# ABSOLUTE C++

#### SIXTH EDITION



#### Chapter 10

#### Pointers and Dynamic Arrays

#### Walter Savitch

Copyright © 2016 Pearson, Inc. All rights reserved.



# Learning Objectives

- Pointers
  - Pointer variables
  - Memory management
- Dynamic Arrays
  - Creating and using
  - Pointer arithmetic
- Classes, Pointers, Dynamic Arrays
  - The *this* pointer
  - Destructors, copy constructors

## **Pointer Introduction**

- Pointer definition:
  - Memory address of a variable
- Recall: memory divided
  - Numbered memory locations
  - Addresses used as name for variable
- You've used pointers already!
  - Call-by-reference parameters
    - Address of actual argument was passed

#### **Pointer Variables**

- Pointers are "typed"
  - Can store pointer in variable
  - Not int, double, etc.
    - Instead: A POINTER to int, double, etc.!
- Example: double \*p;
  - p is declared a "pointer to double" variable
  - Can hold pointers to variables of type double
    - Not other types! (unless typecast, but could be dangerous)

### **Declaring Pointer Variables**

- Pointers declared like other types
  - Add "\*" before variable name
  - Produces "pointer to" that type
- "\*" must be before each variable
- int \*p1, \*p2, v1, v2;
  - p1, p2 hold pointers to int variables
  - v1, v2 are ordinary int variables

#### Addresses and Numbers

- Pointer is an address
- Address is an integer
- Pointer is NOT an integer!
  - Not crazy  $\rightarrow$  abstraction!
- C++ forces pointers be used as addresses
  - Cannot be used as numbers
  - Even though it "is a" number

# Pointing

- Terminology, view
  - Talk of "pointing", not "addresses"
  - Pointer variable "points to" ordinary variable
  - Leave "address" talk out
- Makes visualization clearer
  - "See" memory references
    - Arrows

Copyright © 2016 Pearson Inc. All rights reserved.

#### Pointing to ...

- int \*p1, \*p2, v1, v2;
  p1 = &v1;
  - Sets pointer variable p1 to "point to" int variable v1
- Operator, &
  - Determines "address of" variable
- Read like:
  - "p1 equals address of v1"
  - Or "p1 points to v1"

#### Pointing to ...

- Recall: int \*p1, \*p2, v1, v2; p1 = &v1;
- Two ways to refer to v1 now:
  - Variable v1 itself:
     cout << v1;</li>
  - Via pointer p1: cout \*p1;
- Dereference operator, \*
  - Pointer variable "derereferenced"
  - Means: "Get data that p1 points to"

# "Pointing to" Example

- Consider:
  - v1 = 0; p1 = &v1; \*p1 = 42; cout << v1 << endl; cout << \*p1 << endl;</pre>
- Produces output:
  42
  42
- p1 and v1 refer to same variable

#### & Operator

- The "address of" operator
- Also used to specify call-by-reference parameter
  - No coincidence!
  - Recall: call-by-reference parameters pass
     "address of" the actual argument
- Operator's two uses are closely related

#### Pointer Assignments

- Pointer variables can be "assigned": int \*p1, \*p2; p2 = p1;
  - Assigns one pointer to another
  - "Make p2 point to where p1 points"
- Do not confuse with:
  - \*p1 = \*p2;
  - Assigns "value pointed to" by p1, to "value pointed to" by p2

#### Pointer Assignments Graphic: **Display 10.1** Uses of the Assignment Operator with Pointer Variables

Display 10.1 Uses of the Assignment Operator with Pointer Variables





#### The new Operator

- Since pointers can refer to variables...
  - No "real" need to have a standard identifier
- Can dynamically allocate variables
  - Operator *new* creates variables
    - No identifiers to refer to them
    - Just a pointer!
- p1 = new int;
  - Creates new "nameless" variable, and assigns p1 to "point to" it
  - Can access with \*p1
    - Use just like ordinary variable

#### Basic Pointer Manipulations Example: **Display 10.2** Basic Pointer Manipulations (1 of 2)

Display 10.2 Basic Pointer Manipulations

- 1 //Program to demonstrate pointers and dynamic variables.
- 2 #include <iostream>
- 3 using std::cout;
- 4 using std::endl;

5 int main()
6 {
7 int \*p1, \*p2;

13 \*p2 = 53; 14 cout << "\*p1 == " << \*p1 << endl; 15 cout << "\*p2 == " << \*p2 << endl;</pre>

Copyright © 2016 Pearson Inc. All rights reserved.

