "#define" line before #include line
– Turns OFF all assertions throughout

program

• Remove "#define" line (or comment out)
– Turns assertions back on

4-33Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Stubs and Drivers

• Separate compilation units
– Each function designed, coded, tested

separately

– Ensures validity of each unit

– Divide & Conquer
• Transforms one big task  smaller,

manageable tasks

• But how to test independently?
– Driver programs

4-34Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Driver Program Example:
Display 4.9 Driver Program (1 of 3)

4-35Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Driver Program Example:
Display 4.9 Driver Program (2 of 3)

4-36Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Driver Program Example:
Display 4.9 Driver Program (3 of 3)

4-37Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Stubs

• Develop incrementally

• Write "big-picture" functions first
– Low-level functions last

– "Stub-out" functions until implementation

– Example:
double unitPrice(int diameter, double price)
{

return (9.99);// not valid, but noticeably
// a "temporary" value

}

– Calls to function will still "work"

4-38Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Fundamental Testing Rule

• To write "correct" programs

• Minimize errors, "bugs"

• Ensure validity of data

– Test every function in a program where every
other function has already been
fully tested and debugged

– Avoids "error-cascading" &
conflicting results

4-39Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Summary 1

• Formal parameter is placeholder, filled in with actual
argument in function call

• Call-by-value parameters are "local copies" in
receiving function body
– Actual argument cannot be modified

• Call-by-reference passes memory address of actual
argument
– Actual argument can be modified

– Argument MUST be variable, not constant

4-40Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Summary 2

• Multiple definitions of same function name
possible: called overloading

• Default arguments allow function call to
"omit" some or all arguments in list
– If not provided  default values assigned

• assert macro initiates program
termination if assertions fail

• Functions should be tested independently
– As separate compilation units, with drivers

4-41Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

