
Chapter 8

Operator
Overloading,

Friends,
and References

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Basic Operator Overloading
– Unary operators

– As member functions

• Friends and Automatic Type Conversion
– Friend functions, friend classes

– Constructors for automatic type conversion

• References and More Overloading
– << and >>

– Operators: = , [], ++, --

8-2Copyright © 2016 Pearson Inc. All rights reserved.

Operator Overloading Introduction

• Operators +, -, %, ==, etc.
– Really just functions!

• Simply "called" with different syntax:
x + 7
– "+" is binary operator with x & 7 as operands

– We "like" this notation as humans

• Think of it as:
+(x, 7)
– "+" is the function name

– x, 7 are the arguments

– Function "+" returns "sum" of it’s arguments

8-3Copyright © 2016 Pearson Inc. All rights reserved.

Operator Overloading Perspective

• Built-in operators
– e.g., +, -, = , %, ==, /, *

– Already work for C++ built-in types

– In standard "binary" notation

• We can overload them!
– To work with OUR types!

– To add "Chair types", or "Money types"
• As appropriate for our needs

• In "notation" we’re comfortable with

• Always overload with similar "actions"!

8-4Copyright © 2016 Pearson Inc. All rights reserved.

Overloading Basics

• Overloading operators

– VERY similar to overloading functions

– Operator itself is "name" of function

• Example Declaration:
const Money operator +(const Money& amount1,

const Money& amount2);

– Overloads + for operands of type Money

– Uses constant reference parameters for efficiency

– Returned value is type Money
• Allows addition of "Money" objects

8-5Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded "+"

• Given previous example:

– Note: overloaded "+" NOT member function

– Definition is "more involved" than simple "add"
• Requires issues of money type addition

• Must handle negative/positive values

• Operator overload definitions generally
very simple

– Just perform "addition" particular to "your" type

8-6Copyright © 2016 Pearson Inc. All rights reserved.

Money "+" Definition:
Display 8.1 Operator Overloading

• Definition of "+" operator for Money class:

8-7Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded "=="

• Equality operator, ==

– Enables comparison of Money objects

– Declaration:
bool operator ==(const Money& amount1,

const Money& amount2);

• Returns bool type for true/false equality

– Again, it’s a non-member function
(like "+" overload)

8-8Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded "==" for Money:
Display 8.1 Operator Overloading

• Definition of "==" operator for Money class:

8-9Copyright © 2016 Pearson Inc. All rights reserved.

Constructors Returning Objects

• Constructor a "void" function?
– We "think" that way, but no

– A "special" function
• With special properties

• CAN return a value!

• Recall return statement in "+" overload
for Money type:
– return Money(finalDollars, finalCents);

• Returns an "invocation" of Money class!

• So constructor actually "returns" an object!

• Called an "anonymous object"

8-10Copyright © 2016 Pearson Inc. All rights reserved.

Returning by const Value

• Consider "+" operator overload again:
const Money operator +(const Money& amount1,

const Money& amount2);

– Returns a "constant object"?

– Why?

• Consider impact of returning "non-const"
object to see…

8-11Copyright © 2016 Pearson Inc. All rights reserved.

Returning by non-const Value

• Consider "no const" in declaration:
Money operator +(const Money& amount1,

const Money& amount2);

• Consider expression that calls:
m1 + m2

– Where m1 & m2 are Money objects

– Object returned is Money object

– We can "do things" with objects!
• Like call member functions…

8-12Copyright © 2016 Pearson Inc. All rights reserved.

What to do with Non-const Object

• Can call member functions:

– We could invoke member functions on
object returned by expression m1+m2:
• (m1+m2).output(); //Legal, right?

– Not a problem: doesn’t change anything

• (m1+m2).input(); //Legal!

– PROBLEM! //Legal, but MODIFIES!

• Allows modification of "anonymous" object!

• Can’t allow that here!

• So we define the return object as const

8-13Copyright © 2016 Pearson Inc. All rights reserved.

Overloading Unary Operators

• C++ has unary operators:

– Defined as taking one operand

– e.g., - (negation)

• x = -y; // Sets x equal to negative of y

– Other unary operators:

• ++, --

• Unary operators can also be overloaded

8-14Copyright © 2016 Pearson Inc. All rights reserved.