#### Basic Pointer Manipulations Example: **Display 10.2** Basic Pointer Manipulations (2 of 2)

#### SAMPLE DIALOGUE

\*p1 == 42 \*p2 == 42 \*p1 == 53 \*p2 == 53 \*p1 == 88 \*p2 == 53 Hope you got the point of this example!

Copyright © 2016 Pearson Inc. All rights reserved.

Basic Pointer Manipulations Graphic: **Display 10.3** Explanation of Display 10.2



#### More on new Operator

- Creates new dynamic variable
- Returns pointer to the new variable
- If type is class type:
  - Constructor is called for new object
  - Can invoke different constructor with initializer arguments: MyClass \*mcPtr; mcPtr = new MyClass(32.0, 17);
- Can still initialize non-class types: int \*n; n = new int(17); //Initializes \*n to 17

#### **Pointers and Functions**

- Pointers are full-fledged types
  - Can be used just like other types
- Can be function parameters
- Can be returned from functions
- Example: int\* findOtherPointer(int\* p);
  - This function declaration:
    - Has "pointer to an int" parameter
    - Returns "pointer to an int" variable

#### Memory Management

- Heap
  - Also called "freestore"
  - Reserved for dynamically-allocated variables
  - All new dynamic variables consume memory in freestore
    - If too many  $\rightarrow$  could use all freestore memory
- Future "new" operations will fail if freestore is "full"

# **Checking new Success**

• Older compilers:

```
— Test if null returned by call to new:
int *p;
p = new int;
if (p == NULL) // NULL represents empty pointer
{
cout << "Error: Insufficient memory.\n";
exit(1);
}
```

#### - If new succeeded, program continues

#### new Success – New Compiler

- Newer compilers:
  - If new operation fails:
    - Program terminates automatically
    - Produces error message
- Still good practice to use NULL check
- NULL represents the empty pointer or a pointer to nothing and will be used later to mark the end of a list

# C++11 nullptr

 NULL is actually the number 0 and can lead to ambiguity

> void func(int \*p); void func(int i);

- Which func is invoked given func(NULL)? Both are equally valid since NULL is 0
- C++11 resolves this problem by introducing a new constant, nullptr
- nullptr is not 0
- Can use anywhere you could use NULL

#### **Freestore Size**

- Varies with implementations
- Typically large

   Most programs won't use all memory
- Memory management
  - Still good practice
  - Solid software engineering principle
  - Memory IS finite
    - Regardless of how much there is!

#### delete Operator

- De-allocate dynamic memory
  - When no longer needed
  - Returns memory to freestore
  - Example: int \*p; p = new int(5); ... //Some processing... delete p;
  - De-allocates dynamic memory "pointed to by pointer p"
    - Literally "destroys" memory

# **Dangling Pointers**

- delete p;
  - Destroys dynamic memory
  - But p still points there!
    - Called "dangling pointer"
  - If p is then dereferenced (\*p)
    - Unpredicatable results!
    - Often disastrous!
- Avoid dangling pointers
  - Assign pointer to NULL after delete:
     delete p;
     p = NULL;

#### **Dynamic and Automatic Variables**

#### • Dynamic variables

- Created with new operator
- Created and destroyed while program runs
- Local variables
  - Declared within function definition
  - Not dynamic
    - Created when function is called
    - Destroyed when function call completes
  - Often called "automatic" variables
    - Properties controlled for you

## **Define Pointer Types**

- Can "name" pointer types
- To be able to declare pointers like other variables
  - Eliminate need for "\*" in pointer declaration
- typedef int\* IntPtr;
  - Defines a "new type" alias
  - Consider these declarations: IntPtr p; int \*p;
    - The two are equivalent

#### Pitfall: Call-by-value Pointers

• Behavior subtle and troublesome

If function changes pointer parameter
 itself → only change is to local copy

• Best illustrated with example...

