
Programming with C++ as a
Second Language

Week 2 – Overview of C++
CSE/ICS 45C

Patricia Lee, PhD

Chapter 1

C++ Basics

Copyright © 2016 Pearson, Inc.
All rights reserved.

1-3

Learning Objectives

• Introduction to C++

– Origins, Object-Oriented Programming, Terms

• Variables, Expressions, and
Assignment Statements

• Console Input/Output

• Program Style

• Libraries and Namespaces

Copyright © 2016 Pearson Inc. All rights reserved.

1-4

Introduction to C++

• C++ Origins

– Low-level languages
• Machine, assembly

– High-level languages
• C, C++, ADA, COBOL, FORTRAN

– Object-Oriented-Programming in C++

• C++ Terminology

– Programs and functions

– Basic Input/Output (I/O) with cin and cout

Copyright © 2016 Pearson Inc. All rights reserved.

std::C++ Versions

• C++98: C++ 1998/2003 Standard

• C++11: C++ 2011 Standard

• C++14: C++ 2014 Standard (May/may not
discuss new features in this version)

• C++17: (TBD in 2017)

1-5

Core Language vs. Standard Library

• Core Language is always available to all C++
programs

• Must explicitly ask for the parts of the
standard library to be used

– Via #include directives

– Usually at beginning of program

– Standard header: part of the C++ library, enclosed
in angle brackets (< and >)

1-6

1-7

Display 1.1
A Sample C++ Program (1 of 2)

Copyright © 2016 Pearson Inc. All rights reserved.

Display 1.1
A Sample C++ Program (2 of 2)

1-8Copyright © 2016 Pearson Inc. All rights reserved.

Program Structure

• Free Form: spaces required only when they
keep adjacent symbols separated

• 3 entities not free form:

– string literals: chars in “” may not span lines

– #include name: must appear on line by itself,
excepting comments

– // comments:
// followed by text ends at end of current line

– Comment with /* at beginning and */ at end is
free form and can span multiple lines

1-9

Syntax

• Function: a piece of program that has a name
that another program can call (cause to run)

– int main()

• Function Name: main

• Return Type: int (core language datatype), type of data
returned in return statement.

• Parameters: that our function receives from the
implementation, enclosed in parenthesis (in this case,
none)

– Every C++ program must define exactly one
function named main

1-10

Syntax

• { } [curly braces] is used around a sequence of
zero or more statements and denotes that
they should be treated as a unit (a block)

• ; [semicolon] is used after an expression to
create a statement (called an expression
statement) – can have null statements (just
semicolon)

1-11

Terminology

• Types: data structures/operations defined

– Two types:

• Core language (e.g. int)

• Defined outside core language (e.g. std::ostream)

• Namespaces: mechanism for grouping related
names

– Standard library namespace: std

• String Literals (later slide)

1-12

Qualified Name/Scope Operator (::
operator)

• Left-associative (type is std::ostream)

– std::cout is used with << [output operator]

– std::cin is used with >> [input operator]

• Manipulator: manipulates stream

– std::endl is used to end the current line of output
(“\n” is used in the program excerpt)

1-13

1-14

C++ Variables

• C++ Identifiers

– Keywords/reserved words vs. Identifiers

– Case-sensitivity and validity of identifiers

– *Programmer provides meaningful names

• Variables

– A memory location to store data for a program

– Must declare all data before use in program

Copyright © 2016 Pearson Inc. All rights reserved.

Data Types:
Display 1.2 Simple Types (1 of 2)

1-15Copyright © 2016 Pearson Inc. All rights reserved.

(2^16 = 65,536)(2*8 bits = 16 bits)

Data Types:
Display 1.2 Simple Types (2 of 2)

1-16Copyright © 2016 Pearson Inc. All rights reserved.

C++11 Fixed Width Integer Types

Copyright © 2016 Pearson Inc. All rights reserved. 1-17

Avoids problem of variable integer sizes for different CPUs

New C++11 Types

• auto

– Deduces the type of the variable based on the expression
on the right side of the assignment statement

auto x = expression;

– More useful later when we have verbose types

• decltype

– Determines the type of the expression. In the example
below, x*3.5 is a double so y is declared as a double.

decltype(x*3.5) y;

1-18Copyright © 2016 Pearson Inc. All rights reserved.

