ABSOLUTE C++

SIXTH EDITION

Walter Savitch

Chapter 8

Operator Overloading, Friends, and References

Copyright © 2016 Pearson, Inc. All rights reserved.

Learning Objectives

- Basic Operator Overloading
 - Unary operators
 - As member functions
- Friends and Automatic Type Conversion
 - Friend functions, friend classes
 - Constructors for automatic type conversion
- References and More Overloading
 - << and >>
 - Operators: = , [], ++, --

Operator Overloading Introduction

• Operators +, -, %, ==, etc.

– Really just functions!

- Simply "called" with different syntax: x + 7
 - "+" is binary operator with x & 7 as operands
 - We "like" this notation as humans
- Think of it as:
 - +(x, 7)
 - "+" is the function name
 - x, 7 are the arguments
 - Function "+" returns "sum" of it's arguments

Operator Overloading Perspective

- Built-in operators
 - e.g., +, -, = , %, ==, /, *
 - Already work for C++ built-in types
 - In standard "binary" notation
- We can overload them!
 - To work with OUR types!
 - To add "Chair types", or "Money types"
 - As appropriate for our needs
 - In "notation" we're comfortable with
- Always overload with similar "actions"!

Overloading Basics

- Overloading operators
 - VERY similar to overloading functions
 - Operator itself is "name" of function
- Example Declaration:

const Money operator +(const Money& amount1, const Money& amount2);

- Overloads + for operands of type Money
- Uses constant reference parameters for efficiency
- Returned value is type Money
 - Allows addition of "Money" objects

Overloaded "+"

- Given previous example:
 - Note: overloaded "+" NOT member function
 - Definition is "more involved" than simple "add"
 - Requires issues of money type addition
 - Must handle negative/positive values
- Operator overload definitions generally very simple
 - Just perform "addition" particular to "your" type

Money "+" Definition: **Display 8.1** Operator Overloading

• Definition of "+" operator for Money class:

```
const Money operator +(const Money& amount1, const Money& amount2)
52
53
    {
54
        int allCents1 = amount1.getCents( ) + amount1.getDollars( )*100;
55
        int allCents2 = amount2.getCents( ) + amount2.getDollars( )*100;
         int sumAllCents = allCents1 + allCents2;
56
        int absAllCents = abs(sumAllCents); //Money can be negative.
57
58
        int finalDollars = absAllCents/100;
59
         int finalCents = absAllCents%100;
                                                              If the return
        if (sumAllCents < 0)</pre>
60
                                                              statements
61
         {
                                                              puzzle you, see
62
             finalDollars = -finalDollars;
                                                              the tip entitled
63
             finalCents = -finalCents;
                                                              A Constructor
         }
64
                                                              Can Return an
                                                              Object.
         return Money(finalDollars, finalCents);
65
66
    }
```

Overloaded "=="

- Equality operator, ==
 - Enables comparison of Money objects
 - Declaration:

- Returns bool type for true/false equality
- Again, it's a non-member function (like "+" overload)

Overloaded "==" for Money: **Display 8.1** Operator Overloading

• Definition of "==" operator for Money class:

```
83 bool operator ==(const Money& amount1, const Money& amount2)
84 {
85 return ((amount1.getDollars()) == amount2.getDollars())
86 & && (amount1.getCents()) == amount2.getCents()));
87 }
```

Constructors Returning Objects

- Constructor a "void" function?
 - We "think" that way, but no
 - A "special" function
 - With special properties
 - CAN return a value!
- Recall return statement in "+" overload for Money type:
 - return Money(finalDollars, finalCents);
 - Returns an "invocation" of Money class!
 - So constructor actually "returns" an object!
 - Called an "anonymous object"

Returning by const Value

- Consider "+" operator overload again: const Money operator +(const Money& amount1, const Money& amount2);
 - Returns a "constant object"?
 - Why?
- Consider impact of returning "non-const" object to see...→

Returning by non-const Value

- Consider "no const" in declaration: Money operator +(const Money& amount1, const Money& amount2);
- Consider expression that calls: m1 + m2
 - Where m1 & m2 are Money objects
 - Object returned is Money object
 - We can "do things" with objects!
 - Like call member functions...

