/ r/:" & = 1 L
I_DJQ’_;U f: C/ o

SIXTH EDITION C h a pte I 9

Strings

Walter Savitch

Copyright © 2016 Pearson, Inc.
All rights reserved. PEARSON

Learning Objectives

* An Array Type for Strings
— C-Strings

* Character Manipulation Tools
— Character 1I/O
— get, put member functions
— putback, peek, ignore

e Standard Class string
— String processing

Introduction

* Two string types:

* C-strings
— Array with base type char
— End of string marked with null, "\0"
— "Older" method inherited from C

e String class
— Uses templates

C-Strings

* Array with base type char
— One character per indexed variable

— One extra character: "\0"
e Called "null character”
* End marker

 We've used c-strings
— Literal "Hello" stored as c-string

C-String Variable

* Array of characters:
char s[10];

— Declares a c-string variable to hold up to
9 characters

— + one null character

* Typically "partially-filled" array
— Declare large enough to hold max-size string
— Indicate end with null

* Only difference from standard array:
— Must contain null character

C-String Storage

* A standard array:
char s[10];

— If s contains string "Hi Mom", stored as:

s[o] s[1] s[2] s3] sl 4] s[s] s[6] s[7]

s[8]

s[o]

H | M 0 m | \o

?

?

Copyright © 2016 Pearson Inc. All rights reserved.

9-6

C-String Initialization

* Caninitialize c-string:
char myMessage[20] = "Hi there.",;

— Needn’t fill entire array

— Initialization places "\0" at end
* Can omit array-size:

char shortString[] = "abc";

— Automatically makes size one more than
length of quoted string

— NOT same as:
char shortString[] = {"a", "b", "c"};

C-String Indexes

* Ac-string IS an array

e Can access indexed variables of:
char ourString[5] = "Hi";
— ourString[0] is "H"

IS i
iS II\OII

is unknown
is unknown

— ourString|
— ourString|
— ourString
— ourString|

B W N e

C-String Index Manipulation

* Can manipulate indexed variables
char happyString[7] = "DoBeDo";
happyString[6] ="Z";

— Be careful!

— Here, "\0" (null) was overwritten by a "Z"!

* |f null overwritten, c-string no longer "acts"
like c-string!
— Unpredictable results!

Library

* Declaring c-strings
— Requires no C++ library
— Built into standard C++

* Manipulations
— Require library <cstring>
— Typically included when using c-strings

* Normally want to do "fun" things with them

= and == with C-strings

e (C-strings not like other variables

— Cannot assign or compare:
char aString[10];
aString = "Hello"; // ILLEGAL!

e Can ONLY use "=" at declaration of c-string!

* Must use library function for assignment:
strcpy(aString, "Hello");

— Built-in function (in <cstring>)
— Sets value of aString equal to "Hello"

— NO checks for size!
* Up to programmer, just like other arrays!

Comparing C-strings

* Also cannot use operator ==
char aString[10] = "Hello";
char anotherString[10] = "Goodbye";

— aString == anotherString; // NOT allowed!

* Must use library function again:
if (strcmp(aString, anotherString))
cout << "Strings NOT same.";
else
cout << "Strings are same.";

The <cstring> Library:
Display 9.1 Some Predefined C-String Functions

in <cstring> (1 of 2)

* Full of string manipulation functions

Display 9.1

Some Predefined C-String Functions in <cstring>

strcpy(Target_String_Var,
Src_String)

strcpy(Target_String_Var,
Src_String, Limit)

strcat(Target_String_Var,
Src_String)

Copies the C-string value
Src_String into the
C-string variable
Target_String_Var.

The same as the two-argument
strcpy except that at most
Limit characters are copied.

Concatenates the C-string value
Src_String onto the end of the
C-string in the C-string variable
Target_String_Var.

Copyright © 2016 Pearson Inc. All rights reserved.

Does not check to make sure
Target_String_Varis large
enough to hold the value
Src_String.

If Limitis chosen carefully, this is
safer than the two-argument
version of strcpy. Not imple-
mented in all versions of C++.

Does not check to see that
Target_String_Varis large
enough to hold the result of the
concatenation.

(continued)

9-13

The <cstring> Library:

Display 9.1 Some Predefined C-String Functions

in <cstring> (2 of 2)

Display 9.1

Some Predefined C-String Functions in <cstring>

strcat(Target_String_Var,
Src_String, Limit)

strlen(Src_String)

strcmp (String_i, String_2)

stremp(String_i,
String_z, Limit)

The same as the two argument
strcat except that at most
Limit characters are appended.

Returns an integer equal to the
length of Src_String. (The null
character, \0’, is not counted
in the length.)

