
Chapter 10

Pointers and
Dynamic Arrays

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Pointers
– Pointer variables

– Memory management

• Dynamic Arrays
– Creating and using

– Pointer arithmetic

• Classes, Pointers, Dynamic Arrays
– The this pointer

– Destructors, copy constructors

10-2Copyright © 2016 Pearson Inc. All rights reserved.

Pointer Introduction

• Pointer definition:
– Memory address of a variable

• Recall: memory divided
– Numbered memory locations

– Addresses used as name for variable

• You’ve used pointers already!
– Call-by-reference parameters

• Address of actual argument was passed

10-3Copyright © 2016 Pearson Inc. All rights reserved.

Pointer Variables

• Pointers are "typed"

– Can store pointer in variable

– Not int, double, etc.
• Instead: A POINTER to int, double, etc.!

• Example:
double *p;

– p is declared a "pointer to double" variable

– Can hold pointers to variables of type double
• Not other types! (unless typecast, but could be dangerous)

10-4Copyright © 2016 Pearson Inc. All rights reserved.

Declaring Pointer Variables

• Pointers declared like other types

– Add "*" before variable name

– Produces "pointer to" that type

• "*" must be before each variable

• int *p1, *p2, v1, v2;

– p1, p2 hold pointers to int variables

– v1, v2 are ordinary int variables

10-5Copyright © 2016 Pearson Inc. All rights reserved.

Addresses and Numbers

• Pointer is an address

• Address is an integer

• Pointer is NOT an integer!
– Not crazy  abstraction!

• C++ forces pointers be used as
addresses
– Cannot be used as numbers

– Even though it "is a" number

10-6Copyright © 2016 Pearson Inc. All rights reserved.

Pointing

• Terminology, view

– Talk of "pointing", not "addresses"

– Pointer variable "points to" ordinary variable

– Leave "address" talk out

• Makes visualization clearer

– "See" memory references

• Arrows

10-7Copyright © 2016 Pearson Inc. All rights reserved.

Pointing to …

• int *p1, *p2, v1, v2;
p1 = &v1;
– Sets pointer variable p1 to "point to" int

variable v1

• Operator, &
– Determines "address of" variable

• Read like:
– "p1 equals address of v1"

– Or "p1 points to v1"

10-8Copyright © 2016 Pearson Inc. All rights reserved.

Pointing to …

• Recall:
int *p1, *p2, v1, v2;
p1 = &v1;

• Two ways to refer to v1 now:
– Variable v1 itself:

cout << v1;

– Via pointer p1:
cout *p1;

• Dereference operator, *
– Pointer variable "derereferenced"

– Means: "Get data that p1 points to"

10-9Copyright © 2016 Pearson Inc. All rights reserved.

"Pointing to" Example

• Consider:
v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

• Produces output:
42
42

• p1 and v1 refer to same variable

10-10Copyright © 2016 Pearson Inc. All rights reserved.

& Operator

• The "address of" operator

• Also used to specify call-by-reference
parameter

– No coincidence!

– Recall: call-by-reference parameters pass
"address of" the actual argument

• Operator’s two uses are closely related

10-11Copyright © 2016 Pearson Inc. All rights reserved.

Pointer Assignments

• Pointer variables can be "assigned":
int *p1, *p2;
p2 = p1;

– Assigns one pointer to another

– "Make p2 point to where p1 points"

• Do not confuse with:
*p1 = *p2;

– Assigns "value pointed to" by p1, to "value
pointed to" by p2

10-12Copyright © 2016 Pearson Inc. All rights reserved.

Pointer Assignments Graphic:
Display 10.1 Uses of the Assignment Operator with

Pointer Variables

10-13Copyright © 2016 Pearson Inc. All rights reserved.

The new Operator

• Since pointers can refer to variables…
– No "real" need to have a standard identifier

• Can dynamically allocate variables
– Operator new creates variables

• No identifiers to refer to them

• Just a pointer!

• p1 = new int;
– Creates new "nameless" variable, and

assigns p1 to "point to" it

– Can access with *p1
• Use just like ordinary variable

10-14Copyright © 2016 Pearson Inc. All rights reserved.