Terminology

• Declare/Define (Declaration/Definition): Give
a type and name to variable or function

• Initialize (Initialization): First time a variable is
assigned a value

• Use: When expression or function is utilized
in an executed command

1-19

1-20

Assigning Data

• Initializing data in declaration statement
– Results are "undefined" if you don’t initialize

• int myValue = 0;

• Assigning data during execution
– Lvalues (left-side) & Rvalues (right-side)

• Lvalues must be variables

• Rvalues can be any expression

• Example:
distance = rate * time;
Lvalue: "distance"
Rvalue: "rate * time"

Copyright © 2016 Pearson Inc. All rights reserved.

1-21

Assigning Data: Shorthand Notations

Copyright © 2016 Pearson Inc. All rights reserved.

1-22

Data Assignment Rules

• Compatibility of Data Assignments

– Type mismatches
• General Rule: Cannot place value of one type into variable of

another type

– intVar = 2.99; // 2 is assigned to intVar (not 2.99)
• Only integer part "fits", so that’s all that goes

• Called "implicit" or "automatic type conversion"

– Literals
• 2, 5.75, "Z", "Hello World"

• Considered "constants": can’t change in program

Copyright © 2016 Pearson Inc. All rights reserved.

1-23

Literal Data

• Literals

– Examples:
• 2 // Literal constant int

• 5.75 // Literal constant double

• "Z" // Literal constant char

• "Hello World" // Literal constant string

• Cannot change values during execution

• [Called "literals" because you "literally typed"
them in your program]

Copyright © 2016 Pearson Inc. All rights reserved.

1-24

Escape Sequences

• "Extend" character set

• Backslash, \ preceding a character

– Instructs compiler: a special "escape
character" is coming

– Following character treated as
"escape sequence char"

– Display 1.3 next slide

Copyright © 2016 Pearson Inc. All rights reserved.

Display 1.4
Some Escape Sequences (1 of 2)

1-25Copyright © 2016 Pearson Inc. All rights reserved.

Display 1.4
Some Escape Sequences (2 of 2)

1-26Copyright © 2016 Pearson Inc. All rights reserved.

Raw String Literals

• Introduced with C++11

• Avoids escape sequences by literally
interpreting everything in parens

string s = R“(\t\\t\n)”;

• The variable s is set to the exact string
“\t\\t\n”

• Useful for filenames with \ in the filepath

1-27Copyright © 2016 Pearson Inc. All rights reserved.

1-28

Constants

• Naming your constants
– Literal constants are "OK", but provide

little meaning
• e.g., seeing 24 in a pgm, tells nothing about

what it represents

• Use named constants instead
– Meaningful name to represent data

const int NUMBER_OF_STUDENTS = 24;
• Called a "declared constant" or "named constant"

• Now use it’s name wherever needed in program

• Added benefit: changes to value result in one fix

Copyright © 2016 Pearson Inc. All rights reserved.

1-29

Arithmetic Operators:
Display 1.5 Named Constant (1 of 2)

• Standard Arithmetic Operators

– Precedence rules – standard rules

Copyright © 2016 Pearson Inc. All rights reserved.

Arithmetic Operators:
Display 1.5 Named Constant (2 of 2)

1-30Copyright © 2016 Pearson Inc. All rights reserved.

1-31

Arithmetic Precision

• Precision of Calculations

– VERY important consideration!

• Expressions in C++ might not evaluate as
you’d "expect"!

– "Highest-order operand" determines type
of arithmetic "precision" performed

– Common pitfall!

Copyright © 2016 Pearson Inc. All rights reserved.

1-32

Arithmetic Precision Examples

• Examples:

– 17 / 5 evaluates to 3 in C++!
• Both operands are integers

• Integer division is performed!

– 17.0 / 5 equals 3.4 in C++!
• Highest-order operand is "double type"

• Double "precision" division is performed!

– int intVar1 =1, intVar2=2;
intVar1 / intVar2;
• Performs integer division!