Returns O if String_i and
String_2 are the same. Returns a
value < o if String_ris less than
String_2. Returns a value > o if
String_i is greater than String_2
(that is, returns a nonzero value
if String_1 and String_z are dif-
ferent). The order is lexico-
graphic.

The same as the two-argument
strcat except that at most
Limit characters are compared.

Copyright © 2016 Pearson Inc. All rights reserved.

If Limitis chosen carefully, this is
safer than the two-argument
version of strcat. Not imple-
mented in all versions of C++.

If String_i equals String_2, this
function returns 0, which con-
verts to false. Note that this is
the reverse of what you might
expect it to return when the
strings are equal.

If Limitis chosen carefully, this is
safer than the two-argument
version of strcmp. Not imple-
mented in all versions of C++.

9-14

C-string Functions: strlen()

"String length”

Often useful to know string length:
char myString[10] = "dobedo";
cout << strlen(myString);

— Returns number of characters

* Not including null

— Result here:
6

C-string Functions: strcat()

strcat()

"String concatenate":
char stringVar[20] = "The rain";
strcat(stringVar, "in Spain");

— Note result:
stringVar now contains "The rainin Spain”

— Be careful!
— Incorporate spaces as needed!

C-string Arguments and Parameters

e Recall: c-string is array

* So c-string parameter is array parameter

— C-strings passed to functions can be changed
by receiving function!

* Like all arrays, typical to send size as well
— Function "could" also use "\0" to find end

— So size not necessary if function won’t change
c-string parameter

— Use "const” modifier to protect c-string arguments

C-String Output

e Can output with insertion operator, <<

* As we’ve been doing already:
cout << news << " Wow.\n";

— Where news is a c-string variable

* Possible because << operator is
overloaded for c-strings!

C-String Input

* Can input with extraction operator, >>
— |ssues exist, however

* Whitespace is "delimiter"
— Tab, space, line breaks are "skipped"
— Input reading "stops" at delimiter

* Watch size of c-string

* Must be large enough to hold entered string!
* C++ gives no warnings of such issues!

C-String Input Example

char a[80], b[80];

cout << "Enter input: ";

cin >>a >> b;

cout << a<< b <<"END OF OUTPUT\n";

Dialogue offered:

Enter input: Do be do to you!
DobeEND OF OUTPUT

— Note: Underlined portion typed at keyboard

C-string a receives: "do"

C-string b receives: "be"

C-String Line Input

* Canreceive entire line into c-string

e Use getline(), a predefined member function:
char a[80];
cout << "Enter input: ";
cin.getline(a, 80);
cout << a << "END OF OUTPUT\n";

— Dialogue:
Enter input: Do be do to youl!
Do be do to you!END OF INPUT

Example: Command Line
Arguments

* Programs invoked from the command line
(e.g. a UNIX shell, DOS command prompt) can
be sent arguments

— Example: COPY C:\FOO.TXT D:\FOO2.TXT

* This runs the program named “COPY” and sends in two
C-String parameters, “C:\FOO.TXT” and “D:\FOO2.TXT”

* |tis up to the COPY program to process the inputs
presented to it; i.e. actually copy the files

 Arguments are passed as an array of C-Strings
to the main function

Example: Command Line

Arguments

e Header for main

— int main(int argc, char *argv]])

— argc specifies how many arguments are supplied.
The name of the program counts, so argc will be
at least 1.

— argv is an array of C-Strings.

e argv

* Etc.

0]
e argv[1l

e argv|2]

holds the name of the program that is invoked
holds the name of the first parameter
holds the name of the second parameter

Example: Command Line
Arguments

// Echo back the input arguments
int main(int argc, char *argvl|])
{

for (int 1=0; i<argc; 1i++)

{

cout << "Argument " << i << " " << argv[i] << endl;

}

return 0;

Sample Execution

Sample Execution > Test hello world

___— Invoking Test

— Argument 0 Test
> Test from command Argument 1 hello
Argument 0 Test prompt Argument 2 world

Copyright © 2016 Pearson Inc. All rights reserved. 9-24

More getline()

* Can explicitly tell length to receive:
char shortString[5];
cout << "Enter input: ";
cin.getline(shortString, 5);
cout << shortString << "END OF OUTPUT\n";

— Results:

Enter input: dobedowap
dobeEND OF OUTPUT

— Forces FOUR characters only be read
* Recall need for null character!

Character I/0O

* Input and output data
— ALL treated as character data
— e.g., number 10 outputted as "1" and "0"
— Conversion done automatically

* Uses low-level utilities

e Can use same low-level utilities ourselves as
well

Member Function get()

 Reads one char at a time

* Member function of cin object:
char nextSymbol;
cin.get(nextSymbol);

— Reads next char & puts in variable
nextSymbol

— Argument must be char type
* Not "string"!