#### Call-by-value Pointers Example: Display 10.4 A Call-by-Value Pointer Parameter (1 of 2)

Display 10.4 A Call-by-Value Pointer Parameter

- 1 //Program to demonstrate the way call-by-value parameters
- 2 //behave with pointer arguments.
- 3 #include <iostream>
- 4 using std::cout;
- 5 using std::cin;
- 6 using std::endl;
- 7 typedef int\* IntPointer;
- 8 void sneaky(IntPointer temp);

#### Call-by-value Pointers Example: Display 10.4 A Call-by-Value Pointer Parameter (2 of 2)

```
16
        sneaky(p);
        cout << "After call to function *p == "
17
              << *p << endl;
18
19
        return 0:
20
    }
    void sneaky(IntPointer temp)
21
22
    {
23
        *temp = 99;
        cout << "Inside function call *temp == "</pre>
24
25
              << *temp << endl:
   }
26
```

#### SAMPLE DIALOGUE

Before call to function \*p == 77 Inside function call \*temp == 99 After call to function \*p == 99

#### Call-by-value Pointers Graphic: Display 10.5 The Function Call sneaky(p);



#### **Dynamic Arrays**

• Array variables

– Really pointer variables!

- Standard array
  - Fixed size
- Dynamic array
  - Size not specified at programming time
  - Determined while program running

# **Array Variables**

- Recall: arrays stored in memory addresses, sequentially
  - Array variable "refers to" first indexed variable
  - So array variable is a kind of pointer variable!
- Example: int a[10]; int \* p;
  - a and p are both pointer variables!

# Array Variables $\rightarrow$ Pointers

- Recall previous example: int a[10]; typedef int\* IntPtr; IntPtr p;
- a and p are pointer variables
  - Can perform assignments:

p = a; // Legal.

- p now points where a points
  - To first indexed variable of array a
- a = p; // ILLEGAL!
  - Array pointer is CONSTANT pointer!

# Array Variables $\rightarrow$ Pointers

- Array variable int a[10];
- MORE than a pointer variable
  - "const int \*" type
  - Array was allocated in memory already
  - Variable a MUST point there...always!
    - Cannot be changed!
- In contrast to ordinary pointers
  - Which can (& typically do) change

## **Dynamic Arrays**

- Array limitations
  - Must specify size first
  - May not know until program runs!
- Must "estimate" maximum size needed
  - Sometimes OK, sometimes not
  - "Wastes" memory
- Dynamic arrays
  - Can grow and shrink as needed

# **Creating Dynamic Arrays**

- Very simple!
- Use new operator
  - Dynamically allocate with pointer variable
  - Treat like standard arrays
- Example:

typedef double \* DoublePtr;

DoublePtr d;

d = new double[10]; //Size in brackets

 Creates dynamically allocated array variable d, with ten elements, base type double

# **Deleting Dynamic Arrays**

- Allocated dynamically at run-time
  - So should be destroyed at run-time
- Simple again. Recall Example: d = new double[10]; ... //Processing delete [] d;
  - De-allocates all memory for dynamic array
  - Brackets indicate "array" is there
  - Recall: *d* still points there!
    - Should set d = NULL;

#### Function that Returns an Array

- Array type NOT allowed as return-type of function
- Example: int [] someFunction(); // ILLEGAL!
- Instead return pointer to array base type: int\* someFunction(); // LEGAL!

#### Pointer Arithmetic

- Can perform arithmetic on pointers
  - "Address" arithmetic
- Example: typedef double\* DoublePtr; DoublePtr d;
  - d = new double[10];
    - d contains address of d[0]
    - d + 1 evaluates to address of d[1]
    - d + 2 evaluates to address of d[2]
      - Equates to "address" at these locations

Copyright © 2016 Pearson Inc. All rights reserved.