What to do with Non-const Object

- Can call member functions:
 - We could invoke member functions on object returned by expression m1+m2:
 - (m1+m2).output(); //Legal, right?
 - Not a problem: doesn't change anything
 - (m1+m2).input(); //Legal!
 - PROBLEM! //Legal, but MODIFIES!
 - Allows modification of "anonymous" object!
 - Can't allow that here!
- So we define the return object as const

Overloading Unary Operators

- C++ has unary operators:
 - Defined as taking one operand
 - e.g., (negation)
 - x = -y; // Sets x equal to negative of y
 - Other unary operators:
 - ++, --
- Unary operators can also be overloaded

Overload "-" for Money

- Overloaded "-" function declaration
 - Placed outside class definition: const Money operator –(const Money& amount);
 - Notice: only one argument
 - Since only 1 operand (unary)
- "-" operator is overloaded twice!
 - For two operands/arguments (binary)
 - For one operand/argument (unary)
 - Definitions must exist for both

Overloaded "-" Definition

 Overloaded "-" function definition: const Money operator –(const Money& amount)
 {
 return Money(-amount.getDollars(),

```
-amount.getCents());
```

- Applies "-" unary operator to built-in type — Operation is "known" for built-in types
- Returns anonymous object again

}

Overloaded "-" Usage

 Consider: Money amount1(10), amount2(6), amount3; amount3 = amount1 - amount2; Calls binary "-" overload

amount3.output(); //Displays \$4.00
amount3 = -amount1;

• Calls unary "-" overload

amount3.output() //Displays -\$10.00

Overloading as Member Functions

- Previous examples: standalone functions
 - Defined outside a class
- Can overload as "member operator"
 Considered "member function" like others
- When operator is member function:
 - Only ONE parameter, not two!
 - Calling object serves as 1st parameter

Member Operator in Action

- Money cost(1, 50), tax(0, 15), total; total = cost + tax;
 - If "+" overloaded as member operator:
 - Variable/object cost is calling object
 - Object tax is single argument
 - Think of as: total = cost.+(tax);
- Declaration of "+" in class definition:
 - const Money operator +(const Money& amount);
 - Notice only ONE argument

const Functions

- When to make function const?
 - Constant functions not allowed to alter class member data
 - Constant objects can ONLY call constant member functions
- Good style dictates:
 - Any member function that will NOT modify data should be made const
- Use keyword *const* after function declaration and heading

Overloading Operators: Which Method?

- Object-Oriented-Programming
 - Principles suggest member operators
 - Many agree, to maintain "spirit" of OOP
- Member operators more efficient
 - No need to call accessor & mutator functions
- At least one significant disadvantage

 (Later in chapter...)

Overloading Function Application ()

- Function call operator, ()
 - Must be overloaded as member function
 - Allows use of class object like a function
 - Can overload for all possible numbers of arguments
- Example: Aclass anObject; anObject(42);
 - If () overloaded \rightarrow calls overload

Other Overloads

- &&, ||, and comma operator
 - Predefined versions work for bool types
 - Recall: use "short-circuit evaluation"
 - When overloaded no longer uses short-circuit
 - Uses "complete evaluation" instead
 - Contrary to expectations
- Generally should not overload these operators

Friend Functions

- Nonmember functions
 - Recall: operator overloads as nonmembers
 - They access data through accessor and mutator functions
 - Very inefficient (overhead of calls)
- Friends can directly access private class data
 No overhead, more efficient
- So: best to make nonmember operator overloads friends!

Friend Functions

- Friend function of a class
 - Not a member function
 - Has direct access to private members
 - Just as member functions do
- Use keyword *friend* in front of function declaration
 - Specified IN class definition
 - But they're NOT member functions!