Member Function put()

* Outputs one character at a time
* Member function of cout object:

 Examples:
cout.put("a");

— Outputs letter "a" to screen

char myString[10] = "Hello";
cout.put(myString[1]);

— QOutputs letter "e" to screen

More Member Functions

* putback()
— Once read, might need to "put back"
— cin.putback(lastChar);

* peek()
— Returns next char, but leaves it there
— peekChar = cin.peek();

* ignore()
— Skip input, up to designated character

— cin.ignore(1000, "\n");
 Skips at most 1000 characters until "\n"

Character-Manipulating Functions:
Display 9.3 Some Functions
in <cctype> (1 of 3)

Display 9.3 Some Functions in <cctype>

toupper (Char_Exp) Returns the uppercase ver- char ¢ = toupper(’a’);
sion of Char_Exp (as a cout << ¢;
value of type int). Outputs: A
tolower (Char_Exp) Returns the lowercase ver- char ¢ = tolower(’A’);
sion of Char_Exp (as a cout << c;
value of type int). Outputs: a
isupper (Char_Exp) Returns true provided if (isupper(c))
Char_Exp is an uppercase cout << "Is uppercase.";
letter; otherwise, returns glse . ;
false. cout << "Is not uppercase."”;

Copyright © 2016 Pearson Inc. All rights reserved. 9-30

Character-Manipulating Functions:
Display 9.3 Some Functions
in <cctype> (2 of 3)

Display 9.3 Some Functions in <cctype>

islower (Char_Exp) Returns true provided
Char_Expis a lowercase let-
ter; otherwise, returns
false.

isalpha(Char_Exp) Returns true provided
Char_Exp is a letter of the
alphabet; otherwise,
returns false.

isdigit(Char_Exp) Returns true provided
Char_Exp is one of the dig-
its 0’ through ’9’; other-
wise, returns false.

isalnum(Char_Exp) Returns true provided
Char_Exp is either a letter
or a digit; otherwise,
returns false.

Copyright © 2016 Pearson Inc. All rights reserved.

char c = 'a’;
if (islower(c))

cout << € << is lowercase.";
Outputs: a is lowercase.

char ¢ = '$’;
if (isalpha(c))

cout << "Is a letter.";
else

cout << "Is not a letter.";
Outputs: Is not a letter.

if (isdigit(’37))

cout << "It’s a digit.";
else

cout << "It’s not a digit.";
Outputs: It’s a digit.

if (isalnum(’3’) && isalnum(’a’))
cout << "Both alphanumeric.";
else
cout << "One or more are not.";
Outputs: Both alphanumeric.

9-31

Character-Manipulating Functions:
Display 9.3 Some Functions

isspace(Char_Exp)

ispunct(Char_Exp)

isprint(Char_Exp)

isgraph(Char_Exp)

isctrl(Char_Exp)

Returns true provided
Char_Exp is a whitespace
character, such as the blank
or newline character; oth-
erwise, returns false.

Returns true provided
Char_Exp is a printing
character other than
whitespace, a digit, or a
letter; otherwise, returns
false.

Returns true provided
Char_Exp is a printing
character; otherwise,
returns false.

Returns true provided
Char_Exp s a printing char-
acter other than whitespace;
otherwise, returns false.

Returns true provided
Char_Exp is a control char-
acter; otherwise, returns
false.

Copyright © 2016 Pearson Inc. All rights reserved.

//Skips over one "word" and sets c
//equal to the first whitespace

//ch
do

{
} wh

if (

else

in <cctype> (3 of 3)

aracter after the "word":

cin.get(c);
ile (! isspace(c));

ispunct(’?’))
cout << "Is punctuation.";

cout << "Not punctuation.";

9-32

Standard Class string

* Defined in library:
#include <string>
using namespace std;

e String variables and expressions
— Treated much like simple types

e Can assign, compare, add:
string s1, s2, s3;
s3=s51+5s2; //Concatenation
s3 = "Hello Mom!" //Assignment

— Note c-string "Hello Mom!" automatically
converted to string type!

SRERE

BEREE

Display 9.4
Program Using the Class string

Display 9.4, Program Using the Class string

AW N

O 0~ o uv

10
11
12

13
14

//Demonstrates the standard class string.
#include <iostream>

#include <string>

using namespace std;

Initialized to the empty

int main() sLring.

{
string phrase; Two equivalent
string adjective("fried"), noun("ants"); ways of initializing
string wish = "Bon appetite!”;-tff*—‘““':S::::::==-5953””9V9”35@
phrase = "I love " + adjective + " " + noun + "!";
cout << phrase << endl

<< wish << endl;

return 0;

}

SAMPLE DIALOGUE

| love fried ants!
Bon appetite!

