
Chapter 9

Strings

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• An Array Type for Strings
– C-Strings

• Character Manipulation Tools
– Character I/O

– get, put member functions

– putback, peek, ignore

• Standard Class string
– String processing

9-2Copyright © 2016 Pearson Inc. All rights reserved.

Introduction

• Two string types:

• C-strings

– Array with base type char

– End of string marked with null, "\0"

– "Older" method inherited from C

• String class

– Uses templates

9-3Copyright © 2016 Pearson Inc. All rights reserved.

C-Strings

• Array with base type char

– One character per indexed variable

– One extra character: "\0"

• Called "null character"

• End marker

• We’ve used c-strings

– Literal "Hello" stored as c-string

9-4Copyright © 2016 Pearson Inc. All rights reserved.

C-String Variable

• Array of characters:
char s[10];

– Declares a c-string variable to hold up to
9 characters

– + one null character

• Typically "partially-filled" array
– Declare large enough to hold max-size string

– Indicate end with null

• Only difference from standard array:
– Must contain null character

9-5Copyright © 2016 Pearson Inc. All rights reserved.

C-String Storage

• A standard array:
char s[10];

– If s contains string "Hi Mom", stored as:

9-6Copyright © 2016 Pearson Inc. All rights reserved.

C-String Initialization

• Can initialize c-string:
char myMessage[20] = "Hi there.";

– Needn’t fill entire array

– Initialization places "\0" at end

• Can omit array-size:
char shortString[] = "abc";

– Automatically makes size one more than
length of quoted string

– NOT same as:
char shortString[] = {"a", "b", "c"};

9-7Copyright © 2016 Pearson Inc. All rights reserved.

C-String Indexes

• A c-string IS an array

• Can access indexed variables of:
char ourString[5] = "Hi";
– ourString[0] is "H"

– ourString[1] is "i"

– ourString[2] is "\0"

– ourString[3] is unknown

– ourString[4] is unknown

9-8Copyright © 2016 Pearson Inc. All rights reserved.

C-String Index Manipulation

• Can manipulate indexed variables
char happyString[7] = "DoBeDo";
happyString[6] = "Z";

– Be careful!

– Here, "\0" (null) was overwritten by a "Z"!

• If null overwritten, c-string no longer "acts"
like c-string!

– Unpredictable results!

9-9Copyright © 2016 Pearson Inc. All rights reserved.

Library

• Declaring c-strings

– Requires no C++ library

– Built into standard C++

• Manipulations

– Require library <cstring>

– Typically included when using c-strings

• Normally want to do "fun" things with them

9-10Copyright © 2016 Pearson Inc. All rights reserved.

= and == with C-strings

• C-strings not like other variables
– Cannot assign or compare:

char aString[10];
aString = "Hello"; // ILLEGAL!
• Can ONLY use "=" at declaration of c-string!

• Must use library function for assignment:
strcpy(aString, "Hello");

– Built-in function (in <cstring>)

– Sets value of aString equal to "Hello"

– NO checks for size!
• Up to programmer, just like other arrays!

9-11Copyright © 2016 Pearson Inc. All rights reserved.

Comparing C-strings

• Also cannot use operator ==
char aString[10] = "Hello";
char anotherString[10] = "Goodbye";

– aString == anotherString; // NOT allowed!

• Must use library function again:
if (strcmp(aString, anotherString))

cout << "Strings NOT same.";
else

cout << "Strings are same.";

9-12Copyright © 2016 Pearson Inc. All rights reserved.

The <cstring> Library:
Display 9.1 Some Predefined C-String Functions

in <cstring> (1 of 2)

• Full of string manipulation functions

9-13Copyright © 2016 Pearson Inc. All rights reserved.

The <cstring> Library:
Display 9.1 Some Predefined C-String Functions

in <cstring> (2 of 2)

9-14Copyright © 2016 Pearson Inc. All rights reserved.

C-string Functions: strlen()

• "String length"

• Often useful to know string length:
char myString[10] = "dobedo";
cout << strlen(myString);

– Returns number of characters

• Not including null

– Result here:
6

9-15Copyright © 2016 Pearson Inc. All rights reserved.

C-string Functions: strcat()

• strcat()

• "String concatenate":
char stringVar[20] = "The rain";
strcat(stringVar, "in Spain");

– Note result:
stringVar now contains "The rainin Spain"

– Be careful!

– Incorporate spaces as needed!

9-16Copyright © 2016 Pearson Inc. All rights reserved.

C-string Arguments and Parameters

• Recall: c-string is array

• So c-string parameter is array parameter

– C-strings passed to functions can be changed
by receiving function!