Basic Pointer Manipulations Example:
Display 10.2 Basic Pointer

Manipulations (1 of 2)

10-15Copyright © 2016 Pearson Inc. All rights reserved.

Basic Pointer Manipulations Example:
Display 10.2 Basic Pointer

Manipulations (2 of 2)

10-16Copyright © 2016 Pearson Inc. All rights reserved.

Basic Pointer
Manipulations

Graphic:
Display 10.3

Explanation of
Display 10.2

10-17Copyright © 2016 Pearson Inc. All rights reserved.

More on new Operator

• Creates new dynamic variable

• Returns pointer to the new variable

• If type is class type:
– Constructor is called for new object

– Can invoke different constructor with
initializer arguments:
MyClass *mcPtr;
mcPtr = new MyClass(32.0, 17);

• Can still initialize non-class types:
int *n;
n = new int(17); //Initializes *n to 17

10-18Copyright © 2016 Pearson Inc. All rights reserved.

Pointers and Functions

• Pointers are full-fledged types
– Can be used just like other types

• Can be function parameters

• Can be returned from functions

• Example:
int* findOtherPointer(int* p);
– This function declaration:

• Has "pointer to an int" parameter

• Returns "pointer to an int" variable

10-19Copyright © 2016 Pearson Inc. All rights reserved.

Memory Management

• Heap

– Also called "freestore"

– Reserved for dynamically-allocated variables

– All new dynamic variables consume memory
in freestore
• If too many  could use all freestore memory

• Future "new" operations will fail if freestore
is "full"

10-20Copyright © 2016 Pearson Inc. All rights reserved.

Checking new Success

• Older compilers:

– Test if null returned by call to new:
int *p;
p = new int;
if (p == NULL) // NULL represents empty pointer
{

cout << "Error: Insufficient memory.\n";
exit(1);

}

– If new succeeded, program continues

10-21Copyright © 2016 Pearson Inc. All rights reserved.

new Success – New Compiler

• Newer compilers:

– If new operation fails:

• Program terminates automatically

• Produces error message

• Still good practice to use NULL check

• NULL represents the empty pointer or a
pointer to nothing and will be used later to
mark the end of a list

10-22Copyright © 2016 Pearson Inc. All rights reserved.

C++11 nullptr

• NULL is actually the number 0 and can lead to
ambiguity

• Which func is invoked given func(NULL)? Both
are equally valid since NULL is 0

• C++11 resolves this problem by introducing a
new constant, nullptr

• nullptr is not 0

• Can use anywhere you could use NULL
10-23Copyright © 2016 Pearson Inc. All rights reserved.

void func(int *p);
void func(int i);

Freestore Size

• Varies with implementations

• Typically large
– Most programs won’t use all memory

• Memory management
– Still good practice

– Solid software engineering principle

– Memory IS finite
• Regardless of how much there is!

10-24Copyright © 2016 Pearson Inc. All rights reserved.

delete Operator

• De-allocate dynamic memory

– When no longer needed

– Returns memory to freestore

– Example:
int *p;
p = new int(5);
… //Some processing…
delete p;

– De-allocates dynamic memory "pointed to by
pointer p"
• Literally "destroys" memory

10-25Copyright © 2016 Pearson Inc. All rights reserved.

Dangling Pointers

• delete p;
– Destroys dynamic memory

– But p still points there!
• Called "dangling pointer"

– If p is then dereferenced (*p)
• Unpredicatable results!

• Often disastrous!

• Avoid dangling pointers
– Assign pointer to NULL after delete:

delete p;
p = NULL;

10-26Copyright © 2016 Pearson Inc. All rights reserved.

Dynamic and Automatic Variables

• Dynamic variables
– Created with new operator

– Created and destroyed while program runs

• Local variables
– Declared within function definition

– Not dynamic
• Created when function is called

• Destroyed when function call completes

– Often called "automatic" variables
• Properties controlled for you

10-27Copyright © 2016 Pearson Inc. All rights reserved.

Define Pointer Types

• Can "name" pointer types

• To be able to declare pointers like other
variables
– Eliminate need for "*" in pointer declaration

• typedef int* IntPtr;
– Defines a "new type" alias

– Consider these declarations:
IntPtr p;
int *p;
• The two are equivalent

10-28Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Call-by-value Pointers

• Behavior subtle and troublesome

– If function changes pointer parameter
itself  only change is to local copy

• Best illustrated with example…

10-29Copyright © 2016 Pearson Inc. All rights reserved.