Overload "-" for Money

• Overloaded "-" function declaration

– Placed outside class definition:
const Money operator –(const Money& amount);

– Notice: only one argument
• Since only 1 operand (unary)

• "-" operator is overloaded twice!

– For two operands/arguments (binary)

– For one operand/argument (unary)

– Definitions must exist for both

8-15Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded "-" Definition

• Overloaded "-" function definition:
const Money operator –(const Money& amount)
{

return Money(-amount.getDollars(),
-amount.getCents());

}

• Applies "-" unary operator to built-in type

– Operation is "known" for built-in types

• Returns anonymous object again

8-16Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded "-" Usage

• Consider:
Money amount1(10),

amount2(6),
amount3;

amount3 = amount1 – amount2;
• Calls binary "-" overload

amount3.output(); //Displays $4.00
amount3 = -amount1;

• Calls unary "-" overload

amount3.output() //Displays -$10.00

8-17Copyright © 2016 Pearson Inc. All rights reserved.

Overloading as Member Functions

• Previous examples: standalone functions

– Defined outside a class

• Can overload as "member operator"

– Considered "member function" like others

• When operator is member function:

– Only ONE parameter, not two!

– Calling object serves as 1st parameter

8-18Copyright © 2016 Pearson Inc. All rights reserved.

Member Operator in Action

• Money cost(1, 50), tax(0, 15), total;
total = cost + tax;

– If "+" overloaded as member operator:
• Variable/object cost is calling object

• Object tax is single argument

– Think of as: total = cost.+(tax);

• Declaration of "+" in class definition:

– const Money operator +(const Money& amount);

– Notice only ONE argument

8-19Copyright © 2016 Pearson Inc. All rights reserved.

const Functions

• When to make function const?
– Constant functions not allowed to alter class

member data

– Constant objects can ONLY call constant
member functions

• Good style dictates:
– Any member function that will NOT modify data

should be made const

• Use keyword const after function
declaration and heading

8-20Copyright © 2016 Pearson Inc. All rights reserved.

Overloading Operators:
Which Method?

• Object-Oriented-Programming
– Principles suggest member operators

– Many agree, to maintain "spirit" of OOP

• Member operators more efficient
– No need to call accessor &

mutator functions

• At least one significant disadvantage
– (Later in chapter…)

8-21Copyright © 2016 Pearson Inc. All rights reserved.

Overloading Function Application ()

• Function call operator, ()
– Must be overloaded as member function

– Allows use of class object like a function

– Can overload for all possible numbers
of arguments

• Example:
Aclass anObject;
anObject(42);

• If () overloaded  calls overload

8-22Copyright © 2016 Pearson Inc. All rights reserved.

Other Overloads

• &&, ||, and comma operator
– Predefined versions work for bool types

– Recall: use "short-circuit evaluation"

– When overloaded no longer uses
short-circuit
• Uses "complete evaluation" instead

• Contrary to expectations

• Generally should not overload
these operators

8-23Copyright © 2016 Pearson Inc. All rights reserved.

Friend Functions

• Nonmember functions

– Recall: operator overloads as nonmembers
• They access data through accessor and mutator

functions

• Very inefficient (overhead of calls)

• Friends can directly access private class data

– No overhead, more efficient

• So: best to make nonmember operator
overloads friends!

8-24Copyright © 2016 Pearson Inc. All rights reserved.

Friend Functions

• Friend function of a class
– Not a member function

– Has direct access to private members
• Just as member functions do

• Use keyword friend in front of
function declaration
– Specified IN class definition

– But they’re NOT member functions!

8-25Copyright © 2016 Pearson Inc. All rights reserved.

Friend Function Uses

• Operator Overloads

– Most common use of friends

– Improves efficiency

– Avoids need to call accessor/mutator
member functions

– Operator must have access anyway
• Might as well give full access as friend

• Friends can be any function

8-26Copyright © 2016 Pearson Inc. All rights reserved.

Friend Function Purity

• Friends not pure?

– "Spirit" of OOP dictates all operators and functions be
member functions

– Many believe friends violate basic OOP principles

• Advantageous?

– For operators: very!

– Allows automatic type conversion

– Still encapsulates: friend is in class definition

– Improves efficiency

8-27Copyright © 2016 Pearson Inc. All rights reserved.