Friend Function Uses

- Operator Overloads
 - Most common use of friends
 - Improves efficiency
 - Avoids need to call accessor/mutator member functions
 - Operator must have access anyway
 - Might as well give full access as friend
- Friends can be any function

Friend Function Purity

- Friends not pure?
 - "Spirit" of OOP dictates all operators and functions be member functions
 - Many believe friends violate basic OOP principles
- Advantageous?
 - For operators: very!
 - Allows automatic type conversion
 - Still encapsulates: friend is in class definition
 - Improves efficiency

Friend Classes

- Entire classes can be friends
 - Similar to function being friend to class
 - Example:
 class F is friend of class C
 - All class F member functions are friends of C
 - NOT reciprocated
 - Friendship granted, not taken
- Syntax: friend class F
 - Goes inside class definition of "authorizing" class

References

- Reference defined:
 - Name of a storage location
 - Similar to "pointer"
- Example of stand alone reference:
 - int robert;
 - int& bob = robert;
 - *bob* is reference to storage location for *robert*
 - Changes made to *bob* will affect *robert*
- Confusing?

References Usage

- Seemingly dangerous
- Useful in several cases:
- Call-by-reference
 - Often used to implement this mechanism
- Returning a reference
 - Allows operator overload implementations to be written more naturally
 - Think of as returning an "alias" to a variable

Returning Reference

- Syntax: double& sampleFunction(double& variable);
 - double& and double are different
 - Must match in function declaration and heading
- Returned item must "have" a reference
 - Like a variable of that type
 - Cannot be expression like "x+5"
 - Has no place in memory to "refer to"

Returning Reference in Definition

- Example function definition: double& sampleFunction(double& variable)
 {
 return variable;
 }
 }
- Trivial, useless example
- Shows concept only
- Major use:
 - Certain overloaded operators

Overloading >> and <<

- Enables input and output of our objects
 - Similar to other operator overloads
 - New subtleties
- Improves readability
 - Like all operator overloads do
 - Enables:
 - cout << myObject; cin >> myObject;
 - Instead of need for: myObject.output(); ...

Overloading >>

- Insertion operator, <<
 - Used with cout
 - A binary operator
- Example: cout << "Hello";
 - Operator is <<
 - 1st operand is predefined object *cout*
 - From library iostream
 - 2nd operand is literal string "Hello"

Overloading >>

- Operands of >>
 - Cout object, of class type ostream
 - Our class type
- Recall Money class
 - Used member function output()
 - Nicer if we can use >> operator: Money amount(100); cout << "I have " << amount << endl; instead of: cout << "I have "; amount.output()

Overloaded >> Return Value

- Money amount(100); cout << amount;
 - << should return some value</p>
 - To allow cascades:
 cout << "I have " << amount;
 (cout << "I have ") << amount;
 - Two are equivalent
- What to return?
 - cout object!
 - Returns its first argument type, ostream

Overloaded >> Example: Display 8.5 Overloading << and >> (1 of 5)

Display 8.5 Overloading << and >>

1	<pre>#include <iostream></iostream></pre>
2	<pre>#include <cstdlib></cstdlib></pre>
3	<pre>#include <cmath></cmath></pre>
4	using namespace std;
_	
5	//Class for amounts of money in U.S. currency
6	class Money
7	{
8	public:
9	Money();
10	Money(double amount);
11	Money(int theDollars, int theCents);
12	<pre>Money(int theDollars);</pre>
13	<pre>double getAmount() const;</pre>
14	<pre>int getDollars() const;</pre>
15	<pre>int getCents() const;</pre>
16	<pre>friend const Money operator +(const Money& amount1, const Money& amount2)</pre>
17	<pre>friend const Money operator -(const Money& amount1, const Money& amount2)</pre>
18	<pre>friend bool operator ==(const Money& amount1, const Money& amount2);</pre>
19	<pre>friend const Money operator -(const Money& amount);</pre>
20	<pre>friend ostream& operator <<(ostream& outputStream, const Money& amount);</pre>
21	<pre>friend istream& operator >>(istream& inputStream, Money& amount);</pre>
22	private:
23	int dollars; //A negative amount is represented as negative dollars and
24	int cents; //negative cents. Negative \$4.50 is represented as -4 and -50.