Call-by-value Pointers Example:
Display 10.4 A Call-by-Value Pointer Parameter (1

of 2)

10-30Copyright © 2016 Pearson Inc. All rights reserved.

Call-by-value Pointers Example:
Display 10.4 A Call-by-Value Pointer Parameter (2

of 2)

10-31Copyright © 2016 Pearson Inc. All rights reserved.

Call-by-value Pointers Graphic:
Display 10.5 The Function Call sneaky(p);

10-32Copyright © 2016 Pearson Inc. All rights reserved.

Dynamic Arrays

• Array variables

– Really pointer variables!

• Standard array

– Fixed size

• Dynamic array

– Size not specified at programming time

– Determined while program running

10-33Copyright © 2016 Pearson Inc. All rights reserved.

Array Variables

• Recall: arrays stored in memory
addresses, sequentially

– Array variable "refers to" first indexed variable

– So array variable is a kind of pointer variable!

• Example:
int a[10];
int * p;

– a and p are both pointer variables!

10-34Copyright © 2016 Pearson Inc. All rights reserved.

Array Variables  Pointers

• Recall previous example:
int a[10];
typedef int* IntPtr;
IntPtr p;

• a and p are pointer variables
– Can perform assignments:

p = a; // Legal.
• p now points where a points

– To first indexed variable of array a

– a = p; // ILLEGAL!
• Array pointer is CONSTANT pointer!

10-35Copyright © 2016 Pearson Inc. All rights reserved.

Array Variables  Pointers

• Array variable
int a[10];

• MORE than a pointer variable
– "const int *" type

– Array was allocated in memory already

– Variable a MUST point there…always!
• Cannot be changed!

• In contrast to ordinary pointers
– Which can (& typically do) change

10-36Copyright © 2016 Pearson Inc. All rights reserved.

Dynamic Arrays

• Array limitations
– Must specify size first

– May not know until program runs!

• Must "estimate" maximum size needed
– Sometimes OK, sometimes not

– "Wastes" memory

• Dynamic arrays
– Can grow and shrink as needed

10-37Copyright © 2016 Pearson Inc. All rights reserved.

Creating Dynamic Arrays

• Very simple!

• Use new operator
– Dynamically allocate with pointer variable

– Treat like standard arrays

• Example:
typedef double * DoublePtr;
DoublePtr d;
d = new double[10]; //Size in brackets

– Creates dynamically allocated array variable d,
with ten elements, base type double

10-38Copyright © 2016 Pearson Inc. All rights reserved.

Deleting Dynamic Arrays

• Allocated dynamically at run-time
– So should be destroyed at run-time

• Simple again. Recall Example:
d = new double[10];
… //Processing
delete [] d;

– De-allocates all memory for dynamic array

– Brackets indicate "array" is there

– Recall: d still points there!
• Should set d = NULL;

10-39Copyright © 2016 Pearson Inc. All rights reserved.

Function that Returns an Array

• Array type NOT allowed as return-type
of function

• Example:
int [] someFunction(); // ILLEGAL!

• Instead return pointer to array base type:
int* someFunction(); // LEGAL!

10-40Copyright © 2016 Pearson Inc. All rights reserved.

Pointer Arithmetic

• Can perform arithmetic on pointers
– "Address" arithmetic

• Example:
typedef double* DoublePtr;
DoublePtr d;
d = new double[10];

– d contains address of d[0]

– d + 1 evaluates to address of d[1]

– d + 2 evaluates to address of d[2]
• Equates to "address" at these locations

10-41Copyright © 2016 Pearson Inc. All rights reserved.

Alternative Array Manipulation

• Use pointer arithmetic!

• "Step thru" array without indexing:
for (int i = 0; i < arraySize; i++)

cout << *(d + I) << " " ;

• Equivalent to:
for (int i = 0; i < arraySize; i++)

cout << d[I] << " " ;

• Only addition/subtraction on pointers
– No multiplication, division

• Can use ++ and -- on pointers

10-42Copyright © 2016 Pearson Inc. All rights reserved.

