
Programming with C++ as a
Second Language

CSE/ICS 45C

Patricia Lee, PhD

Administrivia

Instructor:

Patricia Lee, PhD

Office Hours: By Appointment Only

Email: leep@uci.edu

Subject: 45C + <any text containing info about your msg>

Communication:

Please include your FULL NAME somewhere in the message

Use your UCINET email.

Teaching Assistant:

Syed Shahbaaz Safir

Email: fsyedsha@uci.edu

mailto:leep@uci.edu
mailto:fsyedsha@uci.edu

Reference Material

Textbook (Optional):

Absolute C++, 6th Edtion by Walter Savitch and Kenrick Mock,
Pearson 2016, ISBN 978-0-13-397078-4

Readings: Correspond to material in the lectures and may help you fill
in the details missed in class. Feel free to use your own book, work
without a book, or find supplemental material online or elsewhere.

Course Organization

• Information can be found on the EEE website (eee.uci.edu)

• Grading
• Assignments - 50%
• Exams - 50% (Quizzes - 30%, Final - 20%)

• Assignments: Due one week after assigned and due before 8am on Thursday. No
late assignments will be accepted so make sure you give yourself ample time for
submissions.

• Exams: Based on material in class or covered on projects.

• Course Schedule/Updates: Posted online and discussed in class and/or emailed

• Lectures: Attending lectures is required. If you miss class, it is your responsibility
to get material as needed from your colleagues. The TA and I will not be repeating
material covered during the lectures during office hours. I do not allow recording
of any lectures.

Disabilities Service Center

• Any students who feel that they may need an accommodation based
on the impact of a disability should contact the Disability Services
Center online or by phone at (949) 824-7494 as soon as possible to
better ensure that such accommodations, such as alternative test-
taking environments or note-taking services, can be arranged for you
in a timely way.

• http://www.disability.uci.edu/

Academic Honesty

• As ICS 45C or CSE 45C students, you are expected to know and follow
the academic honesty policies of both the Bren School of ICS and the
University as a whole. Please take a few minutes to read the policies,
which can be found at this link:
http://www.ics.uci.edu/ugrad/policies/#03

Course Background and Goals

• Assumptions:
• Familiarity with at least one programming language (equivalent to 1st year

computer science sequence, e.g. ICS 31, 32, and 33)
• Successfully written programs of more than a trivial size (100’s of lines)
• Have an understanding of how to break larger problems into smaller ones
• Use of language’s features correctly

• Goals:
• C++ Programming Language
• Understanding similarities/differences and strengths/weaknesses with

respect to other languages
• Build new techniques

Types of Software Languages

• Machine Language: CPU instructions represented in binary

• Assembly Languages: CPU instructions with mnemonics

• High-Level Languages: Commonly used languages (C, C++, Java,
Python) must be translated into machine/assembly code

High-Level Language Types

• Compiled: Translate instructions once before running code
• C, C++, Java (partially)

• Translation occurs only once and saves time

• Interpreted: Translate instructions while code is executed
• Perl, Python, Unix/Linux system shell scripts, BASICA (old BASIC language),

Java (partially), “virtual machines” that allow architecture-specific information
to be handled and the same source code to run on any platform, Java
(partially) – executes in memory giving appearance of an interpreted
language

Compiled Languages

• Advantages:
• Speed performance

• Can distribute stand-alone executables

• Disadvantages:
• Parsing and execution occur in two distinct steps

• Several different stages of files: source code (text instructions), object code
(parsed source), executable (linked object code)

Interpreted Languages

• Advantages:
• Ease of programming (type instructions in text file, interpreter runs it without

a linker required)

• Disadvantages:
• Poor Speed Performance

• No executable generated (non-distributable program since interpreter must
be present on a system to run the program)

Introduction

• Bjarne Stroustrup

• Improvement on language called C

• C++ is a high-level, compiled language
• Written, compiled, assembled, linked, and loaded before it becomes an executable

that is run

• Systems programming language (provides access to hardware while still
being high-level enough to write application software)