#### **Alternative Array Manipulation**

- Use pointer arithmetic!
- "Step thru" array without indexing: for (int i = 0; i < arraySize; i++) cout << \*(d + I) << " ";</li>
- Equivalent to: for (int i = 0; i < arraySize; i++) cout << d[I] << " ";</li>
- Only addition/subtraction on pointers
  - No multiplication, division
- Can use ++ and -- on pointers

#### Multidimensional Dynamic Arrays

- Yes we can!
- Recall: "arrays of arrays"
- Type definitions help "see it": typedef int\* IntArrayPtr; IntArrayPtr \*m = new IntArrayPtr[3];
  - Creates array of three pointers
  - Make each allocate array of 4 ints
- for (int i = 0; i < 3; i++)</li>
   m[i] = new int[4];
  - Results in three-by-four dynamic array!

#### Back to Classes

- The -> operator
  - Shorthand notation
- Combines dereference operator, \*, and dot operator
- Specifies member of class "pointed to" by given pointer
- Example: MyClass \*p; p = new MyClass; p->grade = "A"; Equivalent to: (\*p).grade = "A";

#### The this Pointer

- Member function definitions might need to refer to calling object
- Use predefined this pointer
  - Automatically points to calling object:
     Class Simple
     {
     public:

```
void showStuff() const;
```

```
private:
```

```
int stuff;
```

};

 Two ways for member functions to access: cout << stuff; cout << this->stuff;

#### **Overloading Assignment Operator**

- Assignment operator returns reference
  - So assignment "chains" are possible
  - e.g., a = b = c;
    - Sets a and b equal to c
- Operator must return "same type" as it's left-hand side
  - To allow chains to work
  - The *this* pointer will help with this!

#### **Overloading Assignment Operator**

- Recall: Assignment operator must be member of the class
  - It has one parameter
  - Left-operand is calling object s1 = s2;
    - Think of like: s1.=(s2);
- s1 = s2 = s3;
  - Requires (s1 = s2) = s3;
  - So (s1 = s2) must return object of s1"s type
    - And pass to " = s3";

#### Overloaded = Operator Definition

```
    Uses string Class example:

   StringClass& StringClass::operator=(const StringClass& rtSide)
   ł
         if (this == &rtSide)
                                    // if right side same as left side
                  return *this;
         else
         {
                   capacity = rtSide.length;
                   length
                   length = rtSide.length;
                   delete [] a;
                   a = new char[capacity];
                  for (int I = 0; I < \text{length}; I++)
                            a[I] = rtSide.a[I];
                   return *this;
```

# Shallow and Deep Copies

- Shallow copy
  - Assignment copies only member variable contents over
  - Default assignment and copy constructors
- Deep copy
  - Pointers, dynamic memory involved
  - Must dereference pointer variables to "get to" data for copying
  - Write your own assignment overload and copy constructor in this case!

#### **Destructor Need**

- Dynamically-allocated variables
   Do not go away until "deleted"
- If pointers are only private member data
  - They dynamically allocate "real" data
    - In constructor
  - Must have means to "deallocate" when object is destroyed
- Answer: destructor!

#### Destructors

- Opposite of constructor
  - Automatically called when object is out-of-scope
  - Default version only removes ordinary variables, not dynamic variables
- Defined like constructor, just add ~
  - MyClass::~MyClass()

//Perform delete clean-up duties

# **Copy Constructors**

- Automatically called when:
  - 1. Class object declared and initialized to other object
  - 2. When function returns class type object
  - 3. When argument of class type is "plugged in" as actual argument to call-by-value parameter
- Requires "temporary copy" of object
  - Copy constructor creates it
- Default copy constructor
  - Like default "=", performs member-wise copy
- Pointers → write own copy constructor!

### Summary 1

- Pointer is memory address
  - Provides indirect reference to variable
- Dynamic variables
  - Created and destroyed while program runs
- Freestore
  - Memory storage for dynamic variables
- Dynamically allocated arrays
  - Size determined as program runs

### Summary 2

- Class destructor
  - Special member function
  - Automatically destroys objects
- Copy constructor
  - Single argument member function
  - Called automatically when temp copy needed
- Assignment operator
  - Must be overloaded as member function
  - Returns reference for chaining