• Result: 0!

Copyright © 2016 Pearson Inc. All rights reserved.

1-33

Individual Arithmetic Precision

• Calculations done "one-by-one"

– 1 / 2 / 3.0 / 4 performs 3 separate divisions.
• First 1 / 2 equals 0

• Then 0 / 3.0 equals 0.0

• Then 0.0 / 4 equals 0.0!

• So not necessarily sufficient to change
just "one operand" in a large expression

– Must keep in mind all individual calculations
that will be performed during evaluation!

Copyright © 2016 Pearson Inc. All rights reserved.

1-34

Type Casting

• Casting for Variables
– Can add ".0" to literals to force precision

arithmetic, but what about variables?
• We can’t use "myInt.0"!

– static_cast<double>intVar

– Explicitly "casts" or "converts" intVar to
double type
• Result of conversion is then used

• Example expression:
doubleVar = static_cast<double>intVar1 / intVar2;
– Casting forces double-precision division to take place

among two integer variables!

Copyright © 2016 Pearson Inc. All rights reserved.

1-35

Type Casting

• Two types

– Implicit—also called "Automatic"
• Done FOR you, automatically

17 / 5.5
This expression causes an "implicit type cast" to
take place, casting the 17 17.0

– Explicit type conversion
• Programmer specifies conversion with cast operator

(double)17 / 5.5
Same expression as above, using explicit cast

(double)myInt / myDouble
More typical use; cast operator on variable

Copyright © 2016 Pearson Inc. All rights reserved.

1-36

Shorthand Operators

• Increment & Decrement Operators

– Just short-hand notation

– Increment operator, ++
intVar++; is equivalent to
intVar = intVar + 1;

– Decrement operator, --
intVar--; is equivalent to
intVar = intVar – 1;

Copyright © 2016 Pearson Inc. All rights reserved.

1-37

Shorthand Operators: Two Options

• Post-Increment
intVar++
– Uses current value of variable, THEN increments it

• Pre-Increment
++intVar
– Increments variable first, THEN uses new value

• "Use" is defined as whatever "context"
variable is currently in

• No difference if "alone" in statement:
intVar++; and ++intVar; identical result

Copyright © 2016 Pearson Inc. All rights reserved.

1-38

Post-Increment in Action

• Post-Increment in Expressions:
int n = 2,

valueProduced;
valueProduced = 2 * (n++);
cout << valueProduced << endl;
cout << n << endl;

– This code segment produces the output:
4
3

– Since post-increment was used

Copyright © 2016 Pearson Inc. All rights reserved.

1-39

Pre-Increment in Action

• Now using Pre-increment:
int n = 2,

valueProduced;
valueProduced = 2 * (++n);
cout << valueProduced << endl;
cout << n << endl;

– This code segment produces the output:
6
3

– Because pre-increment was used

Copyright © 2016 Pearson Inc. All rights reserved.

1-40

Console Input/Output

• I/O objects cin, cout, cerr

• Defined in the C++ library called
<iostream>

• Must have these lines (called pre-
processor directives) near start of file:

– #include <iostream>
using namespace std;

– Tells C++ to use appropriate library so we can
use the I/O objects cin, cout, cerr

Copyright © 2016 Pearson Inc. All rights reserved.

1-41

Console Output

• What can be outputted?
– Any data can be outputted to display screen

• Variables

• Constants

• Literals

• Expressions (which can include all of above)

– cout << numberOfGames << " games played.";
2 values are outputted:

"value" of variable numberOfGames,
literal string " games played."

• Cascading: multiple values in one cout

Copyright © 2016 Pearson Inc. All rights reserved.

1-42

Separating Lines of Output

• New lines in output
– Recall: "\n" is escape sequence for the

char "newline"

• A second method: object endl

• Examples:
cout << "Hello World\n";

• Sends string "Hello World" to display, & escape
sequence "\n", skipping to next line

cout << "Hello World" << endl;
• Same result as above

Copyright © 2016 Pearson Inc. All rights reserved.