Copyright © 2016 Pearson Inc. All rights reserved.

9-34

/O with Class string

Just like other types!

string s1, s2;
cin >>s1;
cin >>s2;

Results:
User types in:
May the hair on your toes grow long and curly!

Extraction still ignores whitespace:
s1 receives value "May"
s2 receives value "the"

getline() with Class string

* For complete lines:
string line;
cout << "Enter a line of input: ";
getline(cin, line);
cout << line << "END OF OUTPUT";

* Dialogue produced:

Enter a line of input: Do be do to youl!
Do be do to you!END OF INPUT

— Similar to c-string’s usage of getline()

Other getline() Versions

* Can specify "delimiter"” character:
string line;
cout << "Enter input: ";
getline(cin, line, "?");
— Receives input until "?" encountered

e getline() actually returns reference

— string s1, s2;
getline(cin, s1) >> s2;

— Results in: (cin) >> s2;

Pitfall: Mixing Input Methods

* Be careful mixing cin >> var and getline

— int n;
string line;
cin >>n;
getline(cin, line);

— If input is: 42
Hello hitchhiker.

e Variable n set to 42
* line set to empty string!

— cin >> n skipped leading whitespace, leaving
"\n" on stream for getline()!

Class string Processing

 Same operations available as c-strings

* And more!
— Over 100 members of standard string class

e Some member functions:
— .length()

e Returns length of string variable
— .at(i)
* Returns reference to char at position i

Display 9.7 Member Functions
of the Standard Class string (1 of 2)

Display 9.7 Member Functions of the Standard Class string
Constructors
string str; Default constructor; creates empty string object str.

string str("string");

string str(aString);

Element access
strli]
str.at(i)

str.substr(position, length)

Assignment/Modifiers

strl = str2;

strl += str2;

str.empty()

Copyright © 2016 Pearson Inc. All rights reserved.

Creates a string object with data "string".

Creates a string object str that is a copy of aString.
aString is an object of the class string.

Returns read/write reference to character in str at index 1.
Returns read/write reference to character in str at index 1.

Returns the substring of the calling object starting at posi-
tion and having length characters.

Allocates space and initializes it to str2’s data, releases
memory allocated for strl, and sets strl’s size to that of
str2.

Character data of str2 is concatenated to the end of stri;
the size is set appropriately.

Returns true if stris an empty string; returns false
otherwise.

(continued)
9-40

Display 9.7 Member Functions
of the Standard Class string (2 of 2)

Display 9.7 Member Functions of the Standard Class string

strl + str2

str.insert(pos, str2)
str.remove(pos, length)
Comparisons

strl == str2 strl != str2
strl < str2 strl > str2

strl <= str2 strl >= str2

str.find(strl)

str.find(strl, pos)

str.find_first_of(strl, pos)

str.find_first_not_of
(strl, pos)

Copyright © 2016 Pearson Inc. All rights reserved.

Returns a string that has str2’s data concatenated to the
end of strl’s data. The size is set appropriately.

Inserts str2 into str beginning at position pos.

Removes substring of size Length, starting at position pos.

Compare for equality or inequality; returns a Boolean value.

Four comparisons. All are lexicographical comparisons.

Returns index of the first occurrence of strlin str.

Returns index of the first occurrence of string strlin str;
the search starts at position pos.

Returns the index of the first instance in str of any character
in strl, starting the search at position pos.

Returns the index of the first instance in str of any character
not in stri, starting search at position pos.

9-41

C-string and string
Object Conversions

* Automatic type conversions

— From c-string to string object:
char aCString[] = "My C-string";
string stringVar;
stringVar = aCstring;

* Perfectly legal and appropriate!

— aCString = stringVar;
* |LLEGAL!
* Cannot auto-convert to c-string

— Must use explicit conversion:
strcpy(aCString, stringVar.c_str());

Converting between string and
numbers

* |[n C++11 it is simply a matter of calling stof,
stod, stoi, or stol to convert a string to a float,

double, int, or long, respectively.

int 1i;
double d;

string s;
i = stoi("35"); // Converts the string "35" to an integer 35

d = stod("2.5"); // Converts the string "2.5" to the double 2.5

Converting between numbers and
string objects

* In C++11 use to_string to convert a numeric
type to a string

string s;
s = to string(d*2); // Converts the double 5.0 to a
// string "5.0000"

Summary

C-string variable is "array of characters"
— With addition of null character, "\0"

C-strings act like arrays

— Cannot assign, compare like simple variables

Libraries <cctype> & <string> have useful manipulating
functions

cin.get() reads next single character
getline() versions allow full line reading

Class string objects are better-behaved than c-strings