• Like all arrays, typical to send size as well

– Function "could" also use "\0" to find end

– So size not necessary if function won’t change
c-string parameter

– Use "const" modifier to protect c-string arguments

9-17Copyright © 2016 Pearson Inc. All rights reserved.

C-String Output

• Can output with insertion operator, <<

• As we’ve been doing already:
cout << news << " Wow.\n";

– Where news is a c-string variable

• Possible because << operator is
overloaded for c-strings!

9-18Copyright © 2016 Pearson Inc. All rights reserved.

C-String Input

• Can input with extraction operator, >>
– Issues exist, however

• Whitespace is "delimiter"
– Tab, space, line breaks are "skipped"

– Input reading "stops" at delimiter

• Watch size of c-string
• Must be large enough to hold entered string!

• C++ gives no warnings of such issues!

9-19Copyright © 2016 Pearson Inc. All rights reserved.

C-String Input Example

• char a[80], b[80];
cout << "Enter input: ";
cin >> a >> b;
cout << a << b << "END OF OUTPUT\n";

• Dialogue offered:
Enter input: Do be do to you!
DobeEND OF OUTPUT

– Note: Underlined portion typed at keyboard

• C-string a receives: "do"

• C-string b receives: "be"

9-20Copyright © 2016 Pearson Inc. All rights reserved.

C-String Line Input

• Can receive entire line into c-string

• Use getline(), a predefined member function:
char a[80];
cout << "Enter input: ";
cin.getline(a, 80);
cout << a << "END OF OUTPUT\n";

– Dialogue:
Enter input: Do be do to you!
Do be do to you!END OF INPUT

9-21Copyright © 2016 Pearson Inc. All rights reserved.

Example: Command Line
Arguments

• Programs invoked from the command line
(e.g. a UNIX shell, DOS command prompt) can
be sent arguments

– Example: COPY C:\FOO.TXT D:\FOO2.TXT

• This runs the program named “COPY” and sends in two
C-String parameters, “C:\FOO.TXT” and “D:\FOO2.TXT”

• It is up to the COPY program to process the inputs
presented to it; i.e. actually copy the files

• Arguments are passed as an array of C-Strings
to the main function

9-22Copyright © 2016 Pearson Inc. All rights reserved.

Example: Command Line
Arguments

• Header for main

– int main(int argc, char *argv[])

– argc specifies how many arguments are supplied.
The name of the program counts, so argc will be
at least 1.

– argv is an array of C-Strings.

• argv[0] holds the name of the program that is invoked

• argv[1] holds the name of the first parameter

• argv[2] holds the name of the second parameter

• Etc.

9-23Copyright © 2016 Pearson Inc. All rights reserved.

Example: Command Line
Arguments

9-24Copyright © 2016 Pearson Inc. All rights reserved.

// Echo back the input arguments

int main(int argc, char *argv[])

{

for (int i=0; i<argc; i++)

{

cout << "Argument " << i << " " << argv[i] << endl;

}

return 0;

}

Sample Execution

> Test

Argument 0 Test

Sample Execution

> Test hello world

Argument 0 Test

Argument 1 hello

Argument 2 world

Invoking Test

from command

prompt

More getline()

• Can explicitly tell length to receive:
char shortString[5];
cout << "Enter input: ";
cin.getline(shortString, 5);
cout << shortString << "END OF OUTPUT\n";

– Results:
Enter input: dobedowap
dobeEND OF OUTPUT

– Forces FOUR characters only be read
• Recall need for null character!

9-25Copyright © 2016 Pearson Inc. All rights reserved.

Character I/O

• Input and output data

– ALL treated as character data

– e.g., number 10 outputted as "1" and "0"

– Conversion done automatically

• Uses low-level utilities

• Can use same low-level utilities ourselves as
well

9-26Copyright © 2016 Pearson Inc. All rights reserved.

Member Function get()

• Reads one char at a time

• Member function of cin object:
char nextSymbol;
cin.get(nextSymbol);

– Reads next char & puts in variable
nextSymbol

– Argument must be char type

• Not "string"!

9-27Copyright © 2016 Pearson Inc. All rights reserved.

Member Function put()

• Outputs one character at a time

• Member function of cout object:

• Examples:
cout.put("a");

– Outputs letter "a" to screen

char myString[10] = "Hello";
cout.put(myString[1]);

– Outputs letter "e" to screen

9-28Copyright © 2016 Pearson Inc. All rights reserved.

More Member Functions

• putback()
– Once read, might need to "put back"

– cin.putback(lastChar);

• peek()
– Returns next char, but leaves it there

– peekChar = cin.peek();

• ignore()
– Skip input, up to designated character

– cin.ignore(1000, "\n");
• Skips at most 1000 characters until "\n"

9-29Copyright © 2016 Pearson Inc. All rights reserved.