String type

• C++ has a data type of “string” to store
sequences of characters

– Not a primitive data type; distinction will be made
later

– Must add #include <string> at the top of the
program

– The “+” operator on strings concatenates two
strings together

– cin >> str where str is a string only reads up to the
first whitespace character

1-43Copyright © 2016 Pearson Inc. All rights reserved.

Input/Output (1 of 2)

1-44Copyright © 2016 Pearson Inc. All rights reserved.

Input/Output (2 of 2)

1-45Copyright © 2016 Pearson Inc. All rights reserved.

1-46

Formatting Output

• Formatting numeric values for output

– Values may not display as you’d expect!
cout << "The price is $" << price << endl;

• If price (declared double) has value 78.5, you
might get:
– The price is $78.500000 or:

– The price is $78.5

• We must explicitly tell C++ how to output
numbers in our programs!

Copyright © 2016 Pearson Inc. All rights reserved.

1-47

Formatting Numbers

• "Magic Formula" to force decimal sizes:
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

• These stmts force all future cout’ed values:
– To have exactly two digits after the decimal place

– Example:
cout << "The price is $" << price << endl;
• Now results in the following:

The price is $78.50

• Can modify precision "as you go" as well!

Copyright © 2016 Pearson Inc. All rights reserved.

1-48

Error Output

• Output with cerr

– cerr works same as cout

– Provides mechanism for distinguishing
between regular output and error output

• Re-direct output streams

– Most systems allow cout and cerr to be
"redirected" to other devices

• e.g., line printer, output file, error console, etc.

Copyright © 2016 Pearson Inc. All rights reserved.

1-49

Input Using cin

• cin for input, cout for output

• Differences:
– ">>" (extraction operator) points opposite

• Think of it as "pointing toward where the data goes"

– Object name "cin" used instead of "cout"

– No literals allowed for cin
• Must input "to a variable"

• cin >> num;
– Waits on-screen for keyboard entry

– Value entered at keyboard is "assigned" to num

Copyright © 2016 Pearson Inc. All rights reserved.

1-50

Prompting for Input: cin and cout

• Always "prompt" user for input
cout << "Enter number of dragons: ";
cin >> numOfDragons;
– Note no "\n" in cout. Prompt "waits" on same

line for keyboard input as follows:

Enter number of dragons: ____

• Underscore above denotes where keyboard entry
is made

• Every cin should have cout prompt
– Maximizes user-friendly input/output

Copyright © 2016 Pearson Inc. All rights reserved.

1-51

Program Style

• Bottom-line: Make programs easy to read and modify

• Comments, two methods:
– // Two slashes indicate entire line is to be ignored

– /*Delimiters indicates everything between is ignored*/

– Both methods commonly used

• Identifier naming
– ALL_CAPS for constants

– lowerToUpper for variables

– Most important: MEANINGFUL NAMES!

Copyright © 2016 Pearson Inc. All rights reserved.

1-52

Libraries

• C++ Standard Libraries

• #include <Library_Name>
– Directive to "add" contents of library file to

your program

– Called "preprocessor directive"
• Executes before compiler, and simply "copies"

library file into your program file

• C++ has many libraries
– Input/output, math, strings, etc.

Copyright © 2016 Pearson Inc. All rights reserved.

1-53

Namespaces

• Namespaces defined:
– Collection of name definitions

• For now: interested in namespace "std"
– Has all standard library definitions we need

• Examples:
#include <iostream>
using namespace std;

• Includes entire standard library of name definitions

• #include <iostream>using std::cin;
using std::cout;

• Can specify just the objects we want

Copyright © 2016 Pearson Inc. All rights reserved.

1-54

Summary 1

• C++ is case-sensitive

• Use meaningful names
– For variables and constants

• Variables must be declared before use
– Should also be initialized

• Use care in numeric manipulation
– Precision, parentheses, order of operations

• #include C++ libraries as needed

Copyright © 2016 Pearson Inc. All rights reserved.

1-55

Summary 2

• Object cout
– Used for console output

• Object cin
– Used for console input

• Object cerr
– Used for error messages

• Use comments to aid understanding of
your program
– Do not overcomment

Copyright © 2016 Pearson Inc. All rights reserved.