• Compiled to machine code to make best use of resources (with
performance)

• Compiled efficiently on machines

• Compatibility with C when possible

Major Language Features

• Classes

• Templates

• Exceptions

• Inheritance with Polymorphism

• Large Standard Library of Classes

Other Features

• Primitive Data Types

• Expressions

• Statements

• Functions

Classes

• Analogous to a house blueprint
• Can build actual objects (homes in particular locations) from this blueprint

• Defines state (attributes) and behavior (methods) for a set of similar
objects

• Has 3 levels of accessibility/3 sections
• interface (public)

• Part accessible by owners of an object
• Robust access to attributes and operations

• implementation (private)
• Internal part that makes the object work

• inherited interface (protected)
• Efficient or unchecked access to internals
• Avoids giving derived classes direct access to implementation

Objects

• Instances of Classes

• Have a life-time
• Created: allocation into memory, construction

• Life: call member functions on them (bound to the object), call operators on
them

• Destruction: deallocation

3 Areas of Memory

• Static Data Area (retain values across function calls)
• Static function locals
• Static data members
• Static “global” variables

• Stack (fast allocation and deallocation, re-used easily)
• Function parameters
• Function local variables
• Anonymous expression temporaries and return values

• Free store (flexible, but programmer must be careful when deleting)
• All objects allocated via new and new[]
• Matching delete must be called by programmer
• Potential for memory leaks or duplicate deletes

Templates

• Classes and functions may be templates

• Template parameters may be types and constants

• Allows definition of reusable classes and functions

• Defining methods externally can be painful (and may not work with
older compilers)

• Write and test as non-template before making into a template

Exceptions

• Useful for making code more robust

• Typically for handling errors and boundary conditions

• Exceptions are thrown and must be caught

• Excepts are sent to appropriate catch by type matching

• Use only when necessary to make your unit interface robust

• Don’t silently correct an error, throw an exception instead

• Probably a good idea to have main catch any exception

Inheritance and Polymorphism

• Allows common interface to a variety of different implementations

• Makes systems pluggable and configurable

• Allows you to define frameworks which objects may be plugged into

Standard Template Library (STL)

• An extensible set of containers, iterators, and algorithms

• Uses templates which are instantiated by the compiler

• You only pay for the code you use

• Uses template specialization to optimize certain cases

• A worthwhile investment to learn

• Starts with: string, set, map, list, vector

• Avoid using C strings

Primitive Data Types

• bool

• char, wchar_t, short, int, long (and unsigned versions of each)

• float, double, long double

• pointers

• C strings

• C arrays

• Better to reserve primitives for class implementations

Expressions and Statements

• Nearly the same as C

• Plus you may overload operators for class objects

Functions

• Useful unit of code

• Keep functions small and understandable

• Give them a good name that describes their purpose

• Declare local variables close to their first use and always initialize
them in the declaration

• Use reference variables for efficiency and clarity

Compilers/IDEs

• openlab.ics.uci.edu computers will be used to test your programs
(g++ compiler on Linux OS with bash command processor)
• Only platform where we will provide help

• OpenLab Info: https://docs.google.com/document/d/1ixkx1elCOKUW-
Kt7aB1EQ4Jr_dp6G_QDb6xNYckDA6k/edit

• Reset Password: https://support.ics.uci.edu/ltb/

• Recovering Files: https://www.ics.uci.edu/computing/services/snapshot.php

• VisualStudio (Microsoft on Windows)

https://docs.google.com/document/d/1ixkx1elCOKUW-Kt7aB1EQ4Jr_dp6G_QDb6xNYckDA6k/edit
https://support.ics.uci.edu/ltb/
https://www.ics.uci.edu/computing/services/snapshot.php

Assignment 0

• Do not turn in

• Will be posted tonight

References

• Professors Ian Harris, Alex Thornton, Richert Wang, and Raymond
Klefstad

• Absolute C++, 6th Edtion by Walter Savitch and Kenrick Mock

• The Design and Evolution of C++ by Bjarne Stroustrup

• http://www.dsbscience.com/index.php