Overloaded >> Example: Display 8.5 Overloading << and >> (2 of 5)

```
25
        int dollarsPart(double amount) const;
26
        int centsPart(double amount) const;
        int round(double number) const;
27
28
    };
29
    int main( )
30
    {
31
        Money yourAmount, myAmount(10, 9);
32
        cout << "Enter an amount of money: ";</pre>
33
        cin >> yourAmount;
        cout << "Your amount is " << yourAmount << endl;</pre>
34
        cout << "My amount is " << myAmount << endl:
35
36
37
        if (yourAmount == myAmount)
             cout << "We have the same amounts.n;
38
39
        else
40
             cout << "One of us is richer.\n":
41
        Money ourAmount = yourAmount + myAmount;
```

Overloaded >> Example: Display 8.5 Overloading << and >> (3 of 5)


```
ostream& operator <<(ostream& outputStream, const Money& amount)</pre>
49
50
    {
                                                            In the main function, cout is
         int absDollars = abs(amount.dollars);
51
                                                             plugged in for outputStream.
         int absCents = abs(amount.cents);
52
         if (amount.dollars < 0 || amount.cents < 0)</pre>
53
              //accounts for dollars == 0 or cents == 0
54
55
              outputStream << "$-";</pre>
56
         else
                                                          For an alternate input algorithm,
57
              outputStream << '$';</pre>
                                                          see Self-Test Exercise 3 in
58
         outputStream << absDollars;</pre>
                                                          Chapter 7.
```

Overloaded >> Example: Display 8.5 Overloading << and >> (4 of 5)

```
if (absCents >= 10)
59
             outputStream << '.' << absCents;</pre>
60
61
         else
62
             outputStream << '.' << '0' << absCents;</pre>
                                                           Returns a reference
         return outputStream;
63
64
    }
65
66
    //Uses iostream and cstdlib:
    istream& operator >>(istream& inputStream, Money& amount)
67
68
    {
69
         char dollarSign;
                                                            In the main function, cin is
         inputStream >> dollarSign; //hopefully
70
                                                            plugged in for inputStream.
         if (dollarSign != '$')
71
72
         {
             cout << "No dollar sign in Money input.n;
73
             exit(1);
74
                                                    Since this is not a member operator,
75
         }
                                                    you need to specify a calling object
                                                    for member functions of Money.
76
         double amountAsDouble;
         inputStream >> amountAsDouble;
77
         amount.dollars = amount.dollarsPart(amountAsDouble);
78
```

(continued)

Overloaded >> Example: Display 8.5 Overloading << and >> (5 of 5)

Assignment Operator, =

- Must be overloaded as member operator
- Automatically overloaded
 - Default assignment operator:
 - Member-wise copy
 - Member variables from one object → corresponding member variables from other
- Default OK for simple classes
 - But with pointers \rightarrow must write our own!

Increment and Decrement

- Each operator has two versions
 - Prefix notation: ++x;
 - Postfix notation: x++;
- Must distinguish in overload
 - Standard overload method \rightarrow Prefix
 - Add 2d parameter of type int \rightarrow Postfix
 - Just a marker for compiler!
 - Specifies postfix is allowed

Overload Array Operator, []

- Can overload [] for your class
 - To be used with objects of your class
 - Operator must return a reference!
 - Operator [] must be a member function!

Summary 1

- C++ built-in operators can be overloaded
 - To work with objects of your class
- Operators are really just functions
- Friend functions have direct private member access
- Operators can be overloaded as member functions
 - 1st operand is calling object

Summary 2

- Friend functions add efficiency only
 - Not required if sufficient accessors/mutators available
- Reference "names" a variable with an alias
- Can overload <<, >>

Return type is a reference to stream type