Friend Classes

• Entire classes can be friends

– Similar to function being friend to class

– Example:
class F is friend of class C
• All class F member functions are friends of C

• NOT reciprocated

• Friendship granted, not taken

• Syntax: friend class F

– Goes inside class definition of "authorizing" class

8-28Copyright © 2016 Pearson Inc. All rights reserved.

References

• Reference defined:

– Name of a storage location

– Similar to "pointer"

• Example of stand alone reference:

– int robert;
int& bob = robert;
• bob is reference to storage location for robert

• Changes made to bob will affect robert

• Confusing?

8-29Copyright © 2016 Pearson Inc. All rights reserved.

References Usage

• Seemingly dangerous

• Useful in several cases:

• Call-by-reference

– Often used to implement this mechanism

• Returning a reference

– Allows operator overload implementations to
be written more naturally

– Think of as returning an "alias" to a variable

8-30Copyright © 2016 Pearson Inc. All rights reserved.

Returning Reference

• Syntax:
double& sampleFunction(double& variable);

– double& and double are different

– Must match in function declaration
and heading

• Returned item must "have" a reference
– Like a variable of that type

– Cannot be expression like "x+5"
• Has no place in memory to "refer to"

8-31Copyright © 2016 Pearson Inc. All rights reserved.

Returning Reference in Definition

• Example function definition:
double& sampleFunction(double& variable)
{

return variable;
}

• Trivial, useless example

• Shows concept only

• Major use:
– Certain overloaded operators

8-32Copyright © 2016 Pearson Inc. All rights reserved.

Overloading >> and <<

• Enables input and output of our objects
– Similar to other operator overloads

– New subtleties

• Improves readability
– Like all operator overloads do

– Enables:
cout << myObject;
cin >> myObject;

– Instead of need for:
myObject.output(); …

8-33Copyright © 2016 Pearson Inc. All rights reserved.

Overloading >>

• Insertion operator, <<

– Used with cout

– A binary operator

• Example:
cout << "Hello";

– Operator is <<

– 1st operand is predefined object cout
• From library iostream

– 2nd operand is literal string "Hello"

8-34Copyright © 2016 Pearson Inc. All rights reserved.

Overloading >>

• Operands of >>
– Cout object, of class type ostream

– Our class type

• Recall Money class
– Used member function output()

– Nicer if we can use >> operator:
Money amount(100);
cout << "I have " << amount << endl;

instead of:
cout << "I have ";
amount.output()

8-35Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded >> Return Value

• Money amount(100);
cout << amount;
– << should return some value

– To allow cascades:
cout << "I have " << amount;
(cout << "I have ") << amount;
• Two are equivalent

• What to return?
– cout object!

• Returns its first argument type, ostream

8-36Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded >> Example:
Display 8.5 Overloading << and >> (1 of 5)

8-37Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded >> Example:
Display 8.5 Overloading << and >> (2 of 5)

8-38Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded >> Example:
Display 8.5 Overloading << and >> (3 of 5)

8-39Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded >> Example:
Display 8.5 Overloading << and >> (4 of 5)

8-40Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded >> Example:
Display 8.5 Overloading << and >> (5 of 5)

8-41Copyright © 2016 Pearson Inc. All rights reserved.

Assignment Operator, =

• Must be overloaded as
member operator

• Automatically overloaded
– Default assignment operator:

• Member-wise copy

• Member variables from one object 
corresponding member variables from other

• Default OK for simple classes
– But with pointers must write our own!

8-42Copyright © 2016 Pearson Inc. All rights reserved.

Increment and Decrement

• Each operator has two versions

– Prefix notation: ++x;

– Postfix notation: x++;

• Must distinguish in overload

– Standard overload method  Prefix

– Add 2d parameter of type int  Postfix
• Just a marker for compiler!

• Specifies postfix is allowed

8-43Copyright © 2016 Pearson Inc. All rights reserved.

Overload Array Operator, []

• Can overload [] for your class

– To be used with objects of your class

– Operator must return a reference!

– Operator [] must be a member function!

8-44Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• C++ built-in operators can be overloaded

– To work with objects of your class

• Operators are really just functions

• Friend functions have direct private
member access

• Operators can be overloaded as
member functions

– 1st operand is calling object

8-45Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• Friend functions add efficiency only
– Not required if sufficient accessors/mutators

available

• Reference "names" a variable with
an alias

• Can overload <<, >>
– Return type is a reference to stream type

8-46Copyright © 2016 Pearson Inc. All rights reserved.