Character-Manipulating Functions:
Display 9.3 Some Functions

in <cctype> (1 of 3)

9-30Copyright © 2016 Pearson Inc. All rights reserved.

Character-Manipulating Functions:
Display 9.3 Some Functions

in <cctype> (2 of 3)

9-31Copyright © 2016 Pearson Inc. All rights reserved.

Character-Manipulating Functions:
Display 9.3 Some Functions

in <cctype> (3 of 3)

9-32Copyright © 2016 Pearson Inc. All rights reserved.

Standard Class string

• Defined in library:
#include <string>
using namespace std;

• String variables and expressions
– Treated much like simple types

• Can assign, compare, add:
string s1, s2, s3;
s3 = s1 + s2; //Concatenation
s3 = "Hello Mom!" //Assignment

– Note c-string "Hello Mom!" automatically
converted to string type!

9-33Copyright © 2016 Pearson Inc. All rights reserved.

Display 9.4
Program Using the Class string

9-34Copyright © 2016 Pearson Inc. All rights reserved.

I/O with Class string

• Just like other types!

• string s1, s2;
cin >> s1;
cin >> s2;

• Results:
User types in:
May the hair on your toes grow long and curly!

• Extraction still ignores whitespace:
s1 receives value "May"
s2 receives value "the"

9-35Copyright © 2016 Pearson Inc. All rights reserved.

getline() with Class string

• For complete lines:
string line;
cout << "Enter a line of input: ";
getline(cin, line);
cout << line << "END OF OUTPUT";

• Dialogue produced:
Enter a line of input: Do be do to you!
Do be do to you!END OF INPUT

– Similar to c-string’s usage of getline()

9-36Copyright © 2016 Pearson Inc. All rights reserved.

Other getline() Versions

• Can specify "delimiter" character:
string line;
cout << "Enter input: ";
getline(cin, line, "?");

– Receives input until "?" encountered

• getline() actually returns reference
– string s1, s2;

getline(cin, s1) >> s2;

– Results in: (cin) >> s2;

9-37Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Mixing Input Methods

• Be careful mixing cin >> var and getline

– int n;
string line;
cin >> n;
getline(cin, line);

– If input is: 42
Hello hitchhiker.

• Variable n set to 42

• line set to empty string!

– cin >> n skipped leading whitespace, leaving
"\n" on stream for getline()!

9-38Copyright © 2016 Pearson Inc. All rights reserved.

Class string Processing

• Same operations available as c-strings

• And more!
– Over 100 members of standard string class

• Some member functions:
– .length()

• Returns length of string variable

– .at(i)
• Returns reference to char at position i

9-39Copyright © 2016 Pearson Inc. All rights reserved.

Display 9.7 Member Functions
of the Standard Class string (1 of 2)

9-40Copyright © 2016 Pearson Inc. All rights reserved.

Display 9.7 Member Functions
of the Standard Class string (2 of 2)

9-41Copyright © 2016 Pearson Inc. All rights reserved.

C-string and string
Object Conversions

• Automatic type conversions

– From c-string to string object:
char aCString[] = "My C-string";
string stringVar;
stringVar = aCstring;
• Perfectly legal and appropriate!

– aCString = stringVar;
• ILLEGAL!

• Cannot auto-convert to c-string

– Must use explicit conversion:
strcpy(aCString, stringVar.c_str());

9-42Copyright © 2016 Pearson Inc. All rights reserved.

Converting between string and
numbers

• In C++11 it is simply a matter of calling stof,
stod, stoi, or stol to convert a string to a float,
double, int, or long, respectively.

9-43Copyright © 2016 Pearson Inc. All rights reserved.

int i;

double d;

string s;

i = stoi("35"); // Converts the string "35" to an integer 35

d = stod("2.5"); // Converts the string "2.5" to the double 2.5

Converting between numbers and
string objects

• In C++11 use to_string to convert a numeric
type to a string

9-44Copyright © 2016 Pearson Inc. All rights reserved.

string s;

s = to_string(d*2); // Converts the double 5.0 to a

// string "5.0000"

Summary

• C-string variable is "array of characters"
– With addition of null character, "\0"

• C-strings act like arrays
– Cannot assign, compare like simple variables

• Libraries <cctype> & <string> have useful manipulating
functions

• cin.get() reads next single character

• getline() versions allow full line reading

• Class string objects are better-behaved than c-strings

9-45Copyright © 2016 Pearson Inc. All rights reserved.