Multidimensional Dynamic Arrays

• Yes we can!

• Recall: "arrays of arrays"

• Type definitions help "see it":
typedef int* IntArrayPtr;
IntArrayPtr *m = new IntArrayPtr[3];

– Creates array of three pointers

– Make each allocate array of 4 ints

• for (int i = 0; i < 3; i++)
m[i] = new int[4];

– Results in three-by-four dynamic array!

10-43Copyright © 2016 Pearson Inc. All rights reserved.

Back to Classes
• The -> operator

– Shorthand notation

• Combines dereference operator, *, and
dot operator

• Specifies member of class "pointed to"
by given pointer

• Example:
MyClass *p;
p = new MyClass;
p->grade = "A"; Equivalent to:
(*p).grade = "A";

10-44Copyright © 2016 Pearson Inc. All rights reserved.

The this Pointer
• Member function definitions might need to refer

to calling object

• Use predefined this pointer
– Automatically points to calling object:

Class Simple
{
public:

void showStuff() const;
private:

int stuff;
};

• Two ways for member functions to access:
cout << stuff;
cout << this->stuff;

10-45Copyright © 2016 Pearson Inc. All rights reserved.

Overloading Assignment Operator

• Assignment operator returns reference
– So assignment "chains" are possible

– e.g., a = b = c;
• Sets a and b equal to c

• Operator must return "same type" as it’s
left-hand side
– To allow chains to work

– The this pointer will help with this!

10-46Copyright © 2016 Pearson Inc. All rights reserved.

Overloading Assignment Operator

• Recall: Assignment operator must be
member of the class
– It has one parameter

– Left-operand is calling object
s1 = s2;
• Think of like: s1.=(s2);

• s1 = s2 = s3;
– Requires (s1 = s2) = s3;

– So (s1 = s2) must return object of s1"s type
• And pass to " = s3";

10-47Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded = Operator Definition
• Uses string Class example:

StringClass& StringClass::operator=(const StringClass& rtSide)
{

if (this == &rtSide) // if right side same as left side
return *this;

else
{

capacity = rtSide.length;
length
length = rtSide.length;
delete [] a;
a = new char[capacity];
for (int I = 0; I < length; I++)

a[I] = rtSide.a[I];
return *this;

}
}

10-48Copyright © 2016 Pearson Inc. All rights reserved.

Shallow and Deep Copies

• Shallow copy
– Assignment copies only member variable

contents over

– Default assignment and copy constructors

• Deep copy
– Pointers, dynamic memory involved

– Must dereference pointer variables to
"get to" data for copying

– Write your own assignment overload and
copy constructor in this case!

10-49Copyright © 2016 Pearson Inc. All rights reserved.

Destructor Need

• Dynamically-allocated variables
– Do not go away until "deleted"

• If pointers are only private member data
– They dynamically allocate "real" data

• In constructor

– Must have means to "deallocate" when
object is destroyed

• Answer: destructor!

10-50Copyright © 2016 Pearson Inc. All rights reserved.

Destructors

• Opposite of constructor

– Automatically called when object is out-of-scope

– Default version only removes ordinary
variables, not dynamic variables

• Defined like constructor, just add ~

– MyClass::~MyClass()
{

//Perform delete clean-up duties
}

10-51Copyright © 2016 Pearson Inc. All rights reserved.

Copy Constructors

• Automatically called when:
1. Class object declared and initialized to other object

2. When function returns class type object

3. When argument of class type is "plugged in"
as actual argument to call-by-value parameter

• Requires "temporary copy" of object
– Copy constructor creates it

• Default copy constructor
– Like default "=", performs member-wise copy

• Pointers  write own copy constructor!

10-52Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Pointer is memory address

– Provides indirect reference to variable

• Dynamic variables

– Created and destroyed while program runs

• Freestore

– Memory storage for dynamic variables

• Dynamically allocated arrays

– Size determined as program runs

10-53Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• Class destructor
– Special member function

– Automatically destroys objects

• Copy constructor
– Single argument member function

– Called automatically when temp copy needed

• Assignment operator
– Must be overloaded as member function

– Returns reference for chaining

10-54Copyright © 2016 Pearson Inc. All rights reserved